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Abstract. We show that K∞ and K∞ control transfer in every fusion system
on a finite p-group when p ≥ 5, and that they control weak closure of elements
in every fusion system on a finite p-group when p ≥ 3. This generalizes results
of G. Glauberman concerning finite groups.

1. Introduction

Let G be a finite group with Sylow p-subgroup P . The subgroup P ∩ G′ of P
is called the focal subgroup of P with respect to G. It is determined locally by the
fusion of elements in P under conjugation by G; explicitly,

P ∩G′ = 〈x−1cg(x) | x ∈ P and g ∈ G such that cg(x) ∈ P 〉,

where cg : G→ G, x 7→ g−1xg. The focal subgroup determines a global property of
the group G. Indeed, P ∩ G′ is a proper subgroup of P if and only if the abelian
factor group G/G′ has a nontrivial p-subgroup, which is equivalent to saying that
G has a nontrivial p-factor group. Also concerned with phenomena of fusion, an
element x ∈ P is said to be weakly closed in P with respect to H , for some subgroup
H of G containing P , if for every g ∈ H such that cg(x) ∈ P we have cg(x) = x.

In [4, §12–13], Glauberman defines for each finite p-group P , characteristic sub-
groups K∞(P ) and K∞(P ) of P , and shows that, denoting K∞ or K∞ by W,

(1) when p ≥ 3, W controls weak closure of elements in P with respect to G,
that is, if x ∈ P is weakly closed in P with respect to NG(W(P )), then x
is weakly closed in P with respect to G;

(2) when p ≥ 5, W controls p-transfer in G, that is,

P ∩G′ = P ∩ (NG(W(P )))′.

In this paper, following the strategy of [7] as in our previous work [3], we generalize
these results of Glauberman to arbitrary fusion systems:

Theorem 1.1. K∞ and K∞ control weak closure of elements in every fusion system
on a finite p-group when p ≥ 3.

Theorem 1.2. K∞ and K∞ control transfer in every fusion system on a finite
p-group when p ≥ 5.

As observed by Glauberman, both results fail in general for p = 2, as it can be
seen in [4, Example 11.3], in the case of the simple group G = PSL(2, 17). The
question about the control of transfer for p = 3 is still open (cf. [4, Question 16.3]).
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The above mappings P 7→ K∞(P ) and P 7→ K∞(P ) are gaining importance
within the fusion system context. For instance, in [7], K∞ and K∞ play a central
role in showing that any Qd(p)-free fusion system is induced by a finite group.
More recently, Robinson [10] uses Theorem 1.2 to obtain results on the number of
irreducible characters of height zero in a p-block.

In §2, we define centers and control of weak closure of elements in fusion systems,
and prove Theorem 1.1. In §3, we define focal subgroups and control of transfer
in fusion systems, and state the main technical theorem (Theorem 3.1) from which
Theorem 1.2 follows as a corollary. In §4, we consider the transfer map in fusion
systems, and use it to prove some lemmas concerning focal subgroups. In §5, we
prove Theorem 3.1. In §6, we generalize additional results on control of transfer
and weak closure from [4] to fusion systems. We end this article with a recap in
§7 on Glauberman’s K∞ and K∞ constructions. Our general terminology follows
[7] and [3]; in particular, by a fusion system we always mean a saturated fusion
system.

2. Control of Weak Closure in Fusion Systems

Let F be a fusion system on a finite p-group P . The center Z(F) of F is the
largest subgroup Q of P such that every morphism in F can be extended to a
morphism in F which is the identity map on Q. One can easily show that Z(F)
is the set of all weakly closed elements in P with respect to F , i.e. elements x ∈ P
such that ϕ(x) = x for all ϕ ∈ HomF (〈x〉, P ).

Following [7], a positive characteristic p-functor is a map W sending every finite
p-group Q to a characteristic subgroup W(Q) of Q such that

(1) W(Q) 6= 1 if Q 6= 1;
(2) if ϕ : Q→ R is an isomorphism of finite p-groups, then ϕ(W(Q)) = W(R).

For a subgroup Q of P , set W1(Q) = Q and for any positive integer i, define
Wi+1(Q) = W(NP (Wi(Q))). We say that Q is (F ,W)-well-placed if Wi(Q) is
fully F -normalized for all positive integers i. Note that Wi(Q) = W(P ) for all
sufficiently large i and that, if Q is (F ,W)-well-placed, so is Wi(Q) for every i.
Furthermore, by [3, 2.12], the set of (F ,W)-well-placed subgroups of P forms a
conjugation family. Thus, Alperin’s fusion theorem implies that every morphism
in F is a composition of a finite number of restrictions of F -automorphisms of
(F ,W)-well-placed subgroups of P .

Suppose further that Z(Q) ≤W(Q) for every finite p-group Q. We say that W
controls weak closure of elements in F if

Z(NF (W(P ))) = Z(F).

The following proposition shows that control of weak closure in fusion systems
is locally determined.

Proposition 2.1. Let F be a fusion system on a finite p-group P , and let W be
a positive characteristic p-functor such that Z(Q) ≤W(Q) for every finite p-group
Q. If there exists x ∈ Z(NF (W(P ))) such that x /∈ Z(F), then there exists an
(F ,W)-well-placed subgroup T of P containing x such that x ∈ Z(NF(W(NP (T ))))
and x /∈ Z(NF (T )).

Proof. We have Z(NF (W(P ))) ≤ Z(P ), since W(P ) is normal in P ; in particular
x ∈ Z(P ). By Alperin’s fusion theorem, there is an (F ,W)-well-placed subgroup
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T of P containing x and a morphism ϕ ∈ AutF (T ) such that ϕ(x) 6= x, i.e.
x /∈ Z(NF (T )). Amongst all such T , choose one with |NP (T )| maximal. Note
that

x ∈ T ∩ Z(P ) ≤ NP (T ) ∩ Z(P ) ≤ Z(NP (T )) ≤W(NP (T )).

Suppose that x /∈ Z(NF (W(NP (T )))). We have

|NP (T )| ≥ |NP (W(NP (T )))| ≥ |NP (NP (T ))|,

where the first inequality follows from the maximality of |NP (T )|. Hence, T is
normal in P and x /∈ Z(NF (W(NP (T )))) = Z(NF (W(P ))), a contradiction. This
shows that x ∈ Z(NF (W(NP (T )))). �

Consider now the positive characteristic p-functors W such that Z(Q) ≤W(Q),
for every finite p-group Q. We say that W satisfies condition (C) if

(C) Op(G) ∩ Z(G) = Op(G) ∩ Z(NG(W(P ))),

whenever G is a finite group with Sylow p-subgroup P . Observe that this condition
only depends on the subgroup structure in finite groups, and it is sufficient for the
proof of the next result.

Theorem 2.2. Let W be a positive characteristic p-functor such that Z(Q) ≤W(Q)
for every finite p-group Q. If W satisfies condition (C), then W controls weak
closure of elements in every fusion system F on a finite p-group P .

Proof. Suppose that the theorem is false and take a counterexample F with minimal
number |F| of morphisms. Accordingly, there is an element x ∈ Z(NF (W(P ))) with
x /∈ Z(F). By Proposition 2.1, there is an (F ,W)-well-placed subgroup T of P
containing x such that x ∈ Z(NF (W(NP (T )))) and x /∈ Z(NF (T )). If NF (T ) < F ,
then by the minimality of |F|, we have

Z(NF (W(NP (T )))) ≤ Z(NNF (T )(W(NP (T )))) = Z(NF (T )),

contradicting the choice of x. Thus, 1 6= T ≤ Op(F).
Set Q = Op(F) and R = QCP (Q). We show that Q = R and hence that Q is

F -centric. Suppose that Q < R and so NF (R) < F . By the minimality of |F|, we
have

x ∈ Z(NF (W(P ))) ≤ Z(NNF (R)(W(P ))) = Z(NF (R)).

As x ∈ Q and every F -automorphism of Q extends to an F -automorphism of R
(by the extension axiom) this contradicts the assumption that x /∈ Z(F). Therefore
Q = R = Op(F) is F -centric.

By [1, 4.3], there exists a finite group G such that F = FP (G) and such that
Op(G) = Op(F). By condition (C), we have

x ∈ Op(G) ∩ Z(NG(W(P ))) = Op(F) ∩ Z(F)

and so x ∈ Z(F), a contradiction. �

We now show that the positive characteristic p-functors K∞ and K∞ control
weak closure of elements in any fusion system. We refer the reader to Section 7
for the background material. Let us also recall the following standard commutator
notation. If H is a subgroup of a group G and g ∈ G, define [H, g; 0] = H and
[H, g; i+ 1] = [[H, g; i], g], for i ≥ 0.
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Proof of Theorem 1.1. Let W denote K∞ or K∞. By Lemma 7.2, Z(Q) ≤ W (Q)
for every finite p-group Q. Hence, by Theorem 2.2, it will suffice to show that W
satisfies condition (C) when p ≥ 3. Suppose that G is a finite group, P is a Sylow
p-subgroup of G. We assume that W(P ) 5 G. Set Z = Z(Op(G)). Let E0 be the
set of all elements g ∈ P such that [X, g; p− 1] ≤ Y for every chief factor X/Y of
G with X ≤ Z. Set E = 〈E0〉 and L = NG(E). By Theorem 7.3, E0 is nonempty,
and, by Theorem 7.4, we have P ≤ L < G and Z ∩ Z(G) = Z ∩ Z(L). Clearly
Op(G) ≤ P ≤ L, so we have Op(G) ∩ Z(G) = Op(G) ∩ Z(L). By induction on the
order of G, we have Op(L)∩Z(L) = Op(L)∩Z(NL(W(P ))). Intersecting both sides
with Op(G), we get

Op(G) ∩ Z(L) = Op(G) ∩ Z(NL(W(P ))) ≥ Op(G) ∩ Z(NG(W(P ))).

Thus, Op(G)∩Z(G) ≥ Op(G)∩Z(NG(W(P ))). The reverse inclusion is trivial. �

3. Focal Subgroups and Control of Transfer in Fusion Systems

Let F be a fusion system on a finite p-group P . For Q ≤ P , define

[Q,F ] = 〈u−1ϕ(u) | u ∈ Q, ϕ ∈ HomF (〈u〉, P )〉.

and call [P,F ] the F-focal subgroup of P . Note that if F = FP (G) is the fusion
system on P defined by the inclusion of P as a Sylow p-subgroup of some finite
group G, then the focal subgroup theorem reads ([6, Theorem 7.3.4]),

P ∩G′ = [P,F ].

Given subgroups Q and R of P with Q ≤ R, we say that Q is weakly F-closed
in R if ϕ(Q) = Q for all ϕ ∈ HomF(Q,R). In particular, if Q is weakly F -closed
in P , then Q E P . For short, and if there is no possible confusion, we simply
say that a subgroup Q is weakly F -closed, instead of weakly F -closed in P . It is
straightforward to show that [P,F ] is weakly F -closed.

A positive characteristic p-functor W controls transfer in F if the F -focal sub-
group equals the NF (W(P ))-focal subgroup, i.e., if

[P,F ] = [P,NF (W(P ))].

As for condition (C) in the previous section, we appeal now to a concept which
depends only on the subgroup structure in finite groups. Namely, we say that W
satisfies condition (T) if

(T) CG(Op(G)) ≤ Op(G) implies Op(G) ∩G′ = Op(G) ∩ (NG(W(P )))′,

whenever G is a finite group with Sylow p-subgroup P .

Theorem 3.1. If W is a positive characteristic p-functor satisfying condition (T),
then W controls transfer in every fusion system F on a finite p-group P .

We prove this theorem in §5 and get Theorem 1.2 as a corollary.

Proof of Theorem 1.2. Let W denote K∞ or K∞. By Theorem 3.1, it will suffice
to show that W satisfies condition (T) when p ≥ 5. Suppose that G is a finite
group, P is a Sylow p-subgroup of G, and CG(Op(G)) ≤ Op(G). Let Q = Op(G).
We assume that W(P ) 5 G. Let E0 be the set of all elements g ∈ P such that
[X, g; p − 1] ≤ Y for every chief factor X/Y of G with X ≤ Q. Set E = 〈E0〉
and L = NG(E). By Theorem 7.3, E0 is nonempty, and, by Theorem 7.4, we have
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P ≤ L < G and Q∩G′ = Q∩L′. Clearly Q ≤ P ≤ L, and so Q ≤ Op(L); therefore,
CL(Op(L)) ≤ Op(L). By induction on the order of G, we have

Q ∩ L′ = Q ∩ (Op(L) ∩ L′) = Q ∩ (Op(L) ∩NL(W(P ))′) ≤ Q ∩NG(W(P ))′.

Thus, Q∩G′ ≤ Q∩NG(W(P ))′. Since the opposite containment holds trivially, we
get Q ∩G′ = Q ∩NG(W(P ))′. �

4. The Transfer Map in Fusion Systems

For a group P , a subgroup Q of P , and a group homomorphism ϕ : Q→ P , let

P ×(Q,ϕ) P = P × P/ ∼

where (x, uy) ∼ (xϕ(u), y) for x, y ∈ P , u ∈ Q, viewed as a P -P -biset via

t · (x, y) = (tx, y) and (x, y) · t = (x, yt) for x, y, t ∈ P .

The next theorem plays a crucial role in the theory of fusion systems.

Theorem 4.1 ([2, 5.5]). Let F be a fusion system on a finite p-group P . There is
a finite P -P -biset X with the following properties:

(1) Every transitive subbiset of X is isomorphic to P×(Q,ϕ)P for some subgroup
Q of P and some group homomorphism ϕ : Q→ P belonging to F .

(2) For any Q ≤ P and any ϕ ∈ HomF (Q,P ), the Q-P -bisets QX and ϕX are
isomorphic.

(3) |X |/|P | ≡ 1 (mod p).

Let F be a fusion system on a finite p-group P . We call a P -P -biset X satisfying
the properties of Theorem 4.1 a P -P -biset associated with F . In the case that
F = FP (G) is the fusion system defined by a finite group G, there is a suitable

non-negative integer k such that the P -P -biset X =
∐k

G is associated with F .
The integer k is chosen so that |X |/|P | ≡ 1 (mod p), the two other conditions of
Theorem 4.1 being satisfied by any finite number of copies of the P -P -biset G. We
refer the reader to [2, §5] for further details.

Now, suppose that X =
⊔

i P ×(Qi,ϕi) P , and let A be an abelian group with
trivial P -action. The transfer map associated with X is the group homomorphism

tX : H∗(P,A)→ H∗(P,A)

defined by

tX =
∑

i

tPQi
◦ resϕi

,

where, for a subgroupQ of P , the map tPQ : H∗(Q,A)→ H∗(P,A) is the transfer. In

particular, identifying H1(Q,A) with the set of group homomorphisms Hom(Q,A),
Theorem VII.3.2 in [6] yields

tPQ(α)(x) =
∑

t∈T

α
(

(x · t)−1xt
)

, for all x ∈ P and for all α ∈ H1(Q,A),

where T is a set of left coset representatives of Q in P , and where the · symbol
denotes the action of P on T induced by the permutation of the cosets. Thus,
x · t ∈ T and (x · t)−1xt ∈ Q.

By [2], we have

Im tX = H∗(P,A)F ∼= lim
←−
F

H∗(−, A),
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where H∗(P,A)F denotes the set of elements α ∈ H∗(P,A) such that resP
Q(α) =

resϕ(α) for every Q ≤ P and every ϕ ∈ HomF (Q,P ). In particular, if F = FP (G)
for some finite group G with Sylow p-subgroup P , we have that Im tX = H∗(P,A)G

is the set of G-stable elements in H∗(P,A).
The following three lemmas generalize results in [4] to arbitrary fusion systems

using the transfer map.

Lemma 4.2 ([4, 4.2]). Let F be a fusion system on a finite p-group P and let X
be a finite P -P -biset associated with F . Set τ = tX(π), where π : P → P/P ′ is the
canonical surjection, and let n = |X |/|P |. If u ∈ Z(F), then τ(u) = unP ′.

Proof. Let X =
⊔

i P ×(Qi,ϕi) P . Note that |X |/|P | =
∑

i |P : Qi|. If u ∈ Z(F),
then — switching to multiplicative notation —

τ(u) =
∏

i

((tPQi
◦ resϕi

)(π))(u)

=
∏

i

tPQi
(π ◦ ϕi)(u)

=
∏

i

∏

t∈Ti

(π ◦ ϕi)((u · t)
−1ut)

where Ti is a set of left coset representatives for Qi in P . Decompose each Ti into
〈u〉-orbits and choose one element tij from each orbit. Let rij be the length of the
〈u〉-orbit containing tij . We then obtain |P : Qi| =

∑

j

rij and since urij · tij = tij

for all i and j, we get

τ(u) =
∏

i

∏

j

rij−1
∏

k=0

(π ◦ ϕi)((u
k+1 · tij)

−1u(uk · tij))

=
∏

i

∏

j

(π ◦ ϕi)(

rij−1
∏

k=0

(uk+1 · tij)
−1u(uk · tij))

=
∏

i

∏

j

(π ◦ ϕi)(t
−1
ij u

rij tij)

=
∏

i

∏

j

π(urij )

=
∏

i

π(u|P :Qi|)

= π(un) = unP ′

because u ∈ Z(F). �

Lemma 4.3 ([4, 4.4]). Let F be a fusion system on a finite p-group P . Then

[P,F ] ∩ Z(F) = P ′ ∩ Z(F).

Proof. Clearly P ′ ∩ Z(F) ≤ [P,F ] ∩ Z(F). Conversely, suppose that z ∈ [P,F ] ∩
Z(F). Let τ be defined as in Lemma 4.2. By Theorem 4.1, for every subgroup Q
of P and every morphism ϕ : Q → P in F , we have resP

Q(τ) = resϕ(τ), that is,

τ(u) = τ(ϕ(u)) for every u ∈ Q. Thus, τ(z) = P ′ as z ∈ [P,F ]. On the other
hand, τ(z) = znP ′ by Lemma 4.2. Thus, zn ∈ P ′. Since n is prime to p and z is a
p-element, it follows that z ∈ P ′. �
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Lemma 4.4 ([4, 6.7]). Let F be a fusion system on a finite p-group P and let G be
a fusion subsystem of F on P . Suppose that Q is a subgroup of P which is normal
in F . If [Q,F ] = [Q,G], then [P,F ] ∩Q = [P,G] ∩Q.

Proof. Let R = [P,F ] ∩ Q, S = [Q,F ] = [Q,G]. It will suffice to show that
R ≤ [P,G]. Clearly, S ≤ R, and since Q ⊳ F and S is weakly F -closed, we have
S ⊳ F . Furthermore, R/S ≤ Z(F/S), where the quotient fusion system is defined
as in [8, 6.2]. In fact, if x ∈ R and ϕ ∈ HomF/S(〈xS〉, P/S), then x−1ϕ(x) ∈ S for
any ϕ ∈ HomF (〈x〉, P ) inducing ϕ. This implies that ϕ(xS) = ϕ(x)S = xS and so
xS ∈ Z(R/S). By Lemma 4.3, R/S ≤ [P/S,F/S] ∩ Z(F/S) = (P/S)′ ∩ Z(F/S).
Thus, R ≤ P ′S = P ′[Q,G] ≤ [P,G]. �

5. Proof of Theorem 3.1

To prove Theorem 3.1, we need the following two lemmas. The first shows that
control of transfer in fusion systems is locally determined.

Lemma 5.1. Let F be a fusion system on a finite p-group P and let W be a posi-
tive characteristic p-functor. If W controls transfer in NF (Q) for every nontrivial
(F ,W)-well-placed subgroup Q of P , then W controls transfer in F .

Proof. For every nontrivial (F ,W)-well-placed subgroup Q of P we have

[NP (Q),NF (Q)] = [NP (Q),NNF (Q)(W(NP (Q)))]

≤ [NP (W(NP (Q))),NF (W(NP (Q)))]

because W(NP (Q)) E NP (Q). Since Wi(Q) is (F ,W)-well-placed for all i and
Wi(Q) = W(P ) for all sufficiently large i, we can repeat the above argument until
we get

[NP (Q),NF (Q)] ≤ [P,NF (W(P ))].

The lemma now follows from Alperin’s fusion theorem. �

The following result is [9, Lemma 3.7], and we include a proof for the convenience
of the reader. It considerably shortens Kessar and Linckelmann’s proofs of [7,
Theorems A and B] (see also [5]).

Lemma 5.2. Let F be a fusion system on a finite p-group P . If Q ⊳ F , then

F = 〈PCF(Q),NF (QCP (Q))〉

where 〈PCF(Q),NF (QCP (Q))〉 denotes the subcategory of F on P generated by
PCF(Q) and NF (QCP (Q)).

Proof. Let U be a fully F -normalized centric radical subgroup of P , and take ϕ ∈
AutF (U). Note that Q ≤ U by [1, 1.6]. Since Q ⊳ F , we have θ = ϕ|Q ∈ AutF(Q).
As UQCP (Q) ≤ Nθ, there is ψ ∈ HomF (UQCP (Q), P ) such that ψ|Q = ϕ|Q. Then

ϕ = (ϕ ◦ (ψ|U )−1) ◦ ψ|U .

Now, ϕ◦(ψ|U )−1 is a morphism in PCF(Q) and ψ|U is a morphism in NF (QCP (Q))
because ψ(QCP (Q)) = QCP (Q). Consequently, we have that ϕ is a morphism
in 〈PCF(Q),NF (QCP (Q))〉. By Alperin’s fusion theorem, it follows that F =
〈PCF(Q),NF (QCP (Q))〉. �

Now we prove Theorem 3.1. The proof follows exactly the line of arguments in
the proof of [7, Theorem B]. It also incorporates arguments in [4, 6.8], generalized
to arbitrary fusion systems, if needed, as in Lemma 4.4.
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Proof of Theorem 3.1. Suppose that the theorem is false and take a counterexample
F with a minimal number |F| of morphisms.

• Op(F) 6= 1: Set Q = Op(F). If Q = 1, then for any nontrivial (F ,W)-well-

placed subgroup T of P , we have NF (T ) < F . By the minimality of |F|, it follows
that W controls transfer in NF (T ). Now, Lemma 5.1 implies that W controls
transfer in F , a contradiction.

• QCP (Q) > Q: Set R = QCP (Q). If R = Q, then by [1, 4.3], there exists a

finite group G such that F = FP (G) and CG(Q) ≤ Q; in particular, Op(G) = Q.
By condition (T), we have

(∗) Q ∩G′ = Q ∩NG(W(P ))′.

For every subgroup H of G, let H = HQ/Q. Since |FP (G)| < |F|, we have

[P,FP (G)] = [P ,NF
P

(G)(W(P ))], i.e., P ∩ G
′

= P ∩ NG(W(P ))′. If L is the

subgroup of G containing Q such that L = NG(W(P )), then P ∩ G
′
= P ∩ L

′
and

so P ∩G′ ≤ L′Q. This gives

P ∩G′ ≤ P ∩ L′Q = (P ∩ L′)Q

by Dedekind’s lemma (see [4, 6.2]). Letting T1 = P ∩ G′, T2 = P ∩ L′, we obtain,
again by Dedekind’s lemma,

P ∩G′ = QT2 ∩ T1 = (Q ∩ T1)T2 = (Q ∩G′)(P ∩ L′).

Hence, the containment NG(W(P )) ≤ L implies

P ∩G′ = (Q ∩ L′)(P ∩ L′) = P ∩ L′.

Since W(P ) is characterisitic in P , we have P ≤ L. As Op(G) = 1, we have L < G,
whence P ≤ L < G. Clearly Q E L and CL(Q) ≤ CG(Q) ≤ Q. By the uniqueness
ofG, it follows that FP (L) < F . Thus, the minimality of |F| and the focal subgroup
theorem imply

P ∩ L′ = [P,FP (L)] = [P,NFP (L)(W(P ))] ≤ [P,NF (W(P ))].

Therefore, [P,F ] = P ∩G′ = P ∩ L′ = [P,NF (W(P ))], a contradiction.

• F = PCF (Q): Suppose that PCF (Q) 6= F . By the minimality of |F|, W

controls transfer in PCF(Q). On the other hand, NF (R) 6= F because R > Q =
Op(F), and hence W also controls transfer in NF (R). By Lemma 5.2, it follows
that W controls transfer in F , a contradiction. Thus, we have F = PCF (Q).

• Now let V be the inverse image of W(P/Q) in P under the canonical surjection.
By [7, 3.4], we have NF (V )/Q = NF/Q(W(P/Q)). By the minimality of |F|, we
have [P/Q,F/Q] = [P/Q,NF(V )/Q], and so

[P,F ]/([P,F ] ∩Q) = [P,NF (V )]/([P,NF (V )] ∩Q).

Since F = PCF(Q) and V E P , we have [Q,F ] = [Q,P ] = [Q,NF(V )]. By
Lemma 4.4, we have [P,F ] ∩Q = [P,NF (V )] ∩Q. Thus, [P,F ] = [P,NF (V )].

Since W(P/Q) 6= 1, we have Q < V and so NF (V ) < F . By the minimality of
|F|, it follows that [P,NF (V )] = [P,NNF (V )(W(P ))] ≤ [P,NF (W(P ))]. This shows
that [P,F ] = [P,NF (W(P ))], a contradiction. �
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6. Additional Results

In this section, we prove some additional results on control of transfer and weak
closure that generalize the statements [4, 6.3, 12.5 and 12.8]:

Proposition 6.1 ([4, 6.9]). Suppose that F is a fusion system on a nontrival finite
p-group P such that AutF (P ) is a p-group (or, equivalently, NF(P ) = FP (P )). If
there exists a positive characteristic p-functor that controls transfer in F and every
quotient of F , then [P,F ] < P .

Proof. Suppose that the proposition is false and take a counterexample F with
a minimal number |F| of morphisms. If W is a positive characteristic p-functor
that controls transfer in F , then [P,F ] = [P,NF (W(P ))] and so we must have
W(P ) ⊳ F . Set Z = Z(W(P )), P = P/Z, and F = F/Z, where the quotient fusion
system is defined as in [8, 6.2]. If Z < P , then P 6= 1, |F| < |F|, and AutF(P ) is a
p-group because it is a homomorphic image of AutF (P ). By the minimality of |F|,

we have [P,F ] = [P ,F ] < P , contradicting [P,F ] = P . So Z = P and hence P is
abelian. By Burnside’s theorem (see [8, Theorem 3.8]), F = NF (P ) = FP (P ) and
so 1 = [P, P ] = [P,F ] = P 6= 1, a contradiction. �

Corollary 6.2 is now a consequence of Theorem 1.2 and the preceeding proposi-
tion.

Corollary 6.2 ([4, 12.5]). Let p ≥ 5. If F is a fusion system on a nontrivial finite
p-group P such that AutF(P ) is a p-group, then [P,F ] < P .

Proposition 6.3 ([4, 7.9]). Let W be a positive characteristic p-functor such that
Z(Q) ≤ W(Q) for every finite p-group Q. Suppose that, whenever G is a finite
group with Sylow p-subgroup P such that W(P ) ⋪ G, there is g ∈ P −Op(G) such
that [Z(Op(G)), g, g] = 1. If F is a fusion system on a finite p-group P , then

Z(P )p ∩ Z(NF (W(P ))) ≤ Z(F).

Proof. Suppose the proposition is false and take a counterexampleF with a minimal
number |F| of morphisms. This gives an element x ∈ Z(P )p ∩ Z(NF (W(P ))) such
that x /∈ Z(F). By Proposition 2.1, there is an (F ,W)-well-placed subgroup T of P
containing x such that x ∈ Z(NF (W(NP (T )))) and x /∈ Z(NF (T )). As x ∈ Z(P )p ≤
Z(NP (T ))p, the minimality of F implies F = NF (T ); in particular, x ∈ T ≤ Op(F).
Let Q = Op(F). By Lemma 5.2, we have F = 〈PCF (Q),NF (QCP (Q))〉. Since
x ∈ Q ∩ Z(P ), we have x ∈ Z(PCF (Q)) and hence x /∈ Z(NF (CP (Q))). On the
other hand,

x ∈ Z(P )p ∩ Z(NNF (CP (Q))(W(P )))

and so by the minimality of F , we have F = NF (QCP (Q)). Therefore, Q =
QCP (Q) is F -centric and hence F is constrained. By [1, 4.3], there exists a finite
group G with Sylow p-subgroup P such that F = FP (G) and the result now follows
from [4, Theorem 7.9]. �

As a special case of Proposition 6.3 we get (utilizing [4, 12.3]) the following
corollary.

Corollary 6.4 ([4, 12.8]). Let W denote either K∞ or K∞. If F is a fusion system
on a finite p-group P , then Z(P )p ∩ Z(NF (W(P ))) ≤ Z(F).
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7. Appendix : K∞ and K∞

For the sake of completeness, we summarize the definitions and properties of the
positive characteristic p-functors K∞ and K∞, as introduced in [4, § 12 and 13].

Let P be a finite p-group and let Q ≤ P . Define M(P ;Q) to be the set of
subgroups B of P normalized by Q and such that B/Z(B) is abelian. We identify
two useful subsets. First,M∗(P ;Q) will denote the subset ofM(P ;Q) containing
those subgroups B for which the conjugation action of Q on B induces the trivial
action on B/Z(B). The second subset, M∗(P ;Q), is slightly more complicated.
For this subset, we choose those subgroups B of M(P ;Q) satisfying the following
condition: if A ∈ M(P ;B) such that A ≤ Q ∩ CP ([Z(B), A]) and A′ ≤ CP (B),
then the conjugation action of A on B induces the trivial action on B/Z(B).

Set K−1(P ) = P , and for i ≥ 0, define inductively

Ki(P ) =

{

〈M∗(P ; Ki−1(P )〉 for i odd

〈M∗(P ; Ki−1(P )〉 for i even.

Definition 7.1. Let P be a finite p-group. We set

K∞(P ) =
⋂

i ≥ −1, odd

Ki(P )

K∞(P ) = 〈Ki(P ) | i ≥ 0, even〉.

Here are the main properties of K∞(P ) and K∞(P ).

Lemma 7.2. [4, 13.1] Let P be a finite p-group and let W denote either K∞ or
K∞.

(1) W(P ) is a characteristic subgroup of P .
(2) W(P ) contains Z(P ). In particular, if P 6= 1, then W(P ) 6= 1.
(3) If ϕ : P → Q is a group isomorphism, then ϕ(W(P )) = W(Q).

Consequently, the mappings P 7→ K∞(P ) and P 7→ K∞(P ) are positive character-
istic p-functors.

The next theorem is the key result — for our purposes — of Glauberman on the
K-infinity subgroups.

Theorem 7.3. [4, 12.3] Let G be a finite group with Sylow p-subgroup P and set
T = Op(G). If K∞(P ) or K∞(P ) is not normal in G, then there exists g ∈ P , with
g /∈ Op(G) such that:

(1) [X, g; 4] ≤ Y for every chief factor X/Y of G such that X ≤ T ;
(2) [Z(T ), g, g] = 1.

We also need the following result.

Theorem 7.4. [4, 7.2,7.3] Let G be a finite group with Sylow p-subgroup P and
suppose that N is a normal p-subgroup of G and E0 is a nonempty subset of P .
Assume that:

(1) 〈E0〉
g = 〈E0〉 whenever g ∈ G and 〈E0〉

g ≤ P ; and
(2) [X, g; p − 1] ≤ Y for every g ∈ E0 and every chief factor X/Y of G such

that X ≤ N ;

Let E = 〈E0〉 and L = NG(E). Then P ≤ L, N∩Z(G) = N∩Z(L), N∩G′ = N∩L′,
and [N,G] = [N,L].
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