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Abstract. We prove analogues of results of Glauberman and Thompson for fu-
sion systems. Namely, given a (saturated) fusion system F on a finite p-group S,
and in the cases where p is odd or F is S4-free, we show that Z(NF (J(S))) = Z(F)
(Glauberman), and that if CF (Z(S)) = NF (J(S)) = FS(S), then F = FS(S)
(Thompson). As a corollary, we obtain a stronger form of Frobenius’ theorem for
fusion systems, applicable under the above assumptions, and generalizing another
result of Thompson.

1. Introduction

Fusion systems were developed in the early 1990’s as a way to unify fusion phe-
nomena occuring both in finite groups and in the p-blocks of finite groups. This
axiomatic approach introduced by Puig has proved successful in that many of the
important theorems in local group analysis are now placed into this categorical
framework (see [1], [2], [10]). For instance, there are fusion system analogues of
Frobenius’ p-nilpotency criterion (see [8, Theorem 3.11]), Alperin’s fusion theorem
(see [8, Theorem 5.2]), Glauberman and Thompson’s p-nilpotency criterion and
Glauberman’s ZJ-theorem (see [7]). Following in the spirit of recent works of Kessar
and Linckelmann, this paper generalizes some classical results in group theory of
Glauberman and Thompson to the more abstract world of fusion systems.

In §2, we will state the definition of a fusion system, set up some notation and
recall some of the standard tools. Additionally, we examine the properties of central
elements in a fusion system and use this to determine the center of a fusion subsystem
(Lemma 2.8). We also generalize Glauberman’s definition of a conjugation family to
fusion systems and prove that a set of representatives for the isomorphism classes
of a conjugation family is again a conjugation family (Proposition 2.10). This will
show that the (F , W)-well-placed subgroups form a conjugation family, where F is
a fusion system and W is a positive characteristic p-functor (see Definition 2.11).

In §3, we will recall two theorems of Glauberman and Thompson (see Theorem G
and Theorem T) as presented in Glauberman’s article [6]. In §4, we will first prove
the fusion system version of Theorem G in Theorem 4.1, adapting Glauberman’s
original proof (cf. [5, Theorem 6]), by examining a minimal counterexample, and
showing that it is constrained (see Remark 2.17). This enables us to conclude by
applying Theorem G. Thereafter, we prove a fusion system version of Theorem T
in Theorem 4.5, which arises as an easy corollary of Theorem 4.1. Finally, we show
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how Theorem 4.5 implies a strengthening of Frobenius’ theorem for fusion systems
when p is odd or the fusion system is S4-free (see Corollary 4.6).

2. Generalities

Throughout, let p be a prime number and let S be a finite p-group.

Definition 2.1. A fusion system on S is a category F having as objects the sub-
groups of S and for any two subgroups Q, R of S the morphism set HomF(Q, R) is
a set of injective group homomorphisms Q → R with the following properties:

(1) composition of morphisms in F is the usual composition of group homomor-
phisms;

(2) if ϕ : Q → R is a morphism in F then so is the induced group isomorphism
Q ∼= ϕ(Q) as well as its inverse;

(3) HomF(Q, R) contains the set HomS(Q, R) of group homomorphisms Q → R
given by conjugation with elements in S.

(4) AutS(S) is a Sylow p-subgroup of AutF(S);
(5) if ϕ : Q → S is a morphism in F such that |NS(ϕ(Q))| ≥ |NS(τ(Q))| for any

τ ∈ HomF(Q, S), then ϕ extends to a morphism ψ : Nϕ → S in F where Nϕ

is the subgroup of NS(Q) consisting of all y ∈ NS(Q) for which there exists
z ∈ NS(ϕ(Q)) with the property that ϕ(yuy−1) = zϕ(u)z−1 for all u ∈ Q.

Following Stancu [11], axioms (4) and (5) imply the a priori stronger axioms used in
the work of Broto-Levi-Oliver [4], where fusion systems are called saturated fusion
systems. We will refer to axiom (5) as the extension axiom. It is easy to see from
its definition that Nϕ is the largest subgroup of NS(Q) to which ϕ extends and that
QCS(Q) ≤ Nϕ.

Remark 2.2. Let G be a finite group and let S be a Sylow p-subgroup of G. For any
two subgroups Q, R of G denote by HomG(Q,R) the set of group homomorphisms
Q → R given by conjugation with elements of G. The fusion system of G on S is
the category denoted by FS(G) having the subgroups of S as objects and the sets
HomG(Q, R) as morphism sets, for any two subgroups Q, R of S. The category
FS(G) is a fusion system on S (see [8, Theorem 2.11]). Axiom (3) in Definition 2.1
implies that any fusion system F on S contains the fusion system FS(S) of S on
itself. This latter is called the trivial fusion system on S.

Let us recall that G is p-nilpotent if and only if G has a normal p-complement,
that is, there exists a normal subgroup H of G of order not divisible by p and such
that the factor group G/H is a p-group. A theorem of Frobenius implies that G
is p-nilpotent if and only if the factor groups NG(Q)/CG(Q) are p-groups for any
nontrivial p-subgroup Q of G or, equivalently, FS(G) = FS(S). This latter condition
yields the corresponding notion of p-nilpotency for a fusion system F on S. That is
F = FS(S) or, equivalently, AutF(Q) is a p-group for all nontrivial subgroups Q of
S (cf. [8, Theorem 3.11]).

Definition 2.3. Let F be a fusion system on S and let Q be a subgroup of S.
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(1) We say that two subsets A, B ⊆ S are F-conjugate, or F-isomorphic, and
write A =F B, if there exists an isomorphism ϕ in F such that ϕ(A) = B.
We write AF for the F -conjugacy class of A.

(2) Q is called fully F -normalized if |NS(Q)| ≥| NS(R)| for any R ∈ QF ; simi-
larly, Q is called fully F -centralized if |CS(Q)| ≥ |CS(R)| for any R ∈ QF .

(3) Q is called F -centric if CS(R) = Z(R) for any R ∈ QF , and Q is called
F -radical if AutQ(Q) is the largest normal p-subgroup of AutF(Q).

(4) Let us denote by F f ,F z,F c and F r the set of all fully F -normalized, fully
F -centralized, F -centric and F -radical subgroups of S, respectively. For
X ⊆ {f, z, c, r}, set FX =

⋂
x∈X

Fx.

(5) Let R be a subgroup of S and let ϕ ∈ HomF(R,S). We say that ϕ stably
extends to Q if QR is a subgroup of S and there exists a morphism ϕ̃ ∈
HomF(QR, S) such that ϕ̃|R = ϕ and ϕ̃(Q) = Q. If, in addition, ϕ̃|Q = IdQ,
then we say that ϕ centrally extends to Q.

(6) The normalizer of Q in F is the category NF(Q) with objects the subgroups
of NS(Q) and morphisms HomNF (Q)(U, V ) all morphisms U → V in F that
stably extend to Q. We say that Q is normal in F (and write Q ! F) if
F = NF(Q), i.e., if every morphism in F stably extends to Q. In particular,
if Q ! F , then Q " S.

(7) The centralizer of Q in F is the category CF(Q) with objects the subgroups
of CS(Q) and morphisms HomCF (Q)(U, V ) all morphisms U → V in F that
centrally extend to Q. We say that Q is central in F if F = CF(Q), i.e., if
every morphism in F centrally extends to Q. In particular, if Q is central in
F , then Q ≤ Z(S). Also, since the product of two central subgroups of F is
again central in F , we call the largest central subgroup of F the center of F
and we denote it by Z(F).

(8) The AutS(Q)-normalizer of Q in F is the category NS(Q)CF(Q) with objects
the subgroups of NS(Q) and morphisms HomNS(Q)CF (Q)(U, V ) all morphisms
ϕ : U → V in F for which there exists an extension ϕ̃ : QU → QV in F
such that ϕ̃|Q ∈ AutS(Q).

(9) Assume that Q is normal in F . The category F/Q is the category whose
objects are the subgroups of S/Q and for any two subgroups U and V of
S containing Q, a group homomorphism ϕ : U/Q → V/Q is a morphism
in F/Q if there exists ϕ ∈ HomF(U, V ) such that ϕ(u)Q = ϕ(uQ) for all
u ∈ U .

Puig proved (see [8, Theorem 3.2]) that if Q ∈ F f then NF(Q) is a fusion system
on NS(Q). Similarly, if Q ∈ F z, then CF(Q) is a fusion system on CS(Q) and
NS(Q)CF(Q) is a fusion system on NS(Q). Finally, if Q is normal in F , then F/Q
is a fusion system on S/Q (see [8, Theorem 6.2]). Let us also recall a useful result
of Stancu (see [9, Proposition 1.6]) which says

(2.4) if Q ∈ F f , then Q ∈ F z and AutS(Q) ∈ Sylp(AutF(Q)).

Notice that the extension axiom says that any morphism ϕ in F whose image
is fully F -normalized extends to a morphism in F whose domain is Nϕ. Obvious
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examples of fully F -normalized (resp., fully F -centralized) subgroups of S are the
normal (resp., central) subgroups of S.

The following lemma gives a criterion for when the AutS(Q)-normalizer is the
entire fusion system. This result will be used in the proof of Corollary 4.6.

Lemma 2.5. Let F be a fusion system on S and let Q be a subgroup S such that
Q ! F and AutF(Q) is a p-group. Then F = SCF(Q).

Proof. By (2.4), Q ! F implies that AutS(Q) ∈ Sylp(AutF(Q)) and so, by assump-
tion, AutS(Q) = AutF(Q). Thus, every morphism in F stably extends to Q and the
restriction to Q of each extension is induced by S-conjugation. #
Definition 2.6. Let F be a fusion system on S. Motivated by Glauberman (cf. [6,
§3]), we define a conjugation family for F to be a set C of subgroups of S such
that any isomorphism in F can be written as a composition of F -isomorphisms
φ : Q −→ Q′ for which there exists R ∈ C containing Q and Q′ and an automorphism
α ∈ AutF(R) such that α|Q = φ.

Examples of conjugation families include the set of fully F -normalized radical cen-
tric subgroups of S (see [4, A.10]) and the fully F -normalized essential subgroups
of S (this result is due to Puig; see [8, Theorem 5.2]). Though it varies in the litera-
ture, the fact that these are conjugation families is widely known as Alperin’s fusion
theorem for fusion systems. Let us point out that the definition does not require
a conjugation family to be closed under F -isomorphisms (cf. Proposition 2.10),
however any conjugation family for F contains S.

Definition 2.7. A subset A of S is weakly closed in S with respect to F if for any
morphism ϕ : 〈A〉 → S, we have ϕ(A) = A.

The next lemma shows that Z(F) is the set of weakly closed elements in S with
respect to F , justifying the convention of calling such elements central in F .

Lemma 2.8. Let F be a fusion system on S. The center Z(F) of F is the set
of weakly closed elements in S with respect to F . In particular, if G is a fusion
subsystem of F on a subgroup T of S, then T ∩ Z(F) ≤ Z(G).

Proof. As Z(F) is central in F , every element of Z(F) is weakly closed in S with
respect to F . Conversely, suppose that x ∈ S is weakly closed in S with respect to F
and let Q ∈ F frc. Then, x ∈ Q since x ∈ Z(S) and Q is F -centric. By assumption,
any F -automorphism of Q is the identity on 〈x〉 and so by Alperin’s fusion theorem,
〈x〉 ≤ Z(F). #
Lemma 2.9. Let F be a fusion system on S, and let Q and R be subgroups of S.
If Q is a characteristic subgroup of R, then NF(R) is a subcategory of NF(Q), i.e.,
any morphism in F that stably extends to R also stably extends to Q.

Proof. Since Q is a characteristic subgroup of R, any morphism in NF(R) induces
an automorphism of R and hence of Q. #

The following proposition on conjugation families is well-known (and is used im-
plicitly in [7]), but does not seem to occur formally in the literature. We thank
Professor Linckelmann for bringing it to our attention.
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Proposition 2.10. Let F be a fusion system on S and let C be a conjugation family
for F . Any set of representatives for the F-isomorphism classes of subgroups in C
is a conjugation family for F .

Proof. Let C ′ be a set of representatives for the F -isomorphism classes of subgroups
in C. Let P ∈ C and assume that P is not in C ′. In particular, P is a proper
subgroup of S. We need to show that any automorphism in AutF(P ) is contained
in F(C ′) where F(C ′) is the subcategory of F on S with morphism sets given by the
composition of restrictions of F -automorphisms of subgroups in C ′. By induction,
we assume that AutF(T ) ⊆ F(C ′) for all subgroups T ∈ C properly containing
P . Let P ′ ∈ C ′ such that there exists an isomorphism ϕ ∈ HomF(P, P ′). As C
is a conjugation family, ϕ can be written as a composition of isomorphisms which
extend to automorphisms of subgroups Q ∈ C, necessarily larger than P and P ′.
By induction, each such isomorphism is the restriction of an isomorphism in F(C ′)
and hence ϕ ∈ F(C ′). Now take ψ ∈ AutF(P ) and set f = ϕ ◦ ψ ◦ ϕ−1 ∈ AutF(P ′).
Conjugating by ϕ−1, we get ψ = ϕ−1 ◦ f ◦ ϕ ∈ F(C ′). #

As in [7, Definition 1.2, 5.1], we make the following definitions.

Definition 2.11.

(1) A positive characteristic p-functor W is a map sending any finite p-group Q
to a characteristic subgroup W(Q) of Q such that
(a) W(Q) ,= 1 if Q ,= 1;
(b) if ϕ : Q −→ T is a group isomorphism, then ϕ(W(Q)) = W(T ).

(2) Let F be a fusion system on S and let W be a positive characteristic p-
functor. For a subgroup Q of S, define W1(Q) = Q and for any positive
integer i, define Wi+1(Q) = W(NS(Wi(Q))). We say that Q is (F , W)-well-
placed if Wi(Q) ∈ F f for all positive integers i.

Corollary 2.12. Let F be a fusion system on S and let W be a positive characteristic
p-functor. The (F , W)-well-placed subgroups of S form a conjugation family for F .

Proof. Let C be any conjugation family for F . By [7, Proposition 5.2], every sub-
group in C is F -isomorphic to an (F , W)-well-placed subgroup of S. The result now
follows from Proposition 2.10. #

In the next sections, we consider the positive characteristic p-functor J sending
a finite p-group S to its Thompson subgroup. For the sake of self-containment
and clarity (there are at least three non-equivalent definitions for the Thompson
subgroup), we briefly recall its definition and state some of its useful properties. Let
d(S) be the maximum of the orders of the abelian subgroups of S, and let A(S)
be the set of abelian subgroups of S of order d(S). Then the Thompson subgroup,
J(S), of S is defined by

J(S) = 〈A | A ∈ A(S)〉

and satisfies the following properties:
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If A ∈ A(S), then CS(A) = A; in particular, Z(S) ≤ J(S).(2.13)

d(J(S)) = d(S), A(J(S)) = A(S), J(J(S)) = J(S).(2.14)

J is a positive characteristic p-functor.(2.15)

Finally, we recall what it means for a fusion system F to be H-free for some finite
group H. A group G is H-free if there are no subgroups K, L of G, with L " K and
K/L ∼= H. Now, for an arbitrary fusion system F on S, we appeal to [3, Proposition
4.3]. That is, to any Q ∈ F fc, there corresponds, up to isomorphism, a unique
finite group LF

Q having NS(Q) as Sylow p-subgroup, such that CLFQ
(Q) = Z(Q) and

NF(Q) = FNS(Q)(LF
Q).

Definition 2.16. Let F be a fusion system on S and let H be a finite group. Then
F is H-free if LF

Q is H-free for all Q ∈ F fc.

Remark 2.17. Let F be a fusion system on S.

(1) By [7, Proposition 6.1], if LF
Q is H-free for all Q ∈ F frc, then F is H-free.

Hence, Definition 2.16 is equivalent to [7, Definition 1.1].
(2) If F has a normal centric subgroup Q, then F is said to be constrained. In

this case [3, Proposition 4.3] implies that there is a finite group G with Sylow
p-subgroup S such that CG(Q) = Z(Q) and F = FS(G).

3. Glauberman and Thompson’s Theorems for Finite Groups

In this section, we recall two classical theorems, one of Glauberman and one of
Thompson, as presented in [6]. Firstly, [6, Theorem 14.10] states:

Theorem G (Glauberman, 1969). Let G be a finite group and S be a Sylow p-
subgroup of G. Suppose that x ∈ S ∩ Z(NG(J(S))) and that

(a) p is odd, or
(b) x ∈ (Z(S))p, or
(c) G is S4-free.

Then x is weakly closed in S with respect to G.

Glauberman uses this theorem, along with [6, Lemma 4.5], to prove [6, Theo-
rem 14.11], a slightly stronger version of a theorem of Thompson (cf. [12]).

Theorem T (Thompson, 1964). Let G be a finite group and let S be a Sylow p-
subgroup of G. Suppose that p is odd or that G is S4-free. If CG(Z(S)) and NG(J(S))
are both p-nilpotent, then G is p-nilpotent.

Note that [6, Lemma 4.5] also generalizes to fusion systems but we leave it as an
exercise for the reader since it is not needed to prove the fusion system version of
Theorem T.
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4. Glauberman and Thompson’s Theorems for Fusion Systems

In this section, we prove the fusion system analogues of Theorem G and Theorem T.

Theorem 4.1. Let F be a fusion system on S. Then (Z(S))p∩Z(NF(J(S))) ≤ Z(F).
Furthermore, if p is odd or F is S4-free, then Z(F) = Z(NF(J(S))).

Proof. Suppose that the theorem is false and take a counterexample F with minimal
number |F| of morphisms. We shall show that F is constrained. That is, there
exists an F -centric subgroup of S that is normal in F . For then F = FS(G) for
some finite group G having S as a Sylow p-subgroup. Assuming we have done this,
let x ∈ Z(NF(J(S))) = Z(NG(J(S))). Suppose that p is odd, or F is S4-free, or
x ∈ (Z(S))p. If F is S4-free, then so is G. By Theorem G, it follows that x is weakly
closed in S with respect to G, i.e. x ∈ Z(F), a contradiction. This will prove the
theorem.

Since F is a counterexample, if p is odd or F is S4-free, then we may choose an
element x ∈ S that is central in NF(J(S)) but not in F ; otherwise choose x ∈ (Z(S))p

such that x is central in NF(J(S)) but not in F . Note that x ∈ Z(NF(J(S))) ≤ Z(S).
It follows that if x ∈ T for a subgroup T of S, then x ∈ Z(T ) and hence x ∈ J(T )
by (2.13). Let C be the conjugation family for F consisting of the (F , J)-well-placed
subgroups of S. Observe that if Q ∈ C then J(NS(Q)) ∈ C. There exist a subgroup
Q ∈ C containing x and a morphism ϕ ∈ AutF(Q) such that ϕ(x) ,= x; that is,
x /∈ Z(NF(Q)). Let

J = {D ∈ C | x ∈ D = J(D), x /∈ Z(NF(D))}.
We claim that J ,= ∅. Suppose that J(NS(Q)) /∈ J . Clearly J(J(NS(Q))) =
J(NS(Q)) and since x ∈ NS(Q) we have x ∈ J(NS(Q)). Thus x ∈ Z(NF(J(NS(Q)))).
Next we show that for any subgroup D ∈ C,

(4.2) if x /∈ Z(NF(D)) and x ∈ Z(NF(J(NS(D)))), then D ! F .

Set G = NF(D), a fusion subsystem of F on NS(D). Then NG(J(NS(D))) is a fusion
subsystem of NF(J(NS(D))) on NS(D). By Lemma 2.8, x ∈ Z(NF(J(NS(D)))) ∩
NS(D) ≤ Z(NG(J(NS(D)))). But x /∈ Z(G) and so Z(G) < Z(NG(J(NS(D)))). Fur-
thermore, if x ∈ (Z(S))p, then x ∈ (Z(NS(D)))p. By the minimality of |F|, we have
F = G = NF(D), i.e. D ! F , which proves (4.2). This shows for Q as above that
Q!F and then by Lemma 2.9, we get J(Q)!F . Thus, J(Q) ∈ J . This shows that
J ,= ∅.

Choose D ∈ J such that D is maximal with respect to inclusion and such that
d(D) is maximal. Observe that this assumption along with (2.14) implies that if
D ≤ E such that J(E) ∈ J , then

(4.3) d(D) = d(J(E)) = d(E)

and

(4.4) A(D) ≤ A(E) which implies that D = J(D) ≤ J(E).

We shall show that D is an F -centric subgroup of S that is normal in F . First
we show that x ∈ Z(NF(J(NS(D)))). Suppose that x /∈ Z(NF(J(NS(D)))). Then
J(NS(D)) ∈ J because x ∈ NS(D) implies that x ∈ J(NS(D)). So, by (4.4),
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D ≤ J(NS(D)). The maximality of D with respect to inclusion in J implies that
D = J(NS(D)). Consequently,

NS(D) ≤ NS(NS(D)) ≤ NS(J(NS(D))) = NS(D),

which yields NS(D) = S and J(S) ∈ J , contradicting the original assumption that
x ∈ Z(NF(J(S))). Therefore, (4.2) implies that D ! F .

Finally, we show that D is F -centric. Since D ! F , it suffices to show that
CS(D) ≤ D. First, we claim that J(DCS(D)) ∈ J . Indeed, J(DCS(D)) ∈ C since
J(DCS(D)) is normal in S. Also, x ∈ J(DCS(D)) since x ∈ D. Thus, it remains to
show that x ,∈ Z(NF(J(DCS(D)))). By Lemmas 2.8 and 2.9, Z(NF(J(DCS(D)))) ≤
Z(NF(DCS(D))), and so it suffices to show that x ,∈ Z(NF(DCS(D))). Suppose that
x ∈ Z(NF(DCS(D))) and let ϕ ∈ HomF(〈x〉, S). Since D &F and x ∈ D, ϕ extends
to an F -automorphism of D. Moreover, by the extension axiom, this automorphism
extends to an F -automorphism of DCS(D). Hence ϕ ∈ NF(DCS(D)) and ϕ(x) = x.
This implies that x ∈ Z(F), a contradiction. Consequently, J(DCS(D)) ∈ J .
Thus, by (4.3), we get d(D) = d(J(DCS(D))). Let A ∈ A(D), y ∈ CS(D). Then
|〈A, y〉| ≤ d(DCS(D)) = d(D) = |A|, so y ∈ A. Thus CS(D) ≤ D and hence D is
F -centric. #
Theorem 4.5. Let F be a fusion system on S. Assume that p is odd or that F is
S4-free. If CF(Z(S)) = NF(J(S)) = FS(S), then F = FS(S).

Proof. By Theorem 4.1, we have Z(F) = Z(NF(J(S))) = Z(FS(S)) = Z(S). Hence,
F = CF(Z(S)) = FS(S). #

The following corollary strengthens Frobenius’ theorem for fusion systems (see [8,
Theorem 3.11]) when p is odd or the fusion system is S4-free. The proof mimics
that of Thompson in [12] where he only considers the case where p is odd.

Corollary 4.6. Let F be a fusion system on S. Assume that p is odd or that F is
S4-free. The following are equivalent:

(1) F = FS(S).
(2) AutF(Q) is a p-group for every nontrivial characteristic subgroup Q of S.
(3) NF(Q) = FS(S) for every nontrivial characteristic subgroup Q of S.

Proof. It is immediate from the definitions that (1) implies (2). Assume that (2)
implies (3) does not hold and let F be a minimal counterexample. Fix a nontrivial
characteristic subgroup Q of S such that NF(Q) ,= FS(S). If F is S4-free, then
by [7, Proposition 6.3, 6.4], NF(Q)/Q is S4-free. Also, if I is any subgroup of S
containing Q and such that I/Q is characteristic in S/Q, then I is characteristic
in S. This shows that AutNF (Q)/Q(I/Q) is a p-group and so the hypotheses of (2)
hold for the fusion system NF(Q)/Q. By the minimality of F , we conclude that
NF(Q)/Q = FS/Q(S/Q) = FS(S)/Q. Now, by Lemma 2.5, NF(Q) = NNF (Q)(Q) =
SCNF (Q)(Q) = SCF(Q). Then [7, Proposition 3.4] implies that NF(Q) = FS(S), a
contradiction. Therefore, (2) implies (3). Finally, if we specialize Q to be Z(S) and
J(S) in (3), we get NF(J(S)) = FS(S) = CF(Z(S)) and by Theorem 4.5, F = FS(S).
Thus, (3) implies (1). #
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