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Noise and Nonsmoothness in Dynamical Systems

Nonsmooth Dynamical Systems:

Noisy Dynamical Systems
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Nonsmooth Systems
Nonsmooth Maps:
A nonsmooth map is defined by a finite set of smooth maps

xk+1 = fi(xk), x ∈ Si,

where ∪iSi = S ⊂ Rn. Σij = Si ∩ Sj is either the empty set or an
(n− 1)-dimensional manifold which is the boundary between Si and Sj .

Hybrid Systems:
A hybrid dynamical system is defined by a finite set of smooth ODEs

ẋ = fi(x), x ∈ Si,

plus the set of jump maps

x→ jij(x), x ∈ Σij .

Discontinuity Boundaries:
We usually describe discontinuity boundaries Σij by the zeros of a scalar
function h : S → R

Σij = {x : h(x) = 0}.
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ẋ = fi(x), x ∈ Si,

plus the set of jump maps

x→ jij(x), x ∈ Σij .

Discontinuity Boundaries:
We usually describe discontinuity boundaries Σij by the zeros of a scalar
function h : S → R

Σij = {x : h(x) = 0}.
Eoghan Staunton Modelling Group 22 November 2019 3 / 30



The Effects of Noise and Nonsmoothness
Both noise and nonsmoothness have been shown to independently be the
drivers of significant changes in behaviour.

Nonsmooth systems - qualitative changes in the behaviour of the
system under parameter variation that do not occur in the smooth
setting.

Noisy systems - adding noise to (smooth) systems - does more than
just blur the outcome of the system in the absence of noise.

Figure: From [1] Figure: Adapted from [2]
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The Square Root Map



The Square Root Map

Many impacting systems, including rattling gears, moored boats impacting
docks, Braille printers, percussive drilling and atomic force microscopes
can be described by the square root maps near grazing impacts.

xn+1 = S(xn) =

{
µ+ bxn if xn < 0,
µ− a√xn if xn ≥ 0,

where a > 0 and b > 0.

A forced impact oscillator.
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Symbolically, if xn < 0 it is
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xn > 0 it is represented by an R.
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The Period Adding Cascade xn+1 =

{
µ+ bxn if xn < 0,
µ− a√xn if xn ≥ 0,

We will assume that b is such that 0 < b < 1/4.

Figure: Period-adding cascade in the square root map.

These periodic orbits take the form (RLm)∞ for m = 1, 2, 3, . . .. They
consist of one iterate on the right followed by m iterates on the left.
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Riddled Basins of Attraction

On regions of multistability the basins of attraction of the two periodic
attractors have a complex riddled structure.
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The Square Root Map With Additive Noise

In [3] it is shown that white noise in the piecewise smooth flow translates
to additive white noise in the 2-D square root map.

The 1-D square root map with additive Gaussian white noise is given by

xn+1 = Sa(xn) =

{
µ+ bxn + ξn if xn < 0
µ− a√xn + ξn if xn ≥ 0,

ξn ∼ N(0,∆2),

where ξn are identically distributed independent normal random variables
with mean 0 and standard deviation ∆.
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Noisy Bifurcation Diagrams
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Noisy Bifurcation Diagrams
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Noise Amplitude and Proportions of Periodic Behaviour
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Inducing Multistability

Noise of an appropriate amplitude also has the
potential to induce multistability in regions outside
deterministic intervals of multistability.

Noise-induced transitions from period-3 to period-2 behaviour in regions
where period-2 behaviour is unstable take the following symbolic form

RLLRLL . . . RLLRLRRLRL . . . RLRL.

The significant feature of the symbolic representation of the transition
above is the repeated R, corresponding to repeated iteration on the
right-hand side of the square root map.
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Noise and Deterministic Structures

The set of initial values that are on the right which remain on the right
after iteration by the deterministic square root map are given by the
interval

ARR =
(
0, (µ/a)2

)
.

We also note that the last left iterate of the period-3 orbit is very close to
0 for values of µ close to the interval of multistability.

It is not hard to see that noise has the potential to push the last left
iterate of a period-3 orbit into ARR inducing repeated R’s.

Eoghan Staunton Modelling Group 22 November 2019 12 / 30



Noise and Deterministic Structures

The set of initial values that are on the right which remain on the right
after iteration by the deterministic square root map are given by the
interval

ARR =
(
0, (µ/a)2

)
.

We also note that the last left iterate of the period-3 orbit is very close to
0 for values of µ close to the interval of multistability.

It is not hard to see that noise has the potential to push the last left
iterate of a period-3 orbit into ARR inducing repeated R’s.

Eoghan Staunton Modelling Group 22 November 2019 12 / 30



Noise and Deterministic Structures

Eoghan Staunton Modelling Group 22 November 2019 13 / 30



Noise and Deterministic Structures

Eoghan Staunton Modelling Group 22 November 2019 13 / 30



Noise and Deterministic Structures

Eoghan Staunton Modelling Group 22 November 2019 13 / 30
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Discontinuity 
Mappings



Motivation

Figure: Smooth linearisation.
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Transversal Crossings

Figure: A nonsmooth dynamical system.
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Constructing the Zero-Time Discontinuity Mapping

Figure: Constructing the ZDM.
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Constructing the Zero-Time Discontinuity Mapping

We can now write

φ(x0, T ) = φ2(D(φ1(x0, tref)), T − tref),

where the ZDM

D(x) = φ2(j(φ1(x, t(x))),−t(x)).

This allows us to linearise about a transversally crossing trajectory, finding

φx(x0, T ) = φ2,x(xout, T − tref)Dx(xin)φ1,x(x0, tref).
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Grazing Interactions

Figure: A grazing interaction in a hybrid system.
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Grazing ZDM

Figure: Constructing the grazing ZDM.
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Grazing ZDM
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Types of Noise

Figure: A rugged boundary.

Figure: An oscillating boundary.

Rugged boundaries are suitable for
modelling situations where the
small-scale structure of the boundary
is uncertain.

Σ̃ = {x : h̃(x, t) = 0},
h̃(x, t) = h(x, t)− χ(x).

Oscillating boundaries are suitable for
modelling situations where the
boundary has small uncertain
oscillations about a known mean.

Σ̃ = {x : h̃(x, t) = 0},
h̃(x, t) = h(x, t)− P (t).
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Noise Requirements

In order for us to carry out our analysis we require that the stochastic
processes χ(x) and P (t) describing the stochastic components of the
discontinuity boundaries

• are at least once differentiable,

• are of small amplitude,

• are mean reverting,

• have mean 0.
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Transversal SZDM
For transversal crossings we base our approximation on linearisation about
the corresponding trajectory in the deterministic system, taking

∆tref = P/ (hx(xin, tref)fin + ht(xin, tref)− V) ,

where P = χ(xin), V = χx(xin)fin in the rugged boundary case and
P = P (tref), V = V (tref) in the case of an oscillating boundary.
We then find that

φ(x0, T ) − φ(xref
0 , T ) ≈

φx(xref
0 , T )(x0 − xref

0 ) + φ2,x(xout, T − tref)N (xin, tref)∆tref

+φ2,x(xout, T − tref)J (xin, tref),

where

φx(xref
0 , T ) = φ2,x(xout, T − tref)D̃x(xin)φ1,x(x̂in, tref),

N (xin, tref) = jx(xin, tref)fin + jt(xin, tref))− fout

and
J (xin, tref) = j̃(xin|P = 0)− j(xin).
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Example - Boucing a ball on a rugged oscillating floor.

a) b)

Figure: Heatmaps of the distribution of the maximum height attained by the
bouncing ball and its corresponding horizontal position after one bounce on the
rugged surface given by a) full simulation of the system b) linear approximation.
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SZDMs for Higher-Order Discontinuities

When the vector field is Cn−1 for n ≥ 1 but has higher-order
discontinuities the are are no linear effects so one must consider higher
order approximations to capture the effects of noise and the crossing of a
discontinuity boundary.

In this case we approximate the SZDM as

D̃(x) ≈ x+
g(x∗)

(n+ 1)hx(xin)fin

(
h(x)n+1 −

(
Phx(xin)fin − h(x)V

hx(xin)fin − V

)n+1
)
,

where

g(x) =
∞∑
j=0

hj

(j + n)!

∂j+n

∂hj+n
(f2 − f1)|h=0,

P = χ(xin), V = χx(xin)fin in the rugged boundary case and P = P (tref),
V = V (tref) in the case of an oscillating boundary.
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Example - The Chua Circuit

Figure: The Chua circuit.

Figure: V-I characteristic.

Figure: Coexisting attractors in the Chua circuit.
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Example - The Chua Circuit

a)

b)

Figure: The Chua circuit with oscillating boundaries. The results of full
numerical-simulation are shown in a) and the approximations obtained by using
the SZDM in place of boundary interactions are shown in b).
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Grazing SZDM

In the case of a grazing interaction we cannot linearise in the same way as
we considered in the case of a transversal crossing. Instead we consider
second-order approximations about the point and time where the
deterministic component of h̃ (which we denote h) reaches its minimum
value.

We find that D̃(x) = x + ∆̃x where

∆̃x ≈

√(
−hx(x∗)x + P + V hxf

(hxf)xf
+

V2
2(Ag −A)

)
2(Ag −A)ξ,

P = χ, V = χxf , A = (χxf)xf in the rugged boundary case and
P = P , V = V , A = A in the case of an oscillating boundary.
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Example - A grazing impact oscillator

Figure: Schematic of a one-degree-of-freedom impact oscillator.

Figure: A sample grazing orbit.
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Figure: Schematic of a one-degree-of-freedom impact oscillator.

Figure: A sample grazing orbit.
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Example - A grazing impact oscillator

a)
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b)

c) d)

Figure: Histograms of the pdf of the maximum amplitude attained by the impact
oscillator by a), c), full simulation of the system and b), d) approximation using
the SZDM. a), b) ε = 0, c), d) ε = 0.00005.
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Summary



Summary

• This work aims to further our knowledge of stochastic nonsmooth
dynamical systems, an area which has so far seen limited research.

• Our work on the square root map highlights the complex and
non-trivial effects noise can have on even the simplest nonsmooth
systems.

å Additive noise can both destroy and induce multistability.

• Our work on SZDMs led to the development and validation of new
tools in analysing and efficiently simulating nonsmooth dynamical
systems with noisy boundaries.

å PWS systems.
å Hybrid systems.
å Systems with higher-order discontinuities.
å Grazing in hybrid systems.
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Thank you!
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