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Abstract The effects of small-amplitude additive Gaussian white noise on the
one-dimensional square root map are investigated. In particular the focus is on
the unexpected effects noise of varying amplitudes has on the system for parame-
ter regions just outside intervals of multistability. It is shown that in these regions
periodic behaviour that is unstable in the deterministic system can be effectively
stabilised by the addition of noise of an appropriate amplitude. Features of noise-
induced transitions from stable to stabilised unstable periodic behaviour are high-
lighted and it is shown how these features can be understood by examining relative
levels of expansion and contraction in the deterministic map.

Keywords square root map · impacting systems · noise, period-adding bifurca-
tions · multistability · noise-induced transitions

1 Introduction

An impact oscillator is a forced mechanical system that undergoes impacts at rigid
stops. Many real-world mechanical systems including systems arising in engineer-
ing, for instance moored ships impacting a dock or rattling gears are modelled
using impact oscillators [4]. It is important to understand such systems in order
to avoid problems, such as wear and noise. In particular, since real-world systems,
including mechanical systems, are subject to uncertainties, we must also investi-
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gate how stochastic noise can affect such systems. In the case of impact oscillators,
noise could for instance arise due to background vibrations or measurement errors.

In this paper we will investigate the effects of the additive noise on the quali-
tative behaviour of a piecewise-smooth map known as the square root map [14,15,
2,16,5]. The map can be derived as an approximation for solutions of a piecewise-
smooth ordinary differential equation describing the dynamics of an impact os-

cillator near grazing (low-velocity) impacts [14,17] and it exhibits non-standard
qualitative behaviour as a result of a discontinuity in its first derivative.

In smooth nonlinear systems the addition of noise has been shown to have
the greatest effect on the outcome of the system in the neighbourhood of bifurca-

tion points [18,11,12]. Bifurcation points are values of the system parameters that
separate regions of parameter space where we observe topologically equivalent
dynamics [7,8,10,25]. In nonsmooth dynamical systems, such as the square root
map, we find certain types of bifurcations that do not occur in the smooth setting,
known as discontinuity induced bifurcations [6,3]. We will focus on the effect of the
introduction of noise near bifurcation points in the period-adding cascade of the
square root map, a bifurcation structure which is unique to nonsmooth systems.

The remainder of this paper is organised as follows. In Section 2 we will describe
the deterministic bifurcation structure of the square root map. Section 3 introduces
noise to the square root map and presents our numerical observations of the effect
of noise on the square root map in the neighbourhood of regions of multistability.
In Section 4.1- 4.2 we examine relative levels of contraction and expansion in the
deterministic square root map in order to explain the distinguishing features of
the noise induced transitions between periodic behaviours observed in Section 3.
We then examine how the steady state trajectory deviation distributions derived
in [23] can interact with the deterministic features of the map to produce such
transitions given appropriate noise amplitude in Section 4.3-4.4. A concluding
discussion is presented in Section 5.

2 The Deterministic Square Root Map

2.1 The Map

We will first consider the one-dimensional square root map

xn+1 = S(xn) =

{
SL(xn) = µ+ bxn, xn < 0,
SR(xn) = µ− a√xn, xn ≥ 0,

(1)

where a > 0, 0 < b < 1, SL(x) is the linear part of the map applied on the left-
hand side, and SR(x) is the square root part applied on the right. In this paper
we will assume that the parameter b is such that 0 < b < 1

4 . For values of b in this
range the deterministic square root map undergoes a period-adding cascade with
intervals of multistability as the bifurcation parameter µ is decreased [15]. We will
discuss the deterministic structures of the square root map in this case more detail
in Section 2.3.
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2.2 Symbolic Dynamics

Here we will be interested in the qualitative behaviour of the map (1), i.e. whether
an iterate is on the left-hand side of the map or on the right-hand side of the map,
than the exact numerical value of each iterate. As a result we will describe the
dynamics of the square root map through the use of symbolic sequences. Any orbit
{xn} may be assigned a symbolic sequence {Xn} comprised of the letters L and
R, where

Xn =

{
L, xn < 0,
R, xn ≥ 0.

(2)

Therefore, an L denotes an iterate on the left, while an R denotes an iterate on the
right. Using symbolic sequences we will describe deterministic N-periodic orbits
by their code (Rn1Ln2 . . . Rnm−1Lnm)∞, where ni ∈ N and

∑
ni = N . On the other

hand, an orbit with a corresponding symbolic sequence (Rn1Ln2 . . . Rnm−1Lnm)r,
where r is finite, will be described as undergoing
Rn1Ln2 . . . Rnm−1Lnm behaviour or dynamics for those rN iterates.

2.3 Bifurcations and Deterministic Structures

For µ < 0 the map (1) has a globally stable fixed point. In the case where µ > 0
Nordmark and other authors [14,15,3,16] have shown that:

1. If 0 < b < 1
4 there is a period-adding cascade of stable periodic orbits. That

is, there are values of µ > 0 for which a stable periodic orbit of period m with
code (RLm−1)∞ exists for each m = 2, 3, . . . with m→∞ as µ→ 0. Moreover
adjacent periodic overlap, i.e. there are values of µ > 0 such that there are two
stable periodic orbits, one with period m and code (RLm−1)∞ and the other
with period m + 1 and code (RLm)∞. These are the only possible attractors
except at bifurcation points.

2. If 1
4 < b < 2

3 there is a period-adding cascade of stable periodic orbits such
that stable periodic orbits of period m with code (RLm−1)∞ exist for each
m = 2, 3, . . .. However, between period-m and period-m + 1 windows we now
see chaotic attractors.

3. If 2
3 < b < 1 as µ decreases towards zero there are a finite number of period-

addings followed by a chaotic attractor on an interval of µ values that extends
to µ = 0.

We will focus on the first case where there is a period-adding cascade of stable
periodic attractors with overlaps between adjacent periodic windows where we
observe multistability. A bifurcation diagram for this case is shown in Figure 1.
In the deterministic system (1) orbits of period m of the form (RLm−1)∞ exist as
attractors over the range in the parameter µ given by

µsm < µ < µem, (3)

where

µsm =
1− b

1− bm
(
a

b

)2(3

4

)
b2m (4)
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a) b)

Fig. 1 Bifurcation diagrams for the deterministic square root map, S, with a = 0.5, b = 0.2.
The threshold µ values for stability and existence are given by (4) and (5) while the iterates
of the periodic orbits are given by (8) and (9). a) The coexistence of attractors (RL)∞ and
(RLL)∞ for µ about the interval (µs2, µ

e
3). The period-2 (RL)∞ orbit is coloured red on

the interval of multistability. b) The period adding cascade of attractors (RLm)∞ for m ∈
{1, . . . , 10}. On the intervals of µ where (RLm−1)∞ and (RLm)∞ coexist as attractors the
iterates of (RLm−1)∞ are marked in red. A symmetric logarithmic transformation [24] has
been applied to the x-axis in order to clearly show the structure of the period adding cascade.

is the threshold value for the stability of the period-m orbit and

µem =

[
1− b

1− bm−1
abm−2

]2
(5)

is the threshold value for its existence. We also have that

µem > µsm−1 > µem+1 > µsm (6)

holds for b < 1
4 . This implies that if µ ∈ (µsm−1, µ

e
m) then the stable periodic orbits

(RLm−2)∞ and (RLm−1)∞ coexist. On the other hand, if µ ∈ (µem+1, µ
s
m−1) then a

stable periodic orbit (RLm−1)∞ exists and is the only attractor. If µ ∈ (µsm, µ
e
m+1)

the pattern of coexistence starts again. We can see this period-adding behaviour
and repeating pattern of coexistence clearly in the bifurcation diagram shown in
Figure 1b) for orbits of period 2 to 11. In Figure 1a) we see an example of the
coexistence of stable periodic orbits with codes (RL)∞ and (RLL)∞ on the interval
(µs2, µ

e
3). We will refer to the intervals, (µsm, µ

e
m+1) on which stable periodic orbits

(RLm−1)∞ and (RLm)∞ coexist as coexistence intervals or intervals of multistability.
If Rm and L1

m, L
2
m, . . . L

m−1
m are, respectively, the right iterate and left iterates

of the deterministic period m orbit (RLm−1)∞ of S (see (1)) then using the fact
that

Sm−1
L (SR(Rm)) = Rm, (7)

where SL is the linear part (left-hand side) of the square root map and SR is the
the square root part (right-hand side), we find that

Rm =

1

2

−abm−1 +

√√√√(abm−1)2 + 4
m−1∑
i=0

biµ

2

. (8)

Hence we have that

L1
m = µ− a

√
Rm and Lim = µ+ bLi−1

m (9)



Noise induced multistability in the square root map 5

for i ∈ {2, 3, . . . ,m− 1}.

3 The Addition of Noise

3.1 The Square Root Map With Noise

We wish to examine the effect of uncertainty and noise on the square root map (1).
In particular we are interested in the effect of noise on the period-adding cascade
close to intervals of multistability, as discussed in Section 2.3.

Simpson and Kuske [20] show in a careful analysis that noise in impacting
systems manifests itself in the corresponding two-dimensional square root map in
several different ways, including coloured parametric noise. This is especially the
case where there is coloured noise in the impacting dynamics of the full system.
Hogan, Simpson and Kuske [19] show that the square root map in two dimensions
with additive Gaussian white noise arises when the source of uncertainty in the
full system is practically independent of the state of the system.

In this paper we consider small amplitude, additive, Gaussian white noise.
However, our investigations indicate similar results for both additive and para-
metric noise of various distributions although we will not consider these noise
formulations here. The square root map with additive Gaussian white noise that
we consider is

xn+1 = Sa(xn) =

{
µ+ bxn + ξn, xn < 0,
µ− a√xn + ξn, xn ≥ 0,

ξn
iid∼ N(0,∆2), (10)

where ξn are identically distributed independent normal random variables with
mean 0 and standard deviation ∆.

3.2 Numerical Observations

The effect of noise on the dynamics of a system with multiple coexisting attractors
has long been of interest [22,21,9]. In this article we focus on phase-space sensi-
tivity for values of the bifurcation parameter µ close to intervals where period-m
and period-(m+ 1) attractors coexist (6), but actually outside the interval itself.
Investigating the effect of noise close to regions of multistability and the potential
for such noise to attenuate the effect of bifurcation points has been done for the
Duffing oscillator in [13]. Our numerical results indicate that a similar phenomenon
occurs here in the square root map.

First, examining the neighbourhood of the coexistence interval (µs2, µ
e
3) as a

whole, in Figure 2 we plot numerically computed bifurcation diagrams for the
square root map with additive Gaussian white noise (10) of varying amplitude.
The corresponding analytic bifurcation diagram for the deterministic square root
map (1) is shown in Figure 1a). For low noise amplitude we see both a reduction
in the effective value of µe3 the threshold for the existence of the period-3 orbit and
an increase in the effective value of µs2 the threshold for the stability of the period-
2 orbit. This results in an effective shortening of the interval of multistability at
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a) b) c)

d) e) f)

Fig. 2 Bifurcation diagrams for the square root map with additive Gaussian white noise (10),
with increasing levels of noise amplitude, ∆ = a) 2 × 10−5, b) 4 × 10−5, c) 6 × 10−5, d)
8 × 10−5, e) 1 × 10−4, f) 1.2 × 10−4, for µ in a neighbourhood of the coexistence interval
(µs2, µ

e
3). The deterministic values of µs2 and µe3 are indicated by dashed lines. Where the two

periodic behaviours coexist the iterates of the behaviour with lower period are marked in red.
For the corresponding deterministic bifurcation diagram refer to Figure 1a).

both end points compared to the deterministic system (see Figure 1a)). However,
beyond some threshold further increases in noise amplitude appear to lead to an
effective increase in the length of the coexistence interval. We see a weak return
of RLL behaviour for higher values of µ but the effective value remains below the
deterministic value of µs3. On the other hand, RL behaviour appears to return for
all values of µ > µs2 and potentially extends into the region µ < µs2. In this paper
we are particularly interested in investigating the apparent presence of period-
2 behaviour in a region where it is unstable in the corresponding deterministic
system.

The bifurcation diagrams shown in Figure 2 leads us to believe that for fixed
µ close to µs2 with increasing noise amplitude we first see a decrease in the proba-
bility of being in RL behaviour to some minimum followed by an increase in this
probability as µ increases further. Looking at both the proportion of points in
RL behaviour at a certain point in time and the proportion of time spent in RL

behaviour over a long time period we have confirmed these relationships between
noise amplitude and behaviour for additive noise. In particular, Figure 3 shows
the relationship between the noise amplitude ∆ and the proportion of time spent
in RL behaviour, RLL behaviour and in transition between the two behaviours
over 5,000 iterates, discounting 195,000 transients, for additive white noise where
µ < µs2. The bar chart shows the proportion of iterates spent by 1,000 orbits
with linearly spaced initial conditions in each of the three types of behaviour. We
see that, as expected, the deterministic system (∆ = 0) exhibits only RLL be-
haviour once transients are discounted. This is also the case for the lowest noise
amplitudes investigated. However, once the amplitude has been increased beyond
some threshold ∆∗, we see that the addition of noise appears to induce some
level of multistability, where both RL and RLL behaviours are present. This phe-
nomenon could be considered to be a phenomelogical bifurcation or p-bifurcation [1].
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Fig. 3 Bar chart showing the changing proportion of time spent in RL & RLL behaviour
and transition (RR) for increasing amplitude of additive noise, ∆, where a = 0.5 and b = 0.2
and µ = 0.00623 < µs2 = 0.00625. We plot the different relationships observed, considering
dynamics over 5,000 iterates for 1,000 different orbits with linearly spaced initial conditions
on the interval [−0.04, 0.01] neglecting 195,000 transients.

A p-bifurcation refers to a qualitative change in the topology of the stationary
distribution of a dynamical system. Here we see that noise above the threshold
amplitude causes the stationary monostable distribution of the square root map
to become multistable.

3.3 The Evolution of Deviations

In order to more formally understand how the addition of noise affects the qual-
itative behaviour of the square root map we will use an approximation for the
distribution of trajectory deviations resulting from the addition of noise to the
system derived in [23]. In particular we are interested in how these deviations can
be related to the persistence of unstable periodic behaviour. Using an approach in-
volving linearisation the authors of [19] have derived approximate invariant Gaus-
sian densities associated with periodic attractors of the square root map in two
dimensions.

We consider two trajectories, {xk} and {zk}, with identical initial conditions
x0 = z0 = Rm+1, i.e. two trajectories with initial conditions equal to the right
iterate of the deterministic (RLm)∞ orbit of the system. We then iterate forward
using the square root map with additive noise (10) in the case of x0, letting xk+1 =
Sa(xk), and the deterministic square root map (1) in the case of z0, letting zk+1 =
S(zk). The deviation due to noise in the trajectory {xk} is then given by the
difference {εk} = {xk−zk}. From (1) and (10) we have that, provided the deviations
are not so large as to push {zk} out of RLm behaviour, the error terms εk are given
by

εk = xk − zk =

{
aψk−1 + ξk−1, k mod (m+ 1) = 1,
bεk−1 + ξk−1, otherwise,

(11)

with ε0 = 0 and ψk−1 =
√
Rm+1 −

√
Rm+1 + εk−1. Referring to [23] we have that

εk is distributed approximately normal for all k with distribution N(0, σ2εk). Here
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the variances are given by

σ2εk =


a2σ2εk−1

4Rm+1
+∆2, k mod (m+ 1) = 1,

b2σ2εk−1
+∆2, otherwise.

(12)

Working mod(m+ 1) we can write (12) as a system of m+ 1 difference equations

σ2ε(n+1)(m+1)+k
= fk(σ2εn(m+1)+k

) (13)

with initial conditions given by σ2εk for 1 ≤ k ≤ m + 1. The map fk has a fixed
point σ̂2k,(m+1) for each of the m+ 1 difference equations such that

σ̂2k,(m+1) = ∆2


a2

m∑
i=k

b2(i−1) + 4Rm+1

k−1∑
i=0

b2i

4Rm+1 − (abm)2

 . (14)

We require σ̂2k,(m+1) > 0 and so (8) and (14) imply that

4Rm+1 =

−abm +

√√√√(abm)2 + 4
m∑
i=0

biµ

2

> (abm)2, (15)

which gives that

µ >
3

4

(
1− b

1− bm+1

)
(abm)2 = µsm+1 (16)

and so the fixed points given in (14) exist for values of µ in the interval of stability
for the deterministic (RLm)∞ orbit, (µsm+1, µ

e
m+1), with σ̂2k,(m+1) → ∞ as µ →

µs
+

m+1 since the numerator→ a2∆2

m+k−1∑
i=k−1

b2i

 as µ→ µs
+

m+1. On the other hand,

σ̂2k,(m+1) → c where c > 0 as µ→ µe
−

m+1.
The difference equations (13) converge for

µ ∈

(
−4a−2

m∑
i=0

bi−2m, 12a−2
m∑
i=0

bi−2m

)
:= Aµ. (17)

Now, since 0 < b < 1
4 and 0 < a < 1 we have that

(µsm+1, µ
e
m+1) ⊂

[
0, 12

2m∑
i=m

4i
]
⊂ Aµ (18)

and so (13) converges for all relevant values of the bifurcation parameter µ and all
k.

Taking m = 2 as an example and examining the case of deviations on the last
left iterate L2

3 of the deterministic period-3 orbit for µ < µs2, we can see that the
analysis in Section 3.3 agrees well with our numerical results. Taking one million
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a) b)

Fig. 4 a) The evolution of the standard deviations of the normal fits of the distributions of
the deviations εm and εk(m+1)+m such that ε(k−1)(m+1)+m < −Lm

m+1 for 1 ≤ k ≤ 20, fitted

using MATLAB R©’s fitdist function, (blue circles) compared to our semi-analytic prediction
given by (13) (red dashed line). b) The histogram and normal fits of the distributions (red
curve) of the deviations ε7(m+1)+m such that ε(k−1)(m+1)+m < −Lm

m+1 for 1 ≤ k ≤ 7.

orbits with initial condition x0 = R3 we examine the distribution of the deviations
εn(3)−1 for n = 1, 2, . . . , 100, such that εk(3)−1 < −L2

3 for k < n. In Figure 4a)
we show that the fitted normal distributions, (fit using the MATLAB R© fitdist

function) of these deviations appear to have an approximately zero mean with
standard deviation converging quickly to some limit, σ̄ as n→∞. We see that the
standard deviations of these fitted distributions closely mirror the approximate
standard deviations predicted by our analysis (13), in particular the standard de-
viations do indeed appear to converge to the value of σ̂2,3 given by (14). In Figure
4b) we compare an example of these fitted normal distributions to the histogram of
the observed numerical deviations and find that the fitted distributions are indeed
good fits for the actual distributions. We can therefore use the approximate devi-
ation distributions derived in Section 3.3 to better understand the noise induced
transitions observed in the square root map.

4 The Persistence of Unstable Behaviour Due to Noise

Let us now return to examine in more detail the potential for repeated intervals of
persistent RLm−1 dynamics in a noisy system of sufficiently high noise amplitude
with µ < µsm, as observed in Figure 2 in the m = 2 case. A related phenomenon
for a system with µ > µsm is that the proportion of time spent by the system
in RLm−1 behaviour falls to almost zero as noise amplitude increases to some
threshold value, effectively destroying the attractor. However, for noise amplitudes
above this threshold RLm−1 behaviour returns [23].

In order to explain the persistence of unstable periodic behaviour in the stochas-
tic square root map (10), in Section 4.1 we will first look for qualitative similarities
in observed noise-induced transitions from stable to unstable periodic behaviour.
These transitions are essential in inducing multistability in regions in which only
one stable periodic attractor exists in the deterministic system (1). Without them
the system would simply remain in a noisy version of the stable periodic orbit. We
will then explain why the observed similarities between noise-induced transitions
exist by referring to features of the deterministic square root map (1) in Section
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4.2. By referring to Section 3.3 in Section 4.3 we will show additive Gaussian white
noise can induce transitions of the form observed and in Section 4.4 we will present
examples of such transitions observed in numerical simulations.

4.1 The Transition

In the numerical simulations we have found that noise-induced transitions between
RLL and RL behaviour display certain similarities. In particular, we have observed
that the transitions tend to take the following symbolic form

RLLRLL . . . RLLRLLRLRRLRL . . . RLRL. (19)

The significant feature of the symbolic representation of the transition (19) is the
repeated R corresponding to repeated iteration by SR on the right-hand side of
the square root map (1).

In general we see that the features of this transition are repeated as we look
at transitions from RLm behaviour to RLm−1 behaviour for increasing m. In par-
ticular we observe transitions of the form

RLmRLm . . . RLmRLm−1RLk−2RLm−1RLm−1 . . .

. . . RLm−1RLm−1
(20)

for µ in a neighbourhood of µsm such that µ < µsm and k ∈ {2, 3, . . . ,m}. The most
significant feature of transitions of the form given in (20) is the sequence RLk−2R

for k ∈ {2, 3, . . . ,m}, again corresponding to iterations on the right-hand side of the
map being repeated more quickly than is usual for a settled system with µ < µsm.

4.2 Contraction and Expansion

In order to understand the effect of noise on the square root map, and the im-
portance of the form of the transition characterised by (20), we will look at the
sets associated with the occurrence of this symbolic sequence in the deterministic
dynamical system (1). Let AX1X2...Xm

denote the set of values x1 ∈ R such that
the sequence x1, x2, . . . , xm, generated under iteration by (1) has the symbolic rep-
resentation X1, X2, . . . , Xm. For example, the set ALL is the set of values to the
left of zero, i.e. less than zero, that remain on the left after a single iteration. We
can construct ALL as

ALL := {x ∈ (−∞, 0) : S(x) < 0}

= {x ∈ (−∞, 0) : µ+ bx < 0} =
(
−∞,−µ

b

)
(21)

and similarly we find

ALR :=
(
−µ
b
, 0
)
,

ARR :=

(
0,
(
µ

a

)2)
,

ARL :=

((
µ

a

)2
,∞
)
. (22)
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Noting that
AX0X1...Xm

= {x ≶ 0 : S(x) ∈ AX1...Xm
} (23)

for X0 = L or R respectively, we can find the set A{Xi} associated with any
symbolic sequence {Xi} of finite length iteratively.

The sets AX1X2...Xm
become small very quickly as the length of the sequence

X1, X2, . . . , Xm increases. In fact the sets associated with the longest symbolic
sequences lie outside [µ − a√µ, µ], the settled range of the map. The small sizes
of these intervals, or their location outside the map’s settled range, lead us to
believe that the noise-induced transition mechanism observed in simulations is
not likely based entirely on being pushed into one of the sets associated with a
longer sequence, which were derived based on the deterministic mapping. As a
result we wish to investigate the properties of the sets associated with shorter
sequences.

We have noted previously that the most significant feature of the transition
given in (20) is the sequence RLk−2R corresponding to iterations on the right being
repeated more quickly than is usual for a settled system. As a result we would like
to see what the images of ARLk−2R look like under iteration by S. The nature of
these images may give us a better understanding of why close-together iterations
on the right-hand side of the map lead to a transition to RLm−1 behaviour. First
we recall from (22) that

ARR =

(
0,
(
µ

a

)2)
(24)

and note that

ARLk−2R =

(µ
a

k−3∑
i=0

b−i
)2

,

(
µ

a

k−2∑
i=0

b−i
)2
 (25)

for k ∈ {3, 4, . . . ,m}. These sets are located just to the right of zero and their
relative sizes are shown in Figure 5a. As a result, a small positive deviation due to
low amplitude noise could push settled RLm dynamics (a slightly blurred version
of the stable deterministic (RLm)∞ orbit) into one of these sets. This is because
Lmm+1, the mth left iterate of that stable orbit, is very close to zero.

Let us now look at the images of these sets under iteration by S. We have that
the (k − 1)th and kth images of ARLk−2R under iteration by the square root map
(1) are given by

Sk−1(ARLk−2R) = (0, µ) and

Sk(ARLk−2R) = (µ− a
√
µ, µ) . (26)

Any trajectory {x0, x1, x2, . . .} iterated under the deterministic square root map
(1) with initial condition x0 < 0 will be increasing for the first j iterations, where
j ∈ N is the minimum such that xj > 0. This is as a result of the fact that
µ > 0 and 0 < b < 1

4 . Furthermore since xj−1 < 0 we will have that xj ∈ (0, µ).
Any trajectory with initial condition x0 ∈ ((µ/a)2,∞) = ARL will be such that
x1 < 0, while (26) gives that the image of (0, (µ/a)2) = ARR is (0, µ) and so any
trajectory with initial condition x0 < 0 will also eventually enter the set (0, µ).
Finally the image of the set (0, µ) under a single iteration of the square root map
S((0, µ)) = (µ − a√µ, µ). This means that for any trajectory iterated under the
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a) b)

Fig. 5 a) Graphical representation on a log scale of the sets ARLk−2R for k ∈ {2, 3, . . . , 5} for
µ = 0.99µs5. b) The distributions, (xk−2(s), dk−2(s)), of the images of the sets ARLk−2R under
gk−2 for k ∈ {2, . . . , 5} where µ = 0.99µs5. L1

5, the first left iterate of the unstable (RL4)∞

orbit, is indicated by the dashed magenta line. The 6 iterates of the stable (RL5)∞ obit are
indicated by solid green lines.

square root map ∃N ∈ N such that ∀n > N we have xn ∈ [µ− a√µ, µ] and so this
gives us no more information as to why repeated iterations on the right tend to
result in a transition to RLm−1 behaviour.

Instead we will examine the relative levels of expansion and contraction ex-
perienced by elements of ARLk−2R under iteration by S. We show that for µ in
a neighbourhood of µsm, the first iterate on the left of the unstable deterministic
orbit (RLm−1)∞ is ‘close’ to xk−2

t where xk−2
t is the mode of the distribution of

the kth image of the set ARLk−2R for k ∈ {2, 3, . . . ,m}.
For x ∈ ARLk−2R we have that x > 0 and

Sk(x) = SR(Sk−2
L (SR(x)))

= µ− a

√√√√µ

k−2∑
i=0

bi − abk−2√x := gk−2(x). (27)

This gives that that

g′k−2(x) =
a2bk−2

4

1

√
x

√√√√µ

k−2∑
i=0

bi − abk−2√x

, (28)

where the dash ′ indicates differentiation with respect to x. We observe that

g′k−2(x) → ∞ as x → 0+ and as x →

(µ
a

k−2∑
i=0

b−i
)2
−. This means that the

level of expansion experienced by elements of the interval ARLk−2R over the course
of two close together iterations on the right tends to infinity as we approach the
endpoints. On the other hand, the elements of ARLk−2R that experience the least
expansion over the course of two close together iterations on the right are the points
about xk−2

c , where xk−2
c is such that the second derivative of gk−2 with respect to x,

g′′k−2(xk−2
c ) = 0. As a result, the image of linearly spaced points in ARLk−2R will
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be concentrated about gk−2(xk−2
c ) = xk−2

t with distribution (xk−2(s), dk−2(s)),
where

xk−2(s) = gk−2(s) = µ− a

√√√√µ

k−2∑
i=0

bi − abk−2√s (29)

and

dk−2(s) =
1

g′k−2(s)
=

4
√
s

a2bk−2

√√√√µ

k−2∑
i=0

bi − abk−2√s, (30)

for s ∈ ARLk−2R. Calculating the second derivative of gk−2 we find that

g′′k−2(x) =
a2bk−2

16

3abk−2√x− 2µ
k−2∑
i=0

bi

(
x

(
µ

k−2∑
i=0

bi − abk−2√x

)) 3
2

. (31)

Now, xk−2
c is given by finding the roots of (31) and thus

g′′k−2(xk−2
c ) = 0 =⇒ xk−2

c =
4

9

(
µ

a

)2(k−2∑
i=0

b−i
)2

, (32)

which gives that

S(xk−2
c ) = µ− a

√
xk−2
c =

(
1− 2

3

k−2∑
i=0

b−i
)
µ (33)

and

xk−2
t = Sk(xk−2

c ) = g(xk−2
c ) = µ− a

√√√√µ

3

k−2∑
i=0

bi. (34)

The point xk−2
t , around which the image of ARLk−2R for k ∈ {2, . . . ,m} is concen-

trated after undergoing two close together iterations on the right, is close to L1
m,

the first left iterate of the (RLm−1)∞ orbit of the deterministic system.
When µ is in the neighbourhood of µsm points in ARLk−2R, where 2 ≤ k ≤ m,

undergo two iterations on the right-hand side of the map by SR in the first k ≤ m
iterates. This corresponds to iterations on the right-hand side of the map being
repeated more quickly than is usual for a settled system where it takes at least
m + 1 iterates to repeat iterations on the right. The distribution of the image of
ARLk−2R after k iterates, the first and last of which are by SR, along with the high
number of iterates required by orbits to enter RLm behaviour for x0 ∈ ARLk−2R,
gives us a significant insight into why the sequence RLk−2R is such an important
feature of the noise induced transition from RLm to RLm−1 behaviour in the noisy
version of the square root map.

To illustrate this, in Figure 5b) we plot the distributions (xk−2(s), dk−2(s))
given in (30), of the images of the sets ARLk−2R after undergoing two close together
iterations on the right for m = 5 and k ∈ {2, . . . , 5} where µ < µs5. We observe that
the modes of all four distributions are very close to the first left iterate of the
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a) b) c)

Fig. 6 a) Histogram showing the distribution of the image of 100,000 linearly spaced points in
ARR after two iterations, S2(ARR) along with d0(s) in red. b) and c) Iterates of 300 linearly
spaced points in ARR under the square root map S, 20 times and until divergence from RL
behaviour respectively. In all three cases we have taken µ < µs2. The iterates of the stable
(RLL)∞ orbit of the system are marked in green, the iterates of the unstable (RL)∞ orbit of
the system are marked in dashed magenta and xt is marked in dash-dotted grey.

unstable (RL4)∞ orbit, especially when compared to their distance to any of the
iterates of the stable RL5 orbit. As a result of this, any orbit that enters one of
the sets ARLk−2 for k ∈ {2, 3, . . . , 5}, when µ < µs5, will take a long time to exit
RL4 behaviour and converge to (RL5)∞, the only stable attractor in the system
in that case. In general any noisy RLm orbit pushed into one of the sets ARLk−2R

for k ∈ {2, 3, . . . ,m} has the potential to transition into RLm−1 behaviour for a
sustained period of time.

In order to illustrate this behaviour let us take the m = 2 case and examine
the transition from RLL to RL behaviour as a example. We will consider values
of µ < µs2 in a small neighbourhood of µs2 where this orbit is unstable. In this
case we have only one choice of k corresponding to close together iterations by
SR, k = m = 2, and so we are concerned only with the images of the set ARR.
After two iterations on the right the distribution of linearly spaced orbits in ARR,
given by (30) and shown in Figure 6a), is concentrated around xt (34), close to
L1
2, the left iterate of the (RL)∞ orbit of the deterministic system. Orbits with

initial conditions close to L1
2 will take a significant number of iterates to leave

RL behaviour and converge to the (RLL)∞ attractor for such values of µ. This
is clearly illustrated by Figures 6b) and 6c). We examine 300 orbits with linearly
spaced initial conditions in ARR. We observe that, as a result of this distribution,
a significant proportion of the orbits with initial conditions in ARR do not exit RL
behaviour until after a substantial number of iterations. Indeed, after 1500 iterates
a proportion of the orbits are still in RL behaviour.

In general, the number of iterates required by orbits with different initial con-
ditions to enter RLL behaviour for the first time for µ in a neighbourhood of µs2
has a very complicated structure. We have plotted this for the entire settled range
of the map [µ− a√µ, µ], and in more detail, for the subset ARR in Figure 7. This
complicated structure is analagous to the riddled structure of the basins of attrac-
tion of the coexisting periodic attractors on intervals of multistability as discussed
in [23].

We can now fully understand why a double R, corresponding to repeated it-
erations on the right, is such an important feature of the noise-induced transition
from RLL to RL behaviour in the noisy version of the square root map (10). Our
analysis suggests that trajectories entering ARR could take a significant number of
iterates to return to RLL behaviour due to the deterministic structures of the map.



Noise induced multistability in the square root map 15

We also can see that, as L2
3, the second left iterate of the deterministic (RLL)∞

orbit is close to zero for µ in a neighbourhood of µs2 (|L2
3|≪ 1), small deviations

due to noise would be enough to push an orbit from RLL behaviour near the de-
terministic orbit into the set ARR =

(
0, (µ/a)2

)
. The combination of these features

means that noise has the potential to push trajectories from RLL behaviour into
ARR and as a result concentrate these trajectories around the unstable (RL)∞

orbit of the deterministic system where they have the potential to remain for a
significant number of iterates.

4.3 Deviation Distributions Under Repeated Iteration on the Right

We can now combine our knowledge of the steady-state deviations of the period-
(m + 1) orbit derived in Section 3.3, the expansion and contraction undergone
during repeated iterations on the right-hand side of the square root map described
in Section 4.2 and the complicated structure of the relationship between initial
conditions and the number of iterates required to transition to the stable period-
(m + 1) orbit in the deterministic map shown in Figure 7 to better understand
the persistence of unstable periodic behaviour. Again, taking the m = 2 case as
an example, we know from Section 4.2 that deviations εn(3)−1 such that −L2

3 <

εn(3)−1 < −L2
3+(µ/a)2 will induce consecutive iterations on the right, symbolically

RR.
We consider the steady-state distribution of L2

3+εn(3)−1, i.e. the normal distri-

bution with mean L2
3 and standard deviation σ̂2,3. We then truncate this distribu-

tion to the interval
(
0, (µ/a)2

)
= ARR to find the distribution Tf which is shown

in Figure 7b). Mapping this distribution under consecutive iterations on the right
gives us the distribution S2

R(Tf), shown in Figure 7c). We see the mode of this
distribution is close to the unstable left iterate of the RL orbit, and in a region
where orbits will take a significant number of iterates to return to RLL behaviour.
In fact, taking µ = 0.99µs2 and ∆ = 1.2×10−4 we find that the expected number of
iterates to return to period-3 behaviour for an orbit whose deviation has pushed
the last left iterate on the right-hand side is given by

E(Iterates to return| ε(n+1)(3)−1 ∈ (−L2
3,−L2

3 + (µ/a)2))

≈ 175,
(35)

with standard deviation

σ(Iterates to return| ε(n+1)(3)−1 ∈ (−L2
3,−L2

3 + (µ/a)2))

≈ 255,
(36)

where we iterate forward using the deterministic square root map (1).

4.4 Examples

In Figure 8a) we show an example of a transition from RLL to RL behaviour of
the form given in (19) along with the associated noisy signal. We focus on the
the characteristics of the noisy signal ξ0, ξ1, . . . , ξ7 associated with the eight iter-
ates x0, x1, . . . , x7 represented by the underlined portion of the symbolic sequence
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a) b)

c)

Fig. 7 a) The number of iterates required for orbits with a range of initial conditions
to transition to RLL behaviour in the deterministic system where µ < µs2. b) The
steady-state distribution of the last left iterate of the RLL orbit truncated to ARR, Tf ,
along with E(Iterates to return to period-3 behaviour) ≈ 175 marked in dashed black and
E(Iterates to return to period-3 behaviour) plus one standard deviation ≈ 430 in dotted grey.

c) The distribution of iterates with deviations εn(3)−1 such that−L2
3 < εn(3)−1 < −L2

3+(µ/a)2

after undergoing repeated iterations on the right-hand side of the square root map. For the
distributions in both b) and c) we have taken ∆ = 1.2× 10−4.

a) b)

Fig. 8 a) An example of a noise-induced transition from settled RLL to persistent RL be-
haviour in the square root map with additive noise and µ < µs2 and the associated noisy signal.
Here ∆ = 1.2×10−4 and µ = 0.0062. b) An example of a noise-induced transition from settled
RL5 to persistent RL4 behaviour in the square root map with additive noise and µ < µs5. Here
k = 4.

(19) and note that none of the individual noise terms have an exceptionally large
magnitude. Instead in Figure 9 we see that the transition is triggered by the accu-
mulated deviation term ε5 > −L2

3, which pushes the trajectory into the set ARR
resulting in repeated iterations on the right.

In Figure 9b) we also see that the orbit in the noisy system remains in RL

behaviour for a far longer period of time than the equivalent orbit with the same
initial condition x7 in the deterministic system. This means that noise can play a
role in maintaining RL behaviour in systems with µ < µs2, in essence “stabilising”
an orbit which is unstable in the associated deterministic system. We have not yet
been able to find any precise characteristics of a noisy signal that is likely to result
in such “stabilisation” however it is something we intend to look at in the future.

In Figure 8b) we show an example of a transition of the form given in (20),
for m = 5 and k = 4. From results of experimental simulation of noisy square root



Noise induced multistability in the square root map 17

a) b)

Fig. 9 a) The iterates x0, . . . , x7 associated with the eight underlined terms in the symbolic
sequence (19) in the case of the transition shown in Figure 8a). We also show their associated
noise terms ξ0, . . . ξ7 in blue and the associated deviation terms of the first 6 iterates ε0, . . . , ε5
in dash-dotted grey (not to scale). b) A close-up look at the persistent noise induced RL
behaviour shown in in Figure 8a) and the associated deterministic square root map dynamics
with initial condition given by x7, where the iterates x0, . . . , x7 are the iterates associated with
the eight underlined terms in the symbolic sequence (19).

maps with µ in a neighbourhood of µsm such that µ < µsm for different values of m
it appears that transitions with certain k values occur more frequently and other
k values are associated with the “best” transitions. For example, in the m = 5
case many of the “best” transitions were associated with symbolic sequences of
the form given in (20) with k = 4. We hypothesise that this is related to both
the size and the ordering of the sets ARLk−2R to the right of zero. For example
ARR becomes vanishingly small as m increases and so orbits are less likely to
enter this set. On the other hand, when k = m the set ARLm−2R is the largest
of these intervals, but is also located the furthest to the right and so requires a
large deviation for orbits to enter. If an orbit does enter this set it is likely to be
near to the left endpoint and so its image after two close together iterations on
the right-hand side of the square root map is not likely to be too close to L1

m,
resulting in a “weak” transition. As a result, we believe that “strong” transitions
will generally be associated with k values that are greater than 2 and less than m.
The sets ARLm−2R for k ∈ {3, . . . ,m−1} are larger than ARR but closer to the left
than ARLm−2R and so noisy orbits are more likely to have iterates landing near
the centre of these sets, whose images after two close together iterations on the
right will be near to L1

m and thus result in a strong transition.

5 Discussion

This paper is concerned with the effects of the introduction of small amplitude
additive Gaussian white noise on the dynamics of the square root map (1). This
noise formulation (10) was shown in [19] to be consistent with state-independent
noise in piecewise-smooth ordinary differential equations describing an impact os-
cillator with low-velocity impacts. Our investigations show that introducing noise
of this type to the one-dimensional square root map has the potential to induce
significant changes in the qualitative behaviour of the system.

In particular, we have investigated the effect of noise on the period-adding
cascade of the map, which exists for 0 < b < 1

4 in the deterministic system. This
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period-adding cascade is such that there are values of the bifurcation parameter
µ > 0 for which a stable periodic orbit of period m exists for each m = 2, 3, . . .,
and also such that there are two stable periodic orbits, one period-(m + 1) orbit
and one period-m orbit.

In Section 3.2 (see Figures 2-3) we have shown numerical evidence for the
persistence of unstable periodic behaviour in the neighbourhood of intervals of
multistability due to the addition of noise to the system. In other words, noise
of sufficient amplitude effectively induces multistability in these regions in a p-
bifurcation. In such regions we identified features of noise-induced transitions from
stable to unstable periodic behaviour, including the transition’s symbolic repre-
sentation which is given by (20). In Section4.1-4.2 we have highlighted that the
defining feature of these transitions is the presence of two iterations on the right-
hand side of the map, separated by a small number of iterations on the left, i.e.
less than the number of iterates on the left of the unstable periodic orbit. Our
investigations revealed that trajectories that are iterated in the order given by
(20) become concentrated around the unstable periodic orbit due to relative levels
of expansion and contraction during iteration. Such trajectories are likely to take
a significant number of iterates to return to the stable periodic behaviour (see
Figure 6).

Finally, we show in Section 4.3-4.4 that noise-induced transitions from stable
to unstable periodic behaviour can be understood by examining how estimates of
the steady-state distributions of deviations due to noise derived in [23] interact
with the deterministic structures of the map. We also present examples of such
transitions, from period-3 to period-2 behaviour and from period-6 to period-5
behaviour, in numerical simulations in Figures 8-9.

In addition to the investigation required to more formally understand what fea-
tures of a noisy signal are require to drive “strong” transitions and to “stabilise”
unstable behaviour once a noise-induced transition occurs, several problems re-
main for future work. In particular, it remains to be shown how these results can
be extended to the case of the two-dimensional square root map derived as an
approximation for the full system describing an impact oscillator near grazing and
indeed to the full ODE system itself.
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