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Abstract

This article-based thesis comprises a collection of four articles, each of which consti-

tutes a chapter, written and formatted in pre-print manuscript form. The general

aim underlying these articles is to understand how noise affects the dynamics of

nonsmooth dynamical systems. Nonsmooth dynamical systems arise naturally when

modelling systems in engineering and applied sciences and are characterised by

sudden changes in system properties. Examples of naturally arising nonsmooth

systems include mechanical systems involving impacts or friction, economic or socio-

logical systems with decision thresholds, switching electronic systems and climate

systems with sharp ice-cap boundaries. The dynamical systems resulting from these

models exhibit several unique behaviours including new types of bifurcations called

discontinuity-induced bifurcations, which can be considered the hallmark of non-

smooth systems. A level of noise or randomness is also ubiquitous in real-world

systems and has been shown to have significant nontrivial effects on smooth but

nonlinear systems close to bifurcation points. As a result, it is both interesting an

important to understand the effects of noise on the unique dynamics possible in

nonsmooth systems.

Keywords – Dynamical Systems, Nonsmooth, Hybrid, Stochastic, Bifurcations
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Chapter 1

Introduction

Traditionally smooth and deterministic dynamical systems are used to model real-

world phenomena. These models often present a simplified view of the world where,

on one hand, the evolution of systems is always smooth and exhibits no interruptions

such as impacts, switches, slides or jumps and, on the other hand, the future of any

system is completely determined by its present state [1].

However, when modelling many real-world systems one or both of these simplifi-

cations may not hold. For example, in many cases, the modelling of real-world

systems in engineering, natural or social sciences naturally gives rise to nonsmooth

dynamical systems. These systems are characterised by having periods of smooth

evolution interrupted by sudden changes in system properties. For example, the

study of mechanical systems with impacts or friction [2, 3, 4, 5, 6], switching in

electrical circuits [7, 8], and relay control systems [9] all naturally lead to nonsmooth

systems. More complex systems such as climate, ecological, biological and financial

systems have also been modelled using nonsmooth models [10, 11, 12, 13, 14, 15, 16].

Furthermore, real-world systems are also rarely entirely deterministic and it has been

shown that a level of randomness or noise is ubiquitous in real-world systems [17].

Models known as stochastic models possess some inherent randomness, allowing us
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to account for this noise.

Independently, both nonsmoothness and noise have been shown to be the drivers of

significant changes in the qualitative behaviour of dynamical systems. Nonsmooth

systems exhibit all of the behaviour of smooth systems. However, several unique phe-

nomena also occur including new types of bifurcations called discontinuity-induced bi-

furcations (DIBs). Examples include grazing bifurcations, border-collision/boundary-

equilibrium bifurcations, sliding bifurcations, sticking bifurcations and others [18,

19, 20, 21, 22]. These new bifurcations are often caused by the fact that nearby

trajectories can undergo different sequences of events and so are topologically distinct.

In smooth nonlinear systems the addition of noise has been shown to have the

greatest effect on the outcome of the system in the neighbourhood of bifurcation

points, the hallmark of nonlinear dynamical systems. For example, noise has been

shown to delay bifurcations, destroy attractors, induce stability [23, 24, 25, 26] and

even drive behaviour that has no deterministic counterpart [27]. The study of the

impact of noise on nonsmooth systems is a relatively new field. In-depth studies

have been carried out into the effects of noise on piecewise-linear maps [28, 29],

grazing bifurcations in impacting systems [30, 31] and on periodic orbits with sliding

[32, 33]. The purpose of this thesis is to continue investigating the effects of noise on

nonsmooth systems. In particular, since DIBs could be considered the hallmark of

nonsmooth systems, we will focus on the effects of noise in their neighbourhood.

1.1 Outline of Thesis

The work presented here is intended to further our knowledge of the effects of

noise on nonsmooth dynamical systems. We pay particular attention to the use of

discontinuity mappings in a stochastic setting and analysing the impact of noise on

the dynamics of the square root map.

The outline of the thesis is as follows. Chapter 2 introduces key tools and concepts
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in dynamical systems. In Chapter 3 we discuss the specifics of nonsmooth systems

including piecewise-smooth flows, piecewise-smooth maps and hybrid dynamical

systems. Chapter 4 focuses on noise, introducing key concepts in probability and

stochastic processes. In order to motivate our investigations we also report on some

existing research into the significant effects of noise on both smooth and nonsmooth

dynamical systems. A concluding discussion on the subject of the thesis is presented

in Chapter 5, while the four papers that form the bulk of this thesis are summarised

with a discussion of author contributions in Chapter 6, and these papers form the

remaining four chapters of the thesis. Chapter 7 and Chapter 8 concern the effects

of noise on multistability in the square root map, while in Chapters 9 and 10 we

derive discontinuity mappings for nonsmooth dynamical systems with stochastic

discontinuity boundaries.
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Chapter 2

Dynamical Systems

In this chapter we give a brief overview of dynamical systems theory for general dynam-

ical systems. We will also introduce discrete-time iterated maps and continuous-time

systems governed by ordinary differential equations known as flows in the smooth

case. We then present some tools useful for analysing the stability of invariant sets

such as equilibrium points or periodic orbits, and methods used to locate attractors in

smooth or nonsmooth dynamical systems. More in-depth treatment of these concepts

and tools can be found in texts by Guckenheimer and Holmes [34], Kuznetsov [35],

Wiggins [36] and others, for example [37, 38].

First, let us define the key concepts in general dynamical systems. Dynamical systems

are rules describing systems that evolve in time. They can be written in terms of

an n-dimensional state space S ⊂ Rn whose coordinates describe the state of the

system at any point in time t ∈ T, and a dynamical rule φ : S × T→ S that gives

the future values of all state-space variables, given only their present values where

φ(x, t+ s) = φ(φ(x, t), s), x ∈ S, t, s ∈ T,

φ(x, 0) = x, x ∈ S. (2.1)

The time index set T is taken to be T = Z for discrete-time systems and T = R for
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continuous-time systems.

We call the set of points

Γ = {y ∈ S : y = φ(x, t), t ∈ T} (2.2)

the trajectory through the point x, while

Γ+ = {y ∈ S : y = φ(x, t), t > 0} and Γ− = {y ∈ S : y = φ(x, t), t < 0} (2.3)

are called the forward and backward trajectories, respectively. Often, where there

is no ambiguity, we will use the term trajectory to refer to the forward trajectory

through a point x.

An invariant set in a dynamical system is a subset I ⊂ S such that if x ∈ I then

the forward trajectory Γ+ through x is a subset of I. In other words, trajectories

that start in, or enter into I, do not leave I. A closed and bounded invariant set A

is called an attractor of a dynamical system if

• for any sufficiently small neighbourhood C of A, there exists another neigh-

bourhood D of A such that all forward trajectories starting in C are contained

in D, and

• for all x ∈ C, φ(x, t)→ A as t→∞.

We call the maximal set B such that when x ∈ B, φ(x, t)→ A as t→∞ the basin

of attraction of A. This means that an attractor is a set of states in the state-space

towards which nearby states in the attractor’s basin of attraction evolve over time. As

a result, the set of attractors of a dynamical system generally describe the long-term

behaviour of the system and so the modern theory of dynamical systems focuses on

the existence and stability of recurrent motions and attractors. The complexity of

a dynamical system, its behaviours and importantly its attractors depend on the

system’s dimensionality, nonlinearity and nonsmoothness. While low-dimensional
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Figure 2.1: A 2-dimensional slice of the intertwined basins of attraction of five
coexisting attractors in the Chua circuit. Each colour represents a different basin of
attraction

smooth linear systems are easy to visualise, their dynamics and properties are limited

compared to high-dimensional nonlinear and nonsmooth systems. Higher-dimensional

nonlinear and nonsmooth dynamical systems can exhibit complex behaviours such

as multistability, quasi-periodicity and chaos.

Later, when considering the effects of noise on nonsmooth dynamical systems, we will

focus on the effects of noise on attractors. In particular, we will consider the effects

of noise on systems with multiple attractors. In such multistable systems the size

and structure of the basins of competing attractors will play key roles in determining

the principal effects of noise on the system. We will see that, even in relatively simple

nonsmooth systems, the structure of the systems’ basins of attraction can have a

very complicated structure. For example, Figure 2.1 shows the intertwined fractal

structure of the basins of attraction of five coexisting attractors in the Chua circuit

[39], a simple 3-dimesional piecewise-linear dynamical system that is discussed in

detail in Chapter 9.

Before looking at some specifics for both discrete-time iterated maps and continuous-

time flows in the smooth case, we will introduce some notation and conventions used

throughout this thesis in our study and analysis of dynamical systems .
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2.1 Notation and Conventions

Throughout this thesis we will take state-space vectors x ∈ Rn, and the value of

their corresponding time derivatives or images under maps f(x) ∈ Rn, to be column

vectors.

We will use the numerator layout or the Jacobian formulation when calculating

derivatives with respect to vectors [40]. Under this convention we lay out the

derivative of a vector with respect to another vector according to the layout of the

numerator and the transpose of the layout of the denominator. For example, this

gives that, for a scalar function y : Rn → R, a column vector x ∈ Rn and a scalar

z ∈ R

∂y

∂x
=

(
∂y

∂x1

∂y

∂x2

· · · ∂y

∂xn

)
∈ R1×n, (2.4)

∂x

∂z
=

(
∂x1

∂z

∂x2

∂z
· · · ∂xn

∂z

)T
∈ Rn×1, (2.5)

while for column vectors y ∈ Rm and x ∈ Rn

∂y

∂x
=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

... . . .
∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn

 ∈ Rm×n, (2.6)

∂x

∂y
=


∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂ym

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂ym

... . . .
∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂ym

 ∈ Rn×m. (2.7)

In addition, where there is no ambiguity, we will use subscript notation for derivatives,

i.e.

yx =
∂y

∂x
, xz =

∂x

∂z
, yx =

∂y

∂x
, xy =

∂x

∂y
. (2.8)
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2.2 Smooth Maps

In the discrete-time case, where t ∈ T = Z, we describe dynamical systems as iterated

maps, that is

xt+1 = f(xt), x0 ∈ S ⊂ Rn, (2.9)

so that

φ(x0, t) = xt = f(xt−1) = f ◦ f ◦ · · · ◦ f(x0) = f t(x0), (2.10)

where xt ∈ S ⊂ Rn is the state at time t, x0 is the system’s initial condition and

f : S → S, which is Ck for some k ≥ 1, is the corresponding mapping.

The simplest example of an invariant set of a map consists of a single point known

as a fixed point, that is a point x∗ such that

x∗ = f(x∗) = f t(x∗), ∀t ∈ T. (2.11)

The next simplest example of an invariant set of a map is a periodic orbit of period

p, that is a set of p points Γp = {x∗1,x∗2, . . . ,x∗p} such that

x∗i = fp(x∗i ) = fpt(x∗i ), i = 1, 2, . . . , p, ∀t ∈ T (2.12)

and

x∗(i+1) mod p = f(x∗i ), i = 1, 2, . . . , p. (2.13)

We note that a period-p point of a map f : S → S is simply a fixed point of the map

fp : S → S.

In Section 2.4 we will discuss when these invariant sets are attractors of the dynamical

system and how they can be related to invariant sets in the continuous-time case.

First, in Section 2.3 we will give a brief overview of continuous-time flows.
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2.3 Smooth Flows

In the continuous-time case, where t ∈ T = R, we describe dynamical systems as

systems of ordinary differential equations

ẋ = f(x), x ∈ S ⊂ Rn, (2.14)

so that the flow function φ(x, t) satisfies

φt(x, t) = f(φ(x, t)), φ(x, 0) = x, (2.15)

where x ∈ S ⊂ Rn is the state, ẋ ∈ Rn is the time derivative of the state and f ,

which is Ck for some k ≥ 1, is the corresponding vector field. Given a Ck vector field

the flow function φ(x, t), and hence the dynamical system, is Ck+1.

Analagously to a fixed point in an iterated map, the simplest example of an invariant

set of a flow consists of a single point known as an equilibrium point. An equilibrium

point x∗ is a point such that

x∗ = φ(x∗, t), ∀t ∈ T. (2.16)

or equivalently

f(x∗) = 0. (2.17)

The next simplest example of an invariant set of a flow is a periodic orbit of period

τ , that is a state-space trajectory Γτ that forms a closed curve with

x = φ(x, τ), ∀x ∈ Γτ . (2.18)

Other possible invariant sets include quasi-periodic orbits, which correspond to

invariant topological circles of maps, and chaotic sets. However, we will restrict our

10
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focus to the effects of noise on simpler dynamical behaviour and in the following

section we will describe how we can determine the stability of such invariant sets.

2.4 Stability and Poincaré Maps

When we analyse dynamical systems, arising from models of real-world systems,

stable behaviour is generally of most interest. The stability of a state-space trajectory

in a dynamical system is a measure of its sensitivity to perturbations. Roughly

speaking, we will call a reference trajectory Lyapunov stable if the forward trajectories

of nearby trajectories always remain close to the reference forward trajectory. The

reference trajectory is called asymptotically stable if nearby trajectories converge to

the reference trajectory as t→∞. In this way an invariant set that is asymptotically

stable can for our purposes be considered synonymous to the concept of an attractor.

More formally, a reference trajectory φ(x, t) in a dynamical system is called Lyapunov

stable if ∀ε > 0, ∃δ > 0 such that if ||x − y|| < δ then ||φ(x, t) − φ(y, t)|| < ε for

t > 0. It is asymptotically stable if it is Lyapunov stable and ∃δ∗ > 0 such that if

||x− y|| < δ∗, then φ(y, t)→ φ(x, t) as t→∞.

In order to understand the stability of a given reference trajectory with initial

condition xref
0 we need to understand the nature and behaviour of nearby trajectories.

Such a local analysis can be achieved by a linear approximation about the reference

trajectory. For a flow given by (2.14) we find that

φ(x, t)− φ(xref
0 , t) ≈ φx(xref

0 , t)(x− xref
0 ), (2.19)

where the Jacobian φx(xref
0 , t), which is sometimes referred to as the fundamental

matrix solution of the trajectory, is the solution to

Φ̇(x, t) = fx(φ(xref
0 , t))Φ(x, t), Φ(x, 0) = I, (2.20)

11
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with Φ(x, t) = φx(x, t), where the differential equation (2.20) is known as the first

variational equation and I is the identity matrix.

For simplicity, we will concentrate on the stability of equilibrium points of flows

and fixed points of maps. Although the variational equation can be used in the

stability analysis of periodic orbits of flows we will show later in this section that we

can simply consider periodic orbits of flows as fixed points of maps by constructing

Poincaré maps. We have also shown earlier that periodic orbits in iterated maps are

simply fixed points of higher-order maps.

In the case where xref
0 is an equilibrium point we have that

fx(φ(xref
0 , t)) = fx(xref

0 ) (2.21)

and so it follows directly that

φ(x, t)− φ(xref
0 , t) ≈ efx(xref

0 )t(x− xref
0 ). (2.22)

This means that the equilibrium point xref
0 is asymptotically stable if the real parts

of all of the eigenvalues of fx(xref
0 ) are negative. Conversely, if any of the real

parts of the eigenvalues is positive the equilibrium point is unstable. We refer to

equilibrium points as hyperbolic if none of the eigenvalues lie on the imaginary axis

and non-hyperbolic or degenerate otherwise.

Similarly, for an iterated map given by (2.9), linearisation about a fixed point xref
0

gives that

φ(x, t)− φ(xref
0 , t) = f t(x)− f t(xref

0 ) ≈
(
fx(xref

0 )
)t

(x− xref
0 ). (2.23)

It follows that xref
0 is asymptotically stable if all the eigenvalues λ ∈ C of fx(xref

0 ) are

less than unity in maginitude, and unstable if at least one eigenvalue lies outside the

unit circle. We refer to the fixed point as hyperbolic if none of the eigenvalues lie on

12
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the unit circle and non-hyperbolic or degenerate otherwise.

Let us now introduce the concept of a Poincaré map that allows us to treat a periodic

solution of a continuous-time flow as a fixed point of a discrete-time map. First we

construct a codimension-one surface P in state space called a Poincaré section. We

assume that P can be described as the zeros of a real-valued function hP , i.e.

P = {x ∈ S : hP(x) = 0}. (2.24)

In particular we choose P such that the periodic orbit under study intersects the

surface transversally at xP , so that

hP,x(xP)f(xP) 6= 0. (2.25)

We then define the Poincaré map MP : P → P local to xP as the map that takes

points near xP to their next intersection with P near xP along their forward trajectory.

In other words,

MP(x) = φ(x, τP(x)), (2.26)

where τP(x) is the time closest to the period of the periodic orbit τ , such that

hP(φ(x, τP(x))) = 0. (2.27)

In particular, we note that xP is a fixed point of the Poincaré map, and thus

MP(xP) = xP , and τP(xP) = τ .

Although it is generally impossible to find a closed formula for MP we can find

the stability of the periodic orbit by finding the stability of the fixed point xP by

linearising the map and examining the eigenvalues of MP,x(xP) as described in

(2.23).
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a) b) c)

Figure 2.2: a) The fixed point xP of a Poincaré map correspoding to a period-
τ periodic orbit in a flow. b) The periodic orbit {x1

P ,x
2
P} of a Poincaré map

correspoding to a higher period periodic orbit in a flow. c) The first three iterates of
a Poincaré mapping starting at x1.

It remains to find an expression for MP,x(xP). We find that

MP,x(xP) = φx(xP , τ) + φt(xP , τ)τP,x(xP), (2.28)

and given (2.25) the Implicit Function Theorem (IFT) guarantees that τP(x) has a

locally unique differentiable solution near x = xP . Implicit differentiation of (2.27)

gives

τx(xP) = −hP,x(xP)φx(xP , τ)

hP,x(xP)φt(xP , τ)
, (2.29)

hence

MP,x(xP) =

(
I− φt(xP , τ)hP,x(xP)

hP,x(xP)φt(xP , τ)

)
φx(xP , τ)

=

(
I− f(xP)hP,x(xP)

hP,x(xP)f(xP)

)
φx(xP , τ). (2.30)

We note that multiplying a vector by MP,x(xP) is simply a projection of the result

of multiplying by the monodromy matrix or fixed time mapping φx(xP , τ) associated

with the periodic orbit, onto P. This makes sense since we also have that MP(x)
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can be written as

MP(x) = φ(x, τP(x)) = φ(φ(x, τ), τP(x)− τ), (2.31)

where τP(x) − τ ≪ 1 for x close to xP . At least one eigenvalue of φx(xP , τ) is

equal to one, and this eigenvalue corresponds to the eigenvector f(xP), i.e. deviations

tangential to the periodic orbit. This eigenvalue also corrseponds to a zero eigenvalue

of MP,x(xP). Apart from this trivial eigenvalue the eigenvalues of the monodromy

matrix and the Poincaré map are the same. We will sometimes call these eigenvalues

Floquet multipliers or simply multipliers. Based on our arguments for fixed points of

iterated maps earlier, we say that a periodic orbit is stable if the multipliers of its

Poincaré map are less than unity in magnitude and unstable if at least one of the

multipliers lies outside the unit circle in the complex plane.

2.5 Bifurcations

Nonlinear dynamical systems arising from models of real-world systems tend to have

several parameters that affect their behaviour. A bifurcation may be defined as a

qualitative change in the structural behaviour of a dynamical system under parameter

variation. By qualitative changes in the structural behaviour of a dynamical system

we mean changes in the number or stability properties of attractors. Bifurcations are

of particular interest to us as it has been shown that noise tends to have its largest

effects close to bifurcation points.

Bifurcations can be split into two main categories, local bifurcations and global

bifurcations. Local bifurcations are bifurcations that can be detected by changes

in local stability as parameters change. Bifurcations that can not be found in this

way are called global bifurcations. Bifurcations can also be categorised by their

codimension, the number of independent conditions that need to be satisfied for the

bifurcation to occur. In this thesis we restrict our attention to codimension-one

15



Chapter 2. Dynamical Systems

bifurcations.

Here we give a brief overview of the types of bifurcations that are most relevant

to this thesis. In particular, we will focus on local bifurcations of fixed points of

maps. Through Poincaré and higher-order maps these bifurcations will also allow us

to understand local bifurcations of periodic orbits of flows and maps. We will also

discuss the associated bifurcations of equilibrium points of flows.

A local codimension-1 bifurcation of a periodic orbit of a flow or a fixed point of an

iterated map corresponds to one of the eigenvalues of the linearised map crossing

through the unit circle in the complex plane. The nature of the bifurcation depends

on how this crossing is achieved. Similarly, a local bifurcation of an equilibrium point

of flow corresponds to an eigenvalue passing through the imaginary axis. Figure

2.3 summarises some of these codimension-1 bifurcations that appear in systems

considered in this thesis. Local bifurcations of equilibria and fixed points have been

extensively studied and classified, see for example the work of Guckenheimer and

Holmes [34], Kuznetsov [35] or Wiggins [36]. All these bifurcations, which are called

steady bifurcations of equilibria of flows, have direct analogs for maps. They occur in

a map when one of the eigenvalues of the corresponding Jacobian passes through

+1 and in a flow when one of the eigenvalues passes through 0 as the bifurcation

parameter µ is varied.

Figure 2.3 a) shows a saddle-node or fold bifurcation. A saddle-node bifurcation

involves the collision and subsequent annihilation of two fixed points or equilibria

or the sudden appearance of two fixed points or equilibria. In one-dimensional

systems the two fixed points or equilibria have opposite stability, however this is not

guaranteed in higher-dimensional systems. In the context of a Poincaré map this

bifurcation involves the collision and disappearance of two periodic orbits as one of

the Floquet multipliers passes through +1.

Figure 2.3 b) shows a transcritical bifurcation. In this bifurcation two branches of fixed

points or equilibrium points cross transversally and exchange stability properties. In
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a) b)

c) d)

Figure 2.3: Bifurcation diagrams for the main local bifurcations of fixed points
of maps or equilibria of flows which appear in this thesis. In all four bifurcation
diagrams the bifurcation point (x∗, µ∗) is indicated by a circle, solid lines correspond
to stable branches and dashed lines correspond to unstable branches. a) Saddle-node
or fold bifurcation. b) Transcritical bifurcation. c) Supercritical pitchfork bifurcation.
d) Subcritical pitchfork bifurcation.
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the context of a Poincaré map of a two-dimensional flow this bifurcation corresponds

to a stable and unstable periodic-orbit existing locally on each side of the bifurcation

point.

Figure 2.3 c) and d) show pitchfork bifurcations. In a pitchfork bifurcation there

is a single branch of fixed points that change stability in the bifurcation and two

additional branches of fixed points are born with the opposite stability to that of

the single branch. Pitchfork bifurcations are sometimes called symmetry breaking

bifurcations as, for systems with Z2 symmetry, the original branch of solutions are

invariant under the action of the symmetry group but the bifurcating branches are

not. In the supercritical case a stable fixed point becomes unstable and two stable

fixed points are born while in the subcritical case an unstable fixed point becomes

stable and two unstable fixed points are born. In a Poincaré map this bifurcation

corresponds to a periodic orbit splitting into two periodic orbits of the same stability

as the original periodic orbit separated by a periodic orbit of the opposite stability.

Other local bifurcations of maps and flows also exist, but we do not encounter them

in this thesis. For example, period-doubling bifurcations of maps occur when one

of the eigenvalues passes through −1. In such bifurcations a fixed point switches

stabiliy and a period-2 orbit of the same stability as the original stability of the fixed

point is born. There is no direct analog of this for equilibrium points of flows. In 2

or higher-dimensional flows a Hopf bifurcation involves the birth of a limit cycle and

occurs when a complex-conjugate pair of eigenvalues cross the imaginary axis, the

analog form maps is the Neimark-Sacker bifurcation where a complex conjugate pair

of eigenvalues cross the unit circle and an invariant circle is born. In the context

of a Poincaré map the Neimark-Sacker bifurcation corresponds to the birth of an

invariant torus.

Although we deal mainly with local bifurcations in this thesis we do encounter one

global bifurcation in Chapter 9. As we have mentioned before, global bifurcations

cannot be detected by examining the eigenvalues of the linearised system, instead
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Figure 2.4: Schematic showing the destruction of a stable periodic orbit in a
homoclinic connection at µ = µ∗.

global bifurcations tend to occur when the topology of stable and unstable manifolds

change. The example of a global bifurcation we encounter in Chapter 9 is a homoclinic

bifurcation. In this bifurcation, which is shown in Figure 2.4, the stable and unstable

manifold of the same invariant set intersect for some value of the bifurcation parameter

µ. In our case this causes the destruction of a stable periodic orbit. Other global

bifurcations include heteroclinic bifurcations where the stable and unstable manifolds

of two or more different invariant sets coincide for some value of µ. Heteroclinic

bifurcations can also result in the annihilation of periodic attractors or other more

complex phenomena.

2.6 Continuation

So far we have discussed the stability and bifurcations of periodic-orbits in flows,

but we have not described any methodology for locating such orbits. In this section

we will briefly outline a method for locating stable or unstable periodic solutions

and a continuation or path-following algorithm for following those periodic solutions

under parameter variation. The method we describe here that is used throughout

the thesis is known as the shooting method. A more in-depth treatment and more

complex methods such as the pseudo-arclength method can be found in texts such

as [41, 42, 43, 44]. Many software packages are also freely available such as AUTO

[45] and the Matlab package Matcont [46].
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Suppose that the periodic orbit of period τ we wish to locate intersects the Poincaré

section P = {x : hP(x) = 0} transversally, at some point xP , where both xP and τ

are unknown. We then have a system of n+ 1 equations in n+ 1 unknowns given by

hP(xP) = 0 (2.32)

and

φ(xP , τ) = xP . (2.33)

With good initial guesses x0 ≈ xP and τ0 ≈ τ we can now use Newton’s method to

solve for xP and τ xk+1

τk+1

 =

xk

τk

−N−1

φ(xk, τk)− xk

hP(xk)

 , (2.34)

where

N =

φx(xk, τk)− I φt(xk, τk)

hP,x(xk) 0

 . (2.35)

Given sufficiently good initial guesses the iterates of (2.34) will converge to the

correct values quadratically in the error so thatxk

τk

→
xP

τ

 as k →∞. (2.36)

In practice, initial guesses often arise from direct numerical simulation of the system.

Now, suppose a hyperbolic periodic orbit transversal to P has been found using the

method outlined above or otherwise. We will employ a continuation or path following

algorithm to follow the periodic solution as we change the parameter values. Under

small parameter variation this periodic orbit is guaranteed to persist and so we will

try to locate the point it crosses the Poincaré section x′P and its period τ ′ using

(2.34). We use our knowledge of the actual values of xP and τ previously found to
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inform our initial guesses for x′P and τ ′. Once the periodic solution has been located

for more than one set of parameter values we can use extrapolation techniques to

produce good initial guesses for the Newton scheme. The most simple extrapolation

method to use is linear extrapolation where we take our initial guesses to bex0

τ0

 =

2x2
P − x1

P

2τ 2 − τ 1

 , (2.37)

where x1
P , x2

P , τ 1 and τ 2 are the two previously found intersections with P and periods,

respectively. More complex extrapolation methods can also be used depending on

the situation, for example quadratic extrapolation close to saddle-node bifurcations.

This method was used when locating unstable periodic orbits close to bifurcation in

the Chua circuit in Chapter 9.
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Nonsmooth Systems

We now introduce the types of dynamical systems that we are most interested in,

namely, nonsmooth dynamical systems. In this chapter we will briefly introduce three

types of nonsmooth dynamical systems: piecewise-smooth maps, piecewise-smooth

flows and hybrid systems. For our purposes, the terms nonsmooth and piecewise-

smooth can be treated as synonymous, and like much of the literature we will use

them interchangeably. We will also introduce the concept of a discontinuity mapping

and present a derivation of the square root map, topics which are central to the

papers that comprise the bulk of this thesis. For more information on nonsmooth

dynamical systems one can consult the foundational book of di Bernardo et al. [22],

or the review papers [1, 18, 47].

3.1 Nonsmooth Maps

Recall from Chapter 2 that a smooth map is described by

xt+1 = f(xt), x0 ∈ S ⊂ Rn, (3.1)
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Figure 3.1: Bifurcation diagram of a nonsmooth fold at (x∗, µ∗). Here the dotted
red line represents the discontinuity boundary. Solid black lines correspond to stable
branches and dashed lines correspond to unstable branches of equilibria.

where xt ∈ S ⊂ Rn is the state at time t ∈ T = Z and f : S → S, which is Ck is the

corresponding mapping. A nonsmooth or piecewise-smooth map is a map defined by

a finite set of smooth maps

xk+1 = fi(xk), xk ∈ Si,

x0 ∈ S ⊂ Rn, (3.2)

where ∪iSi = S ⊂ Rn and each Si has a nonempty interior. The intersection

Σij = Si ∩ Sj is either the empty set or an (n− 1)-dimensional manifold which is the

boundary between Si and Sj.

As we have discussed previously, nonsmooth maps display phenomena not seen in

smooth maps. One example of this is a simple discontinuity-induced bifurcation

known as a border-collision bifurcation. A border-collision bifurcation occurs when

a branch of fixed points in one region of the map Si crosses a boundary Σij, under

parameter variation. There are many possible outcomes of a border-collision bifur-

cation, here we will mention one of the simplest which is known as a nonsmooth
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fold and is shown in Figure 3.1. Nonsmooth folds are crucial in the creation of the

period-adding cascade of the square root map, which we study under the influence of

additive noise in Chapters 7 and 8. In a nonsmooth fold, a branch of equilibria in Si
and a separate branch of equilibria in Sj collide with the boundary for some value

of the bifurcation parameter µ∗. Beyond this value both branches of equilibria are

virtual, i.e. the branch of fixed points given by the map fi lies in Sj and vice-versa.

3.2 Piecewise-smooth Flows and Hybrid Systems

As stated in Chapter 2, smooth continuous time dynamical systems can be described

as initial value problems (IVPs) given by

ẋ = f(x), x(0) = x0, (3.3)

where x ∈ S ⊂ Rn is the state, ẋ ∈ Rn the time derivative of the state and f , which

is Ck (with k ≥ 1), the corresponding vector field. We also define the flow function

φ(x, t), which is Ck in its arguments, as the collection of trajectories given by f , such

that the unique solution to (3.3) can be written

x(t) = φ(x0, t). (3.4)

Piecewise-smooth flows can be described as IVPs given by

ẋ = fi(x), x ∈ Si,

x(0) = x0, (3.5)

where ∪iSi = S ⊂ Rn and each Si has a nonempty interior. The indices i range over

some finite indexing set and the intersection Σij = Si ∩ Sj is either the empty set

or an (n − 1)-dimensional manifold which is the boundary between Si and Sj. In

Filippov systems, i.e. systems where fi 6= fj on the boundary Σij, we note that there
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is a possibility of sliding motion. Suppose that Σij is defined by the function hij, so

that

Σij = {x ∈ S : hij(x) = 0}. (3.6)

We call the region

Σs
ij = {x ∈ Σij : (hij,x(x)fi(x))(hij,x(x)fj(x)) < 0}, (3.7)

where the component of fi normal to the boundary has the opposite sign to the

component of fj normal to the boundary, the sliding region. In this region the

boundary is either simultaneously attracting or repelling with respect to both vector

fields. Thus, it is important to be able to define the sliding vector field f sij on the

boundary for these regions. One method for defining this vector field is Filippov’s

convex method [48], where we take a convex combination of fi and fj, so that

f sij =

(
1− hij,xfi

hij,x(fi − fj)

)
fi +

(
hij,xfi

hij,x(fi − fj)

)
fj. (3.8)

Another method for constructing the sliding vector field which can produce subtly

different results is Utkin’s equivalent control method [49]. More recently Jeffrey

has generalised Filippov’s method to introduce nonlinear sliding modes, revealing

the potential for hidden dynamics on the boundary and other complex phenomena

[50, 51].

A hybrid system is a generalisation of a piecewise-smooth dynamical system where a

non-identity mapping jij is applied on the boundary Σij. In other words, a hybrid

system is a dynamical system defined by the IVP

ẋ = fi(x), x ∈ Si,

x(0) = x0, (3.9)
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with the addition of the set of jump maps

x→ jij(x), x ∈ Σij. (3.10)

Provided jij is not the identity mapping (in which case the system is simply a

piecewise-smooth vector field) the hybrid system undergoes state jumps, unlike

Filippov systems or piecewise-smooth flows that only undergo jumps in the vector

field or its time derivatives.

3.3 Discontinuity Mappings

Suppose now that we wish to calculate the local mapping of a trajectory in a

piecewise-smooth flow or hybrid system that interacts with at least one of the system

discontinuity boundaries Σij. For example, we may want to calculate the Poincaré

mapping of a periodic orbit. This will require us to define a discontinuity mapping

(DM) associated with each boundary interaction, local to the point of intersection of

the trajectory with the boundary. In the literature two types of DMs are considered;

Poincaré discontinuity mappings (PDMs) that are defined with respect to a local

Poincaré section transverse to the discontinuity boundary and zero-time discontinuity

mappings (ZDMs) that, as the name suggests, take place in zero time. In this thesis

we focus on ZDMs although the construction of a PDM is similar.

When constructing a DM, ignoring the case of a trajectory crossing the discontinuity

boundary at a point of co-dimension 2 or higher (where two or more discontinuity

boundaries intersect), locally we can consider a piecewise-smooth or hybrid system

with two regions separated by a single discontinuity boundary. In other words,

appropriately relabelling fi, fj, Si,Sj and Σij locally, we can consider the system
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Figure 3.2: Schematic of a reference trajectory intersecting a discontinuity boundary
transversally in a hybrid system.

defined by

ẋ =

 f1(x) x ∈ S−,

f2(x) x ∈ S+,

x → j(x), x ∈ Σ, (3.11)

where the discontinuity boundary

Σ = {x : h(x, t) = 0} (3.12)

is defined by the zeros of a real-valued function h that separates the state space into

the two regions

S− = {x : h(x, t) < 0} and S+ = {x : h(x, t) > 0}. (3.13)

Here we assume a reference trajectory, with initial point xref
0 , intersects the disconti-

nuity boundary transversally at time tref as shown in Figure 3.2, i.e.

h(φ1(xref
0 , tref)) = 0 (3.14)
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with

hx(φ1(xref
0 , tref))f1(φ1(xref

0 , tref)) 6= 0, (3.15)

where φ1 is the flow function prior to reaching Σ with corresponding vector field f1.

After the discontinuity the flow function is given by φ2 with corresponding vector

field f2, and so after a time T > tref the trajectory reaches the point

xref
T = φ2(j(φ1(xref

0 , tref)), T − tref). (3.16)

We further assume that the vector fields f1 and f2, and their corresponding flows,

are smoothly extendible in a neighbourhood of xin = φ1(xref
0 , tref) and xout = j(xin),

respectively. Since we are interested in a representation of the flow of the overall

system for trajectories with initial conditions x0 ≈ xref
0 and total time T we study

the mapping

φ(x0, T ) = φ2(j(φ1(x0, t)), T − t), (3.17)

where t = t(x0) is the time of flight to reach the discontinuity boundary. Note that

t(x0) = tref + t(φ1(x0, tref)), (3.18)

where t(φ1(x0, tref)) is possibly negative. Since t(x0) 6= tref a trajectory starting at

x0 is topologically distinct from the reference trajectory. In order to account for this

we want to construct a ZDM D(x) for x in a neighbourhood of xin such that

φ(x0, T ) = φ2(D(φ1(x0, tref)), T − tref). (3.19)

Referring to (3.18) we find that the appropriate ZDM D(x) is given by

D(x) = φ2(j(φ1(x, t(x))),−t(x)). (3.20)

The map D takes a point in a neighbourhood of xin and maps it to a point in a
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Figure 3.3: Deriving the zero-time discontinuity mapping D(x) for transversal
boundary crossings. D takes a point x in the neighbourhood of xin, to the boundary
by evolving for a time t(x) under the flow associated with f1 (blue), applies the jump
mapping j (orange) and corrects for zero time by evolving for −t(x) under the flow
associated with f2 (red).

neighbourhood of xout by moving backwards and forwards by the same amount of

time along the trajectories given by φ1 and φ2 and applying the jump map j as shown

in Figure 3.3.

Linearising about the reference trajectory we find that the fixed time mapping is

given by

φ(x0, T )− φ(xref
0 , T ) ≈ φx(xref

0 , T )(x0 − xref
0 )

= φ2,x(xout, T − tref)Dx(xin)φ1,x(xref
0 , tref)(x0 − xref

0 )

(3.21)

while the associated Poincaré mapping is simply a projection of this, as shown in

Chapter 2. The matrix Dx(xin) is known as the saltation matrix associated with the

crossing at xin and it encapsulates the effect of the discontinuity in the trajectory.

It allows us to compose the fundamental matrix solutions of the individual smooth

portions of the trajectory to give the overall fundamental matrix solution.

We can calculate the matrix Dx(xin) as

Dx(xin) = jx(xin) + (jx(xin)fin − fout)tx(xin), (3.22)
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where fin = f1(xin) and fout = f2(xout). Given the transversality condition (3.15),

by the IFT we have that t(x) is a uniquely defined differentiable function in a

neighbourhood of xin with derivative

tx(xin) = − hx(xin)

hx(xin)fin
, (3.23)

and so we can write

Dx(xin) = jx(xin) +
(fout − jx(xin)fin)hx(xin)

hx(xin)fin
. (3.24)

This expression for the saltation matrix was first given by Aizerman and Gantmacher

in 1958 [52].

Not all boundary crossings in nonsmooth systems are transversal. An example of a

non-transversal grazing interaction is shown in Figure 3.4. Here we assume that the

reference trajectory, with initial point xref
0 , grazes the discontinuity boundary Σ at

x∗ at time t1, i.e.

h(φ(xref
0 , tref)) = h(x∗) = 0, (3.25)

hx(x∗)f(x∗) = v∗ = 0, (3.26)

(hxx(x∗)f(x∗) + hx(x∗)fx(x∗)) f(x∗) = a∗ > 0. (3.27)

After a time T = t1 + t2 the trajectory reaches the point

xref
T = φ(j(φ(xref

0 , t1)), t2) = φ(φ(xref
0 , t1), t2), (3.28)

where j(x∗) = x∗ for grazing points.

Next we will give a brief overview of how the ZDM associated with such a grazing

trajectory can be constructed in the deterministic case. We consider a hybrid system

such that all dynamics take place in S+ ∪Σ with the smooth evolution of the system
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Figure 3.4: Schematic of a reference trajectory (orange) which grazes the disconti-
nuity boundary Σ at x∗ and two nearby trajectories, one which does not impact Σ
(red) and one which impacts Σ at low normal velocity (green).

governed by

ẋ = f(x), x ∈ S+, (3.29)

which is smoothly extendible into S−. Points on Σ are grouped into incoming

trajectories, where hx(x)f(x) < 0, grazing trajectories, where hx(x)f(x) = 0, and

outgoing trajectories, where hx(x)f(x) > 0. The jump map

j : Σ→ Σ (3.30)

maps points on incoming trajectories to points on outgoing trajectories and is the

identity for grazing trajectories.

Consider a grazing reference trajectory such as the one shown in Figure 3.4. Taking

points x0 in a neighbourhood of xref
0 and evolving for time T = t1 + t2 we note that

trajectories will either intersect Σ in a neighbourhood of x∗ at a time close to t1 or

not intersect Σ at all. We want to construct a ZDM D(x) defined in a neighbourhood
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Figure 3.5: Deriving the zero-time discontinuity mapping D(x) for a grazing
trajectory. D takes a point x, on an impacting trajectory in the neighbourhood of
x∗, to the point x1 on the boundary by flowing for a time tc(x), applies the jump
mapping j to arrive at x2 and finally corrects for zero time by flowing for a time
−tc(x) to arrive at D(x).

of x∗ such that the local mapping from a neighbourhood of xref
0 to a neighbourhood

of xref
T is given by

φ(D(φ(x, t1)), t2). (3.31)

In the case of trajectories that do not intersect the boundary and grazing points,

then D is trivially the identity. In the case of intersecting trajectories we construct

D in the manner shown in Figure 3.5. For intersecting points x0 in a neighbourhood

of xref
0 , x = φ(x0, t1) is in a neighbourhood of x∗. We let tc(x) be the (possibly

negative) time of flight from x to Σ. The appropriate ZDM can then be constructed

in the following manner. First, take an intersecting point x in a neighbourhood of

x∗ to the boundary at x1 = φ(x, tc(x)). Next, apply the jump map sending x1 to

x2 = j(x1) and finally correct to zero time by sending x2 to D(x) = φ(x2,−tc(x)).

In other words, D(x) is given by

D(x) = φ(j(φ(x, tc(x))),−tc(x)), (3.32)
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which has a very similar form to (3.20). In this case, however, since the boundary

intersection is not transversal we cannot find Dx(x∗) in the same way as before.

Instead, we must use higher-order approximations of tc(x). More details on this can

be found in Section 3.4, Chapter 10 and [53], for example.

3.4 The Square Root Map

Many nonsmooth maps are derived as local mappings of continuous time nonsmooth

systems, constructed using discontinuity mappings. One example is that of the

square root map, which we have analysed in the first two papers that comprise

Chapters 7 and 8 of this thesis. The square root map is derived as the local mapping

for a model of an impact oscillator close to grazing impacts. It was first derived

by Nordmark for a single degree-of-freedom system [54] and then generalised by

Fredriksson and Nordmark to n degrees of freedom [55]. The map and similar

maps involving square-root singularities have since been analysed by many others

[5, 56, 57, 58]. In this section we will give a brief overview of the square root map

and its derivation referring to Figure 3.5. We will closely follow the presentations of

Fredriksson & Nordmark [55] and di Bernardo et al. [22].

We consider the local mapping associated with a grazing periodic orbit in a general

hybrid system given by (3.29)-(3.30). The ZDM associated with the point x∗,

where the periodic orbit grazes the discontinuity boundary Σ, which satisfies the

conditions (3.25), is given by (3.32) for nearby impacting points and the identity for

non-impacting points. We assume that h is well defined at the grazing point, i.e.

h(x∗) = 0, hx(x∗) 6= 0. (3.33)

We then separate impacting points from non-impacting points by considering the
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local minimum of the function

H(x, t) = h(φ(x, t)), (3.34)

with the smallest magnitude of t, which we will denote ζ(x). We divide the neigh-

bourhood of x∗ into the three sets

Ximpacting = {x : ζ(x) < 0}, (3.35)

Xgrazing = {x : ζ(x) = 0}, (3.36)

Xnon-impacting = {x : ζ(x) > 0}, (3.37)

of impacting, non-impacting and grazing points, respectively. Let x ∈ Ximpacting be

an impacting point in neighbourhood of the grazing the point x∗. Suppose τ is the

time of flight from x to the point x0 where H(x, t) reaches its local minimum, then

expanding about x∗ to leading order we find that

x0 = x + f(x∗)τ. (3.38)

Expanding about t = 0 along the flow starting at x1 we find that

H(x0, t) = H(x0, 0) +
∂

∂t
H(x0, 0)t+

∂2

∂t2
H(x0, 0)

t2

2
+O(t3) = ζ(x) +

a∗

2
t2 +O(t3),

(3.39)

where a∗ = ∂2

∂t2
H(x0, 0). Setting (3.39) equal to zero we find that the time of flight

from x to the boundary tc(x) is given by

tc(x) = τ −
√
− 2

a∗
ζ(x) +O(ζ(x)), (3.40)

and so expanding the flow in t about the grazing point we find that the point
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x1 = φ(x, tc(x)) is given by

x1 = x + f(x∗)

(
τ −

√
− 2

a∗
ζ(x)

)
+O(ζ(x)). (3.41)

The point x2 = j(x1) is given by a reset map based on the normal velocity at impact

so that

j(x1) = x1 + γ(x1)hx(x1)f(x1). (3.42)

Here γ is an appropriate smooth function such that j leaves the positional coordinates

unchanged. Expanding the normal velocity at x1 in a Taylor series about x0 we find

that

hx(x1)f(x1) = hx(x0)f(x0)− a∗
√
− 2

a∗
ζ(x) +O(ζ(x))

= −a∗
√
− 2

a∗
ζ(x) +O(ζ(x)). (3.43)

We can now write

x2 = j(x1) = x1 − γ(x1)

(
a∗
√
− 2

a∗
ζ(x) +O(ζ(x))

)
,

= x + f(x∗)

(
τ −

√
− 2

a∗
ζ(x)

)
− γ(x∗)

√
−2a∗ζ(x) +O(ζ(x)).

(3.44)

The final step in the zero-time discontinuity mapping is to flow from x2 for the time

−tc(x) to reach D(x) and so to leading order we find

D(x) = x2 − tc(x)f(x∗)

= x + tc(x)f(x∗)− γ(x∗)
√
−2a∗ζx− tc(x)f(x∗)

= x− γ(x∗)
√
−2a∗ζ(x), (3.45)
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for x ∈ Ximpacting and

D(x) = x, (3.46)

for x ∈ Xgrazing ∪ Xnon-impacting.

Let us now consider the local fixed-time mapping MS(y), where y = x − x∗,

associated with the grazing periodic orbit G that has period T , i.e. φ(x∗, T ) = x∗.

Let J = φx(x∗, T ) be the linearisation about the periodic orbit disregarding impacts.

Then, by linearising ζ(x) about x∗, to leading order we find that

MS(y) =

 Jy −
√
−2a∗hx(x∗)yJγ(x∗), hx(x∗)y < 0,

Jy, hx(x∗)y ≥ 0.
(3.47)

The corresponding Poincaré mapping can then be found by a simple projection.

Introducing a bifurcation parameter µ ∈ R and a coordinate transform such that the

periodic orbit G(µ) undergoes grazing at (x∗, µ∗) = (0, 0) we find the normal form

map S at a grazing bifurcation is the square root map (for details consult [22])

xn+1 = S(xn, µ) =

 Lxn + Mµ+ N
√
−y(xn, µ), y(xn, µ) < 0,

Lxn + Mµ, y(xn, µ) ≥ 0,
(3.48)

where

y(x, µ) = hx(0)Lx + (hx(0)M + hµ(0))µ, (3.49)

for some L ∈ Rn×n, M ∈ Rn×1 and N ∈ Rn×1.

In Chapters 7 and 8 we consider a one-dimensional square root map. It has been

shown by Nordmark [59] that the one-dimensional square root map is the limit

mapping of more general n-dimensional square root maps that arise in the unfolding

of grazing bifurcations. In other words, in the limit of a small bifurcation parameter

the results obtained by analysing the one-dimensional square root map are valid for

higher-dimensional systems.
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In this thesis we write the one-dimensional square root map as

xn+1 = S(xn, µ) =

 µ+ bxn, x < 0,

µ− a√xn, x ≥ 0,
(3.50)

where a ∈ R is a positive parameter and 0 < b < 1. For µ < 0 (3.50) has a stable

fixed point, but for µ > 0 we can summarise the system’s possible behaviours as

follows:

Strongly stable case: If 0 < b < 1
4
there is a period-adding cascade of stable

periodic orbits. That is, there are values of µ > 0 for which a stable periodic orbit of

period k for each k ∈ N with k →∞ as µ→ 0. Moreover, adjacent periodic windows

overlap, creating intervals of bistability.

Intermediate case: If 1
4
< b < 2

3
there is again a period-adding cascade of stable

periodic orbits accumulating on µ = 0 as k →∞. However, between period-k and

period-(k + 1) windows we now see chaotic attractors.

Weakly stable case: If 2
3
< b < 1 as µ decreases towards zero there are a finite

number of period-addings followed by a chaotic attractor on an interval of µ values

that extends to µ = 0. The chaotic attractor’s size is proportional to √µ.

The dynamics of the n-dimensional square root map (3.48) are directly analagous

when the leading eigenvalue λ of the matrix L is real, positive and less than one

[22, 59]. In this case the map has a stable node when

µ̃ = −(hx(0)(I− L)−1M + hµ(0))µ < 0. (3.51)

When µ̃ > 0, replacing b with λ and µ with µ̃, we once again observe the strongly

stable, intermediate and weakly stable cases described for the one-dimensional map

above.
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Noise

Now that we have introduced the reader to dynamical systems, in this chapter we

briefly introduce some basic concepts in probability and stochastic processes. More

detail can be found in texts such as Øksendal’s monograph [60]. We also briefly

discuss some previous studies into the effects of noise on dynamical systems in both

smooth and nonsmooth settings, drawing on examples from [24, 25, 31, 32].

4.1 Probability and Stochastic Processes

The foundations of probability theory can be taken directly from measure theory.

Here we will introduce the key concepts in measure theory and show how they can

be extended to probability theory and used when considering stochastic processes.

4.1.1 Elementary Measure Theory

A measure space is a triple (S,A, µ) where S is a set, A is a σ-algebra and µ is a

measure. First, let us define a σ-algebra. A σ-algebra A of S is a collection of subsets

of S such that:

• ∅ ∈ A.
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• If A ∈ A then Ac ∈ A.

• If {Ai} ⊂ A then
⋃
i∈I
Ai ∈ A for a countable indexing set I.

The pair (S,A) is called a measurable space while the elements of A are known

as measurable sets. Furthermore a function from one measurable space to another

f : (S,A)→ (R,B) is called a measurable function if

∀B ∈ B : f−1(B) = {s ∈ S : f(s) ∈ B} ∈ A. (4.1)

In general, it can be hard to explicitly describe a given σ-algebra concisely. Two

simple σ-algebras on a given set S are the power set of S, 2S, and the trivial σ-

algebra, {S, ∅}. More complicated σ-algebras are usually described by generating

them from a smaller collection of sets that can be explicitly described. The σ-algebra

generated by the collection of sets E is the σ-algebra given by the intersection of all

σ-algebras containing E , in other words, it is the smallest such σ-algebra. We can

also generate σ-algebras from collections of functions. The σ-algebra generated by

the collection of functions G is the smallest σ-algebra for which all of the functions

in G are measurable.

An important example of such a σ-algebra is the Borel σ-algebra on a metric space

M . The Borel σ-algebra on M , denoted BM , is the smallest σ-algebra containing all

open subsets of M . For example, the Borel σ-algebra on R, with the usual metric, is

generated by the collection of intervals

{(a, b) : a, b ∈ R, a < b}. (4.2)

We note that if (S,BS) is a metric space with its Borel σ-algebra every continuous

function f : S → R is measurable.

We will now define the final element of a measure space. A measure µ on a measurable

space (S,A) is a function µ : A → [0,∞] such that
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• µ(∅) = 0.

• If ∀i 6= j : Ai ∩ Aj = ∅, then µ
(⋃

i

Ai

)
=
∑
i

µ(Ai).

We call a measure finite if ∀A ∈ A : µ(A) < ∞ or equivalently if µ(S) < ∞. A

probability measure is a finite measure P on S such that P (S) = 1. An example

of an important measure on the Borel σ-algebra of the real line BR is the Lebesgue

measure µL. This measure has the property that the measure of an interval is its

length.

We can now define integration on measure spaces with respect to a measure which

we will later extend to probability spaces. Suppose f : (S,A, µ) → (R,BR, ν) is a

measurable function. We will define the Lebesgue integral
∫
fdµ by starting with

simple cases for which the integral can be explicitly written. First, let f take on

finitely many non-negative values αi ∈ [0,∞). Let Ai = {s ∈ S : f(s) = αi} then we

can define f as

f(s) =
∑
i

αi1Ai(s), (4.3)

where 1Ai is the indicator function of the set Ai. We call f a non-negative simple

function. The integral of f with respect to the measure µ is then well defined as

∫
fdµ =

∑
i

αiµ(Ai). (4.4)

Now let f : S → [0,∞] be a measurable non-negative valued function. Then we

define ∫
fdµ = sup

{∫
gdµ : 0 ≤ g ≤ f

}
, (4.5)

where g is a non-negative simple function. Finally, if f is a general measurable

function f : S → R we define

∫
fdµ =

∫
f+dµ−

∫
f−dµ, (4.6)
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where f+ and f− are non-negative measurable functions such that f+ − f− = f and

f+ + f− = |f |. Sometimes, we may wish to integrate over a specific subset A of S,

which we write as ∫
A

fdµ =

∫
S

f1Adµ =

∫
f1Adµ. (4.7)

When a function f is Riemann integrable on an interval [a, b] its Riemann integral

coincides with its Lebesgue integral with respect to the Lebesgue measure µL, i.e.∫ b

a

f(x)dx =

∫
[a,b]

fdµL. (4.8)

4.1.2 Probability Theory

A probability space (Ω,F , P ) is a measure space where P is a probability measure,

i.e. P (Ω) = 1. We usually refer to Ω as the sample space, elements ω ∈ Ω as outcomes,

and measurable sets F ∈ F as events which occur with probability P (F ). A random

variable is a measurable function X : Ω→ S, where S is usually R. If S = Rn with

n > 1 we sometimes call X a random vector and if S = Rm×n with m,n > 1 we

sometimes call X a random matrix to emphasise its structure.

A random variable X induces a probability distribution µX on Rn given by

µX(B) = P ({ω ∈ Ω : X(ω) ∈ B}) = P (X−1(B)). (4.9)

The expectation or expected value of X is given by

E(X) =

∫
Ω

XdP =

∫
Rn
xdµX . (4.10)

More generally, if g : Rn → Rn is a Borel measurable function then

E(g(X)) =

∫
Ω

g(X)dP =

∫
Rn
g(x)dµX . (4.11)
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The cumulative distribution function (CDF) FX of a random variable X is given by

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}). (4.12)

The probability density function (PDF) fX of X is given by the derivative of its

distribution with respect to Lebesgue measure

fX =
dµX
dx

. (4.13)

When fX exists FX is differentiable almost everywhere1 with

fX =
dFX
dx

, (4.14)

which allows us to express the expected value of g(X) as the Riemann integral

E(g(X)) =

∫
Rn
g(x)fX(x)dx. (4.15)

The variance of a one-dimensional random variable X is given by

V ar(X) = E((X − E(X))2), (4.16)

while the covariance matrix Σ(X) of a random vector X has entries

Σij = E((Xi − E(Xi))(Xj − E(Xj))) =

 Cov(Xi, Xj) i 6= j,

V ar(Xi) i = j.
(4.17)

In probability theory, σ-algebras represent information. The σ-algebra F represents

all the information, known and unknown, about the experiment, whereas sub-σ-

algebras A of F represent partial information. Knowing the σ-algebra A means

knowing for each event A ∈ A whether A happened or not. Sub-σ-algebras generated

1This means that the set of values of x where FX is not differentiable has measure 0.
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by random variables allow us to define the notion of independence. Two events

A,B ∈ F are called independent if

P (A ∩B) = P (A)P (B) (4.18)

and a collection of sub-σ-algebras A1,A2, . . . ,Ak are independent if, for every choice

of events A1 ∈ A1, A2 ∈ A2,. . . ,Ak ∈ Ak,

P (A1 ∩ A2 ∩ . . . ∩ Ak) = P (A1)P (A2) . . . P (Ak). (4.19)

Finally a collection of random variables X1, X2, . . . , Xk are independent if the collec-

tion of sub-σ-algebras they generate is independent.

In this thesis we will focus mostly on Gaussian or normal random variables. A

random variable X : Ω→ Rn is called a Gaussian random variable if the distribution

of X has a density fX of the form

fX(x) =
1

(2π)n/2
√

det(Σ))
exp

(
−1

2
(x− ν)TΣ−1(x− ν)

)
, (4.20)

where Σ = Σ(X) is the covariance matrix of X and ν = E(X) is the expected value

of X. We say that X is distributed as Gaussian with mean ν and covariance matrix

Σ and write

X ∼ N(ν,Σ). (4.21)

Gaussian random variables have many nice properties. For example, they are

symmetrically distributed about their mean ν and the sum of two independently

distributed Gaussian random variables is also Gaussian.
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4.1.3 Stochastic Processes

Noise is most often included in dynamical systems by way of a stochastic process. A

stochastic process is a collection of random variables

{Xi : i ∈ I}, (4.22)

where I is some arbitrary index set. We will usually consider stochastic processes

indexed by the set [0,∞) representing continuous forward time

{Xt : t ∈ [0,∞)}. (4.23)

Stochastic processes can have filtrations associated with them. A filtration on a

probability space (Ω,F , P ) is a collection of σ-algebras {Ft : [0,∞)} such that

Fs ⊆ Ft ⊆ F 0 ≤ s ≤ t. (4.24)

A process X = {Xt} is adapted to the filtration {Ft} if Xt is measurable with respect

to Ft for all t. A stochastic process also generates a filtration. The filtration {FXt }

generated by {Xt} is the smallest filtration to which {Xt} is adapted.

Perhaps the most famous example of a continuous time stochastic process is Brownian

motion. This process can be used to describe the irregular motion of grains of pollen

suspended in liquid as observed by Scottish botanist Robert Brown in 1828. We plot

sample paths of a one-dimensional Brownian motion Bt in Figure 4.1. The process

can be considered as continuous-time random walk and is defined as follows:

Let (Ω,F , P ) be a probability space and {Bt} be a Rn-valued stochastic process

adapted to the filtration {Ft}. The stochastic process {Bt} is an n-dimensional

Brownian motion if

• Its paths are almost everywhere continuous;
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Figure 4.1: Sample paths of a standard Browian motion Bt.

• For 0 ≤ s < t, the difference Bt −Bs is independent of Fs and has a Gaussian

distribution with mean 0 and covariance matrix (t− s)I, where I is the n× n

identity matrix.

If B0 = 0 we call the stochastic process a standard Brownian motion. It turns out

that standard Brownian motion is the only process indexed by [0,∞), with mean

zero, continuous paths and stationary, Gaussian, and independent increments. It

was formulated mathematically by Norbert Wiener in 1923 [61] and is sometimes

called a Wiener process and denoted Wt in his honour. Brownian motion is an

example of a Gaussian process, i.e. a process {Xt} such that for a finite set of indices

{t1, t2, . . . , tn} the vector (Xt1 , Xt2 , . . . , Xtn) has a Gaussian distribution.

Let V be the class of functions

f(t, ω) : [0,∞)× Ω→ R, (4.25)

such that f(t, ω) is B[0,∞) × F measurable, Ft-adapted and E(
∫ T
S
f(t, ω)2dt) < ∞.
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We call a function g ∈ V elementary if it can be written in the form

g(t, ω) =
∑
j

βj(ω)1[tj ,tj+1)(t). (4.26)

For elementary functions we define the Îto integral with respect to one-dimensional

Brownian motion as

∫ T

S

g(t, ω)dBt(ω) =
∑
j

βj(ω)
(
Btj+1

(ω)−Btj(ω)
)
. (4.27)

For f ∈ V we define the Îto integral as

∫ T

S

f(t, ω)dBt = lim
n→∞

∫ T

S

gn(t, ω)dBt, (4.28)

where {gn} is a sequence of elementary functions in V such that

lim
n→∞

E

(∫ T

S

(f(t, ω)− gn(t, ω))2dt

)
= 0. (4.29)

An important corollary of this definition is the Îto isometry

∀f ∈ V : E

[(∫ T

S

f(t, ω)dBt

)2
]

= E

[∫ T

S

f 2(t, ω)dt

]
, (4.30)

which is extremely useful when calculating the variance of a stochastic process.

An important Îto process that appears in Chapters 9 and 10 is the Ornstein-Uhlenbeck

process [60]. Since Brownian motion is not differentiable with respect to time the

Ornstein-Uhlenbeck process was introduced as an attempt to model the velocity of

a particle undergoing Brownian motion directly. The time integral of an Ornstein-

Uhlenbeck process then gives a smooth approximation of Brownian motion.

An Ornstein-Uhlenbeck Îto process is a mean reverting process. In particular, we
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Figure 4.2: Sample paths of an Ornstein-Uhlenbeck Process (4.33) with σ = 1 and
θ = 5.

will consider the mean-reverting process ξ(t) with mean zero, given by

dξ(t) = −θξ(t)dt+ σdBt, ξ(0) = ξ0. (4.31)

By using the integrating factor eθt we find that

d(eθtξ(t)) = σeθtdBt (4.32)

and hence

ξ(t) = e−θtξ0 + σ

∫ t

0

eθ(s−t)dBs ∼ N

(
e−θtξ0,

σ2(1− e−2θt)

2θ

)
. (4.33)

We plot three sample paths of an Ornstein-Uhlenbeck process with σ = 1 and θ = 5 in

Figure 4.2 and note their oscillation about the mean compared to the sample paths of

a standard Brownian motion shown in Figure 4.1. This makes an Ornstein-Uhlenbeck

process a more suitable choice when one wants the process to fluctuate about some

fixed mean rather than alllowing for the possibility of a long-term drift.

In Chapters 9 and 10 we construct generalised Ornstein-Uhlenbeck processes Pn(t)
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Figure 4.3: Sample paths of generalised Ornstein-Uhlenbeck processes (4.34) with
σ = 1 and θ = 5 for n = 1, 2, 3.

that are n times differentiable. These are constructed iteratively from a base Ornstein-

Uhlenbeck process such that

Ṗn(t) = −θPn(t) + σPn−1(t), P0(t) = ξ(t). (4.34)

Each Pn(t) is a mean-reverting Gaussian process with mean zero. Sample paths for

Pi(t) for i = 1, 2, 3 can be seen in Figure 4.3.

4.2 Noise in dynamical systems

The effects of noise on dynamical systems is an important and active area of research

as all real-world systems are subjected to some level of uncertainty. Noise can enter

dynamical systems through measurement noise or through a high number of unknown
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degrees of freedom. Brownian motion, for example, occurs as a result of a pollen

grain’s interaction with a huge number of water molecules whose complicated motion

is required by the molecular-kinetic theory of heat. The noisy signal received by the

brain is thought to be the result of receiving synaptic inputs from tens of thousands

of other cells at once [25]. In electronic systems shot noise refers to noise caused

by the dicrete nature of electronic charges modelled by a Poisson process, while

Johnson-Nyquist noise refers to fluctuations due to thermal agitation that are present

in any system due to its temperature being higher than absolute zero [17]. In this

section we will present some short illustrative examples of previous research into the

effects of noise on both smooth and nonsmooth dynamical systems.

4.2.1 Noise in Smooth Dynamical Systems

In smooth dynamical systems noise can drastically alter dynamics especially in the

vicinity of bifurcations, the hallmark of nonlinear systems. Noise can stabilise unstable

behaviours or destabilise attractors-shifting bifurcations [25, 26], or induce behaviors

that have no counterpart in the corresponding deterministic system, through noise-

induced transitions [27]. In this section we will present two examples of the significant

effects noise can have on smooth dynamical systems. The first example will examine

the effect of noise on a transcritical bifurcation in the discrete-time logistic map.

The second will be the continuous-time example of a two-dimensional supercritical

pitchfork bifurcation in a model of a parametrically driven damped anharmonic

oscillator.

In [24] Linz and Lücke investigated the effects of both additive and multiplicative

noise on the first two bifurcations of the logistic map as the control parameter r is

increased from 0. Here we will briefly summarise their results relating to the effects of

multiplicative or parametric noise on the first bifurcation, a transcritical bifurcation.

The logistic map is a one-dimensional map that is a discrete-time analogue to the

Verhulst model of population growth [62, 63]. In the deterministic case the logistic
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Figure 4.4: The transcritical bifurcation that occurs at rc = 1 in the deterministic
logistic map. Solid black lines correspond to stable branches and dashed lines
correspond to unstable branches of equilibria.

map is given by

xt+1 = rxt(1− xt), (4.35)

where the control parameter r ∈ [0,∞). The map has fixed points at x0 = 0 and

x1 = 1− 1/r. These fixed points exchange stability in a transcritical bifurcation at

rc = 1, as shown in Figure 4.4. The fixed point x0 is stable for r < rc while the fixed

point x1 is stable for r > rc.

We introduce parametric noise to the logistic map replacing the constant control

parameter r with a stochastic time-varying control parameter

rt = r(1 + σξt), (4.36)

where ξt is a random variable and 0 < σ � 1 is a measure of the noise amplitude. In

particular, we take the distribution of ξt to be such that E(ξt) = 0 and E(ξ2
t ) = 1. Let

us now consider the effect of noise on the transcritical bifurcation of the deterministic

system at rc = 1. In the noisy case, with noise amplitude σ, the fixed point x0 is
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Figure 4.5: Representative bifurcation diagram of the logistic map with small
parametric noise. The expectation of the stationary distribution E(x) is shown with
thick blue lines, the corresponding deterministic bifurcation diagram is shown with
thin black lines. The critical value of the control parameter rc(σ) is highlighted with
a red circle.

stable for r such that

lim
n→∞

∣∣∣∣∂xn∂x0

∣∣∣∣
x0=0

= lim
n→∞

n−1∏
t=0

r |1 + σξt| ≤ 1. (4.37)

The fixed-point therefore becomes unstable for r > rc(σ), where rc is the value of r

which solves

lim
n→∞

(
n−1∏
t=0

rc |1 + σξt|

) 1
n

= 1 (4.38)

or equivalently

rc(σ) = exp(−E(ln |1 + σξ|)), (4.39)

where ξ is the stationary distribution of the noise terms ξt.

Expanding (4.39) about σ = 0 we find that

rc(σ) = 1 +
σ2

2
+O(σ4) > 1, (4.40)
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regardless of the specific distribution of ξt. In other words, parametric noise stabilises

the fixed point x0 = 0, beyond the transcritical bifurcation that takes place at

rc(0) = 1 in the deterministic system. Linz and Lücke also showed in numerical tests

[24] that for low noise amplitudes σ and small r above rc(σ) the systems displays

small low-amplitude fluctuations about a mean which grows with r, similar to how

the deterministic fixed point x1 grows beyond r = 1 as shown in Figure 4.5. In other

words, they found that parametric noise effectively delays the first bifurcation of the

logistic map.

Next we consider an example in continuous time. In [64] Lücke and Schank considered

the effects of stochastic forcing on a nonlinear oscillator. Nonlinear oscillators are

used to model a wide range of real-world processes including mechanical oscillators,

biological systems and electronic circuits. In [64] the oscillator considered is a

parametrically driven, damped anharmonic oscillator given by

mẍ+mγẋ = (r + σξ(t))x− x3, (4.41)

where the forcing ξ(t) is a stationary stochastic process with mean zero and σ is the

noise amplitude.

In the deterministic case, where σ = 0, the system undergoes a supercritical pitchfork

bifurcation. The fixed point at x0 = 0 becomes unstable and two stable fixed points

at x1,2 = ±
√
r are born when the bifurcation parameter r increases through the

critical value rc = 0. Similar to the logistic map case where Linz and Lücke [24]

showed that small parametric noise delays a transcritical bifurcation, Lücke and

Schank [64] showed that the pitchfork bifurcation at rc = 0 is delayed by the presence

of small parametric noise with amplitude 0 < σ � 1. In particular, they showed

that the critical value of r for which x0 loses stability in the noisy case is given by

rc(σ) = σ2 1

m

∫ ∞
0

D(ω)

ω2 + γ2

dω

π
+O(σ4), (4.42)
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where D(ω) is the spectrum

D(ω) =

∫ ∞
−∞

eiωtE(ξ(t)ξ(0))dt. (4.43)

In the language of Arnold [26], the phenomena described in both the logistic map

and the anharmonic oscillator examples are p-bifurcations. A p-bifurcation or phe-

nomenological bifurcation is a stochastic bifurcation characterised by a qualitative

change in the stationary distribution of a noisy dynamical system, for example from

unimodal to bimodal. In [26] Arnold also defined stochastic bifurcations known as

d-bifurcations. A d-bifurcation or dynamical bifurcation is different to a p-bifurcation

and corresponds to the separation of dynamics into state space regions between which

no transitions are possible. Dynamical bifurcations are characterised by bifurcations

of invariant measures and their definition reduces to the deterministic definition of

bifurcation in the absence of noise.

4.2.2 Noise in Nonsmooth Dynamical Systems

The effects of noise on nonsmooth systems has seen limited research compared to

smooth dynamical systems and is the subject of this thesis. Much of the existing work

focuses on piecewise-linear maps [28, 29, 65], switched control systems [32, 33, 66, 67],

vibro-impacting systems [30, 31, 68, 69, 70] and noise-induced oscillations in systems

such as the piecewise-linear FitzHugh-Nagumo model [71]. Here we will present

two examples of recent research in the area highlighting the significant effects noise

can have on the behaviour of nonsmooth systems. The first example will be a

discrete-time example from Griffin and Hogan [28] and the second a continuous-time

example from Simpson and Kuske [32, 33, 72].

The first example we consider is a one-dimensional piecewise-linear map studied

by Griffin and Hogan [28] in the presence of additive noise. The precise map they
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studied is given by

xt+1 =

 αxt − µ+ σξt, xt ≥ 0,

βxt − µ− γ + σξt, xt < 0,
(4.44)

where α, µ, β and γ are real parameters, σ is the noise amplitude and the noise

terms ξt are independently distributed Gaussian random variables with mean zero

and unit variance, i.e. ξt
i.i.d.∼ N(0, 1).

Griffin and Hogan [28] consider the map with γ = −1, 0,+1, but here we will focus

on presenting the results in the γ = −1 case. In this case the deterministic map

(σ = 0) with α = 1/2 and β = −1/2 undergoes a bifurcation at µ = 0. For µ < 0 a

stable fixed point exists at x1 = µ
α−1

, this fixed point undergoes a border-collision

bifurcation at µ = 0 and beyond this point the dynamics of the map are more

complicated with higher-order solutions existing. Griffin and Hogan showed that

the invariant distribution associated with (4.44) in the presence of noise undergoes

qualitative changes as the noise amplitude σ is increased, in other words, it undergoes

a p-bifurcation. Increasing σ from zero the invariant distribution for µ < 0 close

to the bifurcation point is initially unimodal, centred on the fixed point at x1. As

the noise amplitude is increased further the distribution becomes trimodal with

two smaller modes created close to the higher order solutions for µ > 0 due to the

advance of the deterministic bifurcation. Increasing σ once more the two smaller

modes and the larger mode eventually merge.

The map (4.44) with σ = 0 is the Poincaré map, associated with the Poincaré section

P = {(x, y) : x = 0, y > 0}, (4.45)
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of the two-dimensional piecewise-smooth ODE given by

ẋ = y, (4.46)

ẏ = 2p(j)y − 1 + p2(j)x, (4.47)

where p(j) is a piecewise-smooth function. The authors also showed that including

noise in (4.46), by writing the system as the SDE

dx = ydt+
σ√
2π
dB1

t , (4.48)

dy = (2p(j)y − 1 + p2(j)x)dt+
σ√
2π
dB2

t , (4.49)

where Bt = (B1
t , B

2
t )
T is a standard two-dimensional Brownian process, produces

identical p-bifurcations to those observed in the map when γ = −1.

The second example we consider is a continuous-time example studied by Simpson

and Kuske. In [32, 33, 72] the authors investigated the effects of noise on sliding

periodic orbits in piecewise-smooth vector fields. In particular, they considered a

relay control model given by

ẋ = Ax− sgn(cTx)b, (4.50)

where x ∈ R3 is the state of the system, −sgn(cTx) is the control response,

A =


−5.05 1 0

−25.25 0 1

1.25 0 0

 , b =


1

−2

1

 and c =


1

0

0

 . (4.51)

This system has a symmetric periodic attractor Γ with two sliding segments along

the discontinuity boundary Σ = {x : cTx = 0}. We will denote the period of Γ as τΓ.

Periodic sliding attractors exist in this system for a large range of parameter values

and the results that we describe in what follows also hold for other values of A, b
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and c.

From the viewpoint of control, it is important to understand the robustness of the

periodic attractor Γ to the presence of noise. In this context the authors considered

the system (4.50) with small white noise added to the control response such that

dx = (Ax− sgn(cTx)b)dt+ σbdBt, (4.52)

where Bt is a standard three-dimensional Brownian process and 0 < σ ≪ 1. In

particular, they investigated how the period of the sliding periodic orbit τΓ is affected

by the addition of noise. They described a change in the oscillation time of Γ as

significant if the square of the difference

Diff(τ̃Γ(σ))2 = (E(τ̃Γ(σ))− τΓ)2 (4.53)

is comparable to, or larger than, V ar(τ̃Γ(σ)), where τ̃Γ(σ) is the oscillation time of

the periodic behaviour in the presence of noise.

Using both Monte-Carlo simulations and analytic arguments, the authors showed

that the addition of small white noise caused a significant decrease in oscillation time.

They argued that this significant decrease was caused by four separate phenomena

associated with the geometry of the deterministic system:

1. The deterministic periodic orbit Γ slowly approaches the discontinuity boundary

at a sharp angle. As a result, small additive noise tends to push solutions onto

the discontinuity boundary early, reducing E(τ̃Γ(σ)).

2. Small noise pushes solutions slightly off the discontinuity boundary while they

would be sliding in the deterministic system. This allows the vector field

away from the discontinuity boundary to influence dynamics, further reducing

E(τ̃Γ(σ)).

3. Away from the discontinuity boundary solutions rapidly contract onto a slow
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manifold. This inhibits the possibility of large deviations in τ̃Γ(σ), reducing

V ar(τ̃Γ(σ)).

4. In (4.52) noise is purely added to the control response. The authors showed

that this causes the leading-order contribution of noise during stochastically

perturbed sliding to vanish, further reducing V ar(τ̃Γ(σ)).

For systems with different geometries and sliding periodic orbits the opposite is also

possible, i.e. noise can result in a significant increase in the oscillation time of a

sliding periodic orbit.

In general we see that noise can have a large and unexpected influence on the

dynamics of both smooth and nonsmooth systems. Given the limited amount of

research in the area of nonsmooth systems there is much to explore. Chapters 7-10

aim to contribute to our understanding of this area.
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Discussion and Outlook

This thesis, and principally the four papers collected in Chapters 7-10, aims to further

our knowledge of stochastic nonsmooth dynamical systems, an area which has so far

seen limited research. We believe that our findings have the potential to have far

reaching applications and to motivate important future work. This is as a result of

the fact that systems that are both stochastic and nonsmooth arise naturally when

constructing mathematical models in a wide range of contexts, from engineering and

control theory, to economics and sociology, to biology and ecology.

The papers contained in this thesis can be split into two pairs in a very natural

manner. The first two papers, contained in Chapters 7 and 8, focus on a illustrative

example of a noisy nonsmooth system. These chapters highlight the complex and

non-trivial effects noise can have on even the simplest nonsmooth systems. The

papers that form Chapters 9 and 10, on the other hand, concern the development

and validation of new tools in analysing and efficiently simulating general nonsmooth

dynamical systems with stochastic discontinuity boundaries.

The example considered in Chapters 7 and 8 is that of the square root map, a

piecewise smooth map that arises in the study of impacting mechanical systems. In

particular, the one-dimensional version of the map that we studied has been shown
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by Nordmark [59] to be a universal limit for higher-dimensional square root mappings

arising from the study of impact oscillators near zero-velocity grazing impacts. We

considered the system under the influence of additive white noise and found that

the effects of noise on the dynamics of the system are highly non-trivial. We showed

that multistability could be both destroyed and induced by the addition of noise and

that, in general, there is a non-monotonic relationship between noise amplitude and

the behaviour of the square root map. The non-trivial results of this work should

motivate the analysis of the effects of noise on other more complicated nonsmooth

systems.

Chapters 9 and 10 focus on the development of stochastic zero-time discontinuity

mappings. In a deterministic context zero-time discontinuity mappings, and discon-

tinuity mappings in general, facilitate the analysis of the dynamics of nonsmooth

systems and their bifurcations by correcting for the effects of trajectories crossing dis-

continuity boundaries. In these papers we developed a variety stochastic of zero-time

discontinuity mappings for the analysis of different phenomena in continuous-time

nonsmooth systems with stochastic discontinuity boundaries. We also briefly showed

how these mappings can be used to determine the effects of noise on bifurcations in

these systems. We believe that the methods derived in these papers have the potential

to facilitate further analysis of the effects of noise on nonsmooth systems and their

bifurcations. These methods are also useful for efficient numerical simulation of

piecewise-smooth and hybrid dynamical systems with noisy discontinuity boundaries.

While there is a huge amount of work still to be done, we hope that we have con-

tributed in some way to both motivate and facilitate further research into stochastic

nonsmooth dynamical systems. Looking to the future, we believe that there is a

clear need for, and obvious benefits to be gained from, a deeper understanding of

the effects of noise on nonsmooth dynamical systems. In recent years we have seen

nonsmooth dynamical models being applied to an increasingly wide variety of prob-

lems including human sleep [73], bipedal walking [74], climate change [12], mitosis

60



Chapter 5. Discussion and Outlook

[14], economic cooperation [75], seasonality in electricity markets [76], electrostatic

energy harvesting [77], superconductors [78] and more [1, 79]. Understanding the

effects of noise on such systems and the sensitivity to noise of more traditionally

studied examples of nonsmooth dynamical systems such as impact oscillators [5, 54],

drills [80], brakes [81], electronic converters [7, 8], control systems [82] and neuronal

models [83] has the potential for interesting and impactful results.

Noise enters nonsmooth systems such as those described above in a variety of ways.

For example, noisy decision thresholds that fluctuate randomly in time about some

expected threshold in economic or sociological models could be modelled as noisy

discontinuity boundaries. Similarly, the uncertain time of the onset of winter or

summer in seasonal models and noisy switches in electrical and control models also

constitute stochastic discontinuity boundaries. In other models the largest source of

noise can be in the continuous evolution of the system away from discrete events, in

such cases the noise must be applied to the vector field. Examples of this include

impact oscillators where noise enters the system through the external periodic forcing,

noisy integrate and fire neuronal models, and noise in the input to a superconducting

resonator. In some cases significant noise could be present in both the discontinuity

boundary and the system’s smooth evolution away from boundaries.

A particular area of future research that would naturally extend the work contained

in this thesis is the development of stochastic discontinuity mappings for systems

where the noise is is applied to the vector field, rather than the position of the

discontinuity boundary. Combining the results of this potential research with our

work on discontinuity mappings for systems with noisy boundaries would allow us to

perform local analysis on the vast majority of noisy nonsmooth systems.
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Summary of Papers and Author

Contributions

6.1 Paper 1

Noise and Multistability in the Square Root Map [84]

Eoghan J. Staunton and Petri T. Piiroinen

In this paper we describe the complex structure of the basins of attraction of stable

periodic orbits of the one-dimensional square root map and how this produces

sensitivity to the addition of small amplitude noise. In particular we focus on how

noise of varying amplitudes affects the system in parameter regions of attractor

coexistence and also how trajectories jump between different periodic behaviours.

We show that there is a non-monotonic relationship between the noise amplitude

and the proportion of time spent in each periodic behaviour. These relationships will

be explained by examining approximations of steady-state distributions of trajectory

deviations due to noise and the complicated deterministic structures of the map. We

also show how the effect of noise scales on consecutive intervals of multistability.

All analysis, numerical simulations and implementations performed by EJS. Paper
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written and revised by EJS with feedback and guidance from PTP.

Published in Physica D: Nonlinear Phenomena, Volumes 380-381, 2018, Pages 31-44.

The final publication is available at ScienceDirect via:

http://dx.doi.org/10.1016/j.physd.2018.06.002

6.2 Paper 2

Noise-Induced Multistability in the Square Root Map [85]

Eoghan J. Staunton and Petri T. Piiroinen

This paper expands on the work done in Paper 1. The effects of small-amplitude ad-

ditive Gaussian white noise on the one-dimensional square root map are investigated,

this time focusing on the unexpected effects noise of varying amplitudes has on the

system for parameter regions just outside intervals of multistability. It is shown that

in these regions periodic behaviour that is unstable in the deterministic system can be

effectively stabilised by the addition of noise of an appropriate amplitude. Features

of noise-induced transitions from stable to stabilised unstable periodic behaviour

are highlighted and it is shown how these features can be understood by examining

relative levels of expansion and contraction in the deterministic map.

All analysis, numerical simulations and implementations performed by EJS. Paper

written and revised by EJS with feedback and guidance from PTP.

Published in Nonlinear Dynamics, Volume 95, Issue 1, 2019, Pages 769-782.

The final publication is available at Springer Nature via:

http://dx.doi.org/10.1007/s11071-018-4595-1
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6.3 Paper 3

Estimating the Dynamics of Systems with Noisy Boundaries [86]

Eoghan J. Staunton and Petri T. Piiroinen

In a smooth dynamical system the characteristics of a given reference trajectory can

be determined, to lowest order, by examining the linearised system about the reference

trajectory. In other words, we can approximate the deviations of trajectories after a

given time, with starting points in a neighbourhood of the reference trajectory, by

multiplying the initial deviations by the corresponding fundamental matrix solution.

This form of analysis cannot be used directly in nonsmooth systems as the vector

field is either not everywhere differentiable or the flow function is not continuous. To

account for this, one can derive the zero-time discontinuity mapping associated with

the discontinuity boundary. The Jacobian of this mapping is known as the saltation

matrix and its properties can tell us how the crossing of the discontinuity boundary

affects the deviations of trajectories from a reference trajectory. In particular, this

matrix can be composed with the fundamental matrix solutions of the individual

flows on either side of the discontinuity boundary in order to determine the overall

fundamental matrix solution of a trajectory that crosses the boundary.

In this paper we derive a saltation matrix for a piecewise-smooth dynamical system

in which the position of the discontinuity boundary oscillates according to a mean-

reverting stochastic process. The derived saltation matrix contains the entire effect

of both the discontinuity and the uncertainty introduced into the system by the noisy

boundary, and is composable with the deterministic fundamental matrix solutions

of the individual flows to give the overall fundamental matrix solution of a crossing

trajectory.

We also present some simple examples of piecewise-smooth systems with stochastically

varying boundaries, analysed using the derived noisy saltation matrix. In particular
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we focus on the analysis of a discontinuous variant of the Chua circuit. In this case

we apply noise to the system’s discontinuity boundaries which are generated by

the piecewise-linear nature of the voltage-current response of the Chua diode. We

find that our method allows us to analyse the effects of boundary noise on periodic

attractors close to bifurcation points. In particular we show that we can use the

method to accurately predict the noise amplitudes required to destroy or merge

periodic attractors.

All analysis, numerical simulations and implementations performed by EJS. Paper

written and revised by EJS with feedback and guidance from PTP.

To appear in Nonlinear Analysis: Hybrid Systems, Volume 36, May 2020.

The final publication is available at ScienceDirect via:

http://dx.doi.org/10.1016/j.nahs.2020.100863

6.4 Paper 4

Discontinuity Mappings for Stochastic Nonsmooth Systems [87]

Eoghan J. Staunton and Petri T. Piiroinen

This paper generalises the work done in Paper 3, constructing stochastic zero-time

discontinuity mappings in more general settings. For stability and bifurcation

analysis involving recurrent behaviour such as periodic orbits, it is important to be

able to quantify how trajectories near to a reference trajectory behave by means

of a local mapping. In smooth systems these mappings can be computed using

the system’s variational equations. For piecewise-smooth or hybrid systems the

same technique cannot be used without some corrections. This is due to the fact

that nearby trajectories can be topologically distinct because they can undergo

different sequences of events associated with the system’s discontinuity boundaries.

To account for this, one can derive zero-time discontinuity mappings associated with

boundary interactions. In this paper we derive zero-time discontinuity mappings for
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piecewise-smooth vector fields and hybrid dynamical systems in which the position

of the discontinuity boundary has a stochastic component. In particular, we derive

SZDMs for transversal crossings in hybrid systems and systems with higher-order

discontinuities, cases not considered in Paper 3. We also consider non-transversal

crossings in a grazing hybrid system. In all cases we consider two types of noise,

stochastic oscillations and stochastic surface imperfections, only the former was

considered in Paper 3.

All analysis and numerical simulations performed by EJS. Paper written by EJS

with feedback and guidance from PTP.

In submission, 2019.
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Chapter 7

Paper 1:

Noise and Multistability in the

Square Root Map

Eoghan J. Staunton, Petri T. Piiroinen

School of Mathematics, Statistics and Applied Mathematics,

National University of Ireland, Galway.

Abstract. In this paper we describe the complex structure of the basins

of attraction of stable periodic orbits of the one-dimensional square root

map and how this produces sensitivity to the addition of small amplitude

noise. In particular we focus on how noise of varying amplitudes affects

the system in parameter regions of attractor coexistence and also how

trajectories jump between different periodic behaviours. We show that

there is a non-monotonic relationship between the noise amplitude and

the proportion of time spent in each periodic behaviour. These rela-

tionships will be explained by examining approximations of steady-state
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distributions of trajectory deviations due to noise and the complicated

deterministic structures of the map. We also show how the effect of noise

scales on consecutive intervals of multistability.

7.1 Introduction

A dynamical system is made up of a set of states X, known as the state space,

and a dynamical rule that specifies the immediate future of all state variables, in

terms of past states. Dynamical systems can have discrete or continuous time and in

this paper the focus will be on discrete systems or so called maps. A deterministic

evolution operator, f : X → X, with discrete time T ⊆ Z and a continuous state

space X ⊂ Rm, is called a map, where the state evolution is defined by xn+1 = f(xn)

for xn ∈ X, n ∈ T [1, 2, 3].

The analysis of dynamical systems, in general, and maps, in particular, can take many

different forms depending on the system itself and on the application it represents.

In many cases we are mainly interested in the qualitative behaviour of a dynamical

system, such as fixed points, periodic orbits and chaos [3, 4]. Bifurcation is the

name given to a qualitative change in the steady-state behaviour of a dynamical

system under parameter variation. In other words, a bifurcation refers to a change

in the steady-state behaviour such as a switch from a fixed point to an oscillation

between two separate points or any other significant change such as the appearance

of high-periodic orbits, quasi-periodicity or chaos.

Traditionally deterministic dynamical systems are used to model real-world phenom-

ena. These models often present a simplified view of real-world systems where, on

one hand, the evolution of systems is always smooth and exhibits no interruptions

such as impacts, switches, slides or jumps and, on the other hand, the future of

any system is completely determined by its present state with no uncertainty (or
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noise) [5]. However, independently, both nonsmoothness and noise have been shown

to be the drivers of significant changes in qualitative behaviour. In nonsmooth

systems we find certain types of qualitative changes in the behaviour of the system,

known as discontinuity induced bifurcations, that do not occur in the smooth setting

[6, 7]. Adding noise to smooth but nonlinear systems has been shown to have the

potential to do far more than just blur the outcome of the system in the absence

of noise, especially close to bifurcation points [8, 9, 10]. As a result, it is therefore

of particular interest to investigate and understand how the inclusion of noise can

effect the qualitative dynamics of a nonsmooth system close to discontinuity-induced

bifurcations.

In this paper we will focus on the one-dimensional stochastic square root map

[7, 11, 12] that has its basis in recurrent impacting systems, and that is neither

smooth nor deterministic. The square root map is a piecewise smooth map describing

the dynamics of, for instance, an impact oscillator [13] experiencing low-velocity

grazing impacts. The map itself exhibits interesting qualitative behaviour as a

result of its nonsmoothness and in particular due to the presence of the square root

singularity [11, 12, 14, 15, 16, 17, 18, 19]. However, we will consider the map in

an uncertain environment by introducing low amplitude additive white noise. In

particular we will consider the effects of the introduction of noise on the bifurcation

structure of the system for particular parameter values, a structure known as a

period-adding cascade, which is unique to nonsmooth systems.

The remainder of this paper is structured as follows. In Section 7.2 we will describe

the deterministic bifurcation structure of the square root map and the structure

of its basins of attraction when periodic attractors coexist. Section 7.3 introduces

noise to the square root map and presents numerical observations of the effect of

noise on the square root map in regions of multistability. In Section 7.4 we derive

approximate steady-state distributions of trajectory deviations due to the addition

of Gaussian white noise and in Section 7.5 we combine the results of Sections 7.2 and
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7.4 to understand the effect of noise on the qualitative behaviour of the map when

two stable periodic orbits coexist observed in Section 7.3. Finally, in Section 7.6 we

show how the effect of noise scales in the system and we present our conclusions in

Section 7.7.

7.2 The Deterministic Square Root Map

7.2.1 The Map

We will consider the one-dimensional deterministic square root map

xn+1 = S(xn) =

 SL(xn) = µ+ bxn, xn < 0,

SR(xn) = µ− a√xn, xn ≥ 0,
(7.1)

where a > 0, b > 0, SL(x) is the linear part of the map applied on the left (L) and

SR(x) is the square root part applied on the right (R). In this paper we will assume

that the parameter b is such that 0 < b < 1/4. For values of b in this range the

deterministic square root map undergoes a period-adding cascade with intervals of

multistability as the bifurcation parameter µ is decreased [11]. We will discuss the

deterministic structures of the square root map in this case in more detail in Section

7.2.3.

7.2.2 Symbolic Dynamics

In our analysis we will be mainly interested in the qualitative behaviour of the map

(7.1), i.e. whether an iterate is on the left-hand side or the right-hand side of the map

rather than the exact numerical value of each iterate. As a result we will describe

the dynamics of the square root map through the use of symbolic sequences. Any

orbit {xn} may be assigned a symbolic sequence {Xn} comprised of the letters L
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and R, where

Xn =

 L, xn < 0,

R, xn ≥ 0.
(7.2)

Therefore an L denotes an iterate on the left, while an R denotes an iterates on the

right. Using symbolic sequences we will describe deterministic N -periodic orbits by

their code (Rn1Ln2 . . . Rnm−1Lnm)∞ where ni ∈ N and
∑

i ni = N . On the other hand,

an orbit with a corresponding symbolic sequence (Rn1Ln2 . . . Rnm−1Lnm)r, where r is

finite, will be described as undergoing Rn1Ln2 . . . Rnm−1Lnm behaviour for those rN

iterates.

7.2.3 Bifurcations and Deterministic Structures

Nordmark [11, 14] has shown that if 0 < b < 1/4 there are values of µ > 0 for which

a stable periodic orbit of period m with code (RLm−1)∞ exists for each m = 2, 3, . . ..

Similarly, there are other values of µ > 0 such that there are two stable periodic

orbits coexisting, one with code (RLm−1)∞ and the other with code (RLm)∞. These

are the only possible attractors except at bifurcation points. We will now derive

expressions for the bifurcation points and periodic orbits of the map (7.1) in this

case.

For the deterministic system (7.1) orbits of period m of the form (RLm−1)∞ exist as

attractors over a range in the parameter µ given by

µsm < µ < µem. (7.3)

Here µsm is the threshold value of µ for which the period-m orbit loses stability in a

subcritical pitchfork bifurcation and µem is the value of µ for for which the same orbit

is created in a border-collision bifurcation (nonsmooth fold). Let x1 < x2 < . . . <

xm−1 < 0 < xm denote the points of the period-m orbit. We have that xm−1 < 0 and
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a) b)

Figure 7.1: Bifurcation diagrams for the deterministic square root map, S, with
a = 0.5, b = 0.2. a) The coexistence of attractors (RL)∞ and (RLL)∞ for µ ∈
(µs2, µ

e
3) ≈ (0.00625, 0.00694). The period-2 (RL)∞ orbit is coloured red on the

interval of multistability. b) The period adding cascade of attractors (RLm)∞ for
m ∈ {1, . . . , 10}. On the intervals of µ where (RLm−1)∞ and (RLm)∞ coexist as
attractors the iterates of (RLm−1)∞ are marked in red. A symmetric logarithmic
transformation [20] has been applied to the x-axis and a log transformation has been
applied to the µ-axis in order to clearly show the structure of the period adding
cascade.

so xm = µ+ bxm−1 < µ since b > 0 and thus

x1 = µ− a
√
xm > µ− a√µ, (7.4)

since a > 0. We also have that

xm−1 = Sm−2
L (x1) = bm−2x1 +

m−3∑
i=0

biµ = bm−2x1 +
1− bm−2

1− b
µ. (7.5)

Combining conditions (7.4) and (7.5) we have that a periodic orbit (RLm−1)∞ exists

for

bm−2(µ− a√µ) +
1− bm−2

1− b
µ < 0 (7.6)

and thus

µ <

(
1− b

1− bm−1
abm−2

)2

=: µem. (7.7)

Differentiating Sm(xm) = Sm−1
L (SR(xm)) with respect to xm we find that the
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(RLm−1)∞ orbit is an attractor for

∣∣∣∣bm−1 −a
2
√
xm

∣∣∣∣ < 1 =⇒ abm−1

2
√
xm

< 1 =⇒ xm >

[
abm

2b

]2

. (7.8)

Therefore, for stability, we must have

µ >
1− b

1− bm
(a
b

)2
(

3

4

)
b2m =: µsm. (7.9)

In order to have coexistence of (RLm−2)∞ and (RLm−1)∞ orbits for all m > 3 we

must have

µsm−1 < µem (7.10)

and from (7.7) and (7.9) we get that

1− b
1− bm−1

(a
b

)2
(

3

4

)
b2(m−1) <

(
1− b

1− bm−1
abm−2

)2

, (7.11)

which gives that

b <
1

4
. (7.12)

In order to have an interval of values of µ for which (RLm−1)∞ is the only attractor

we must have that

µsm−1 > µem+1. (7.13)

Again referring to (7.7) and (7.9) we find that this gives that

3

4
> b2

(
1− b− bm−1 + bm

1− 2bm + b2m

)
, (7.14)

which is certainly true for all b ∈ (0, 0.25). We now have that

µem > µsm−1 > µem+1 > µsm (7.15)

holds for b < 1
4
. Next, if µ ∈ (µsm−1, µ

e
m) then stable periodic orbits (RLm−2)∞
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and (RLm−1)∞ coexist; if µ ∈ (µem+1, µ
s
m−1) then a stable periodic orbit (RLm−1)∞

exists and is the only attractor as discussed above [11, 14]. If µ ∈ (µsm, µ
e
m+1) the

pattern of coexistence starts again but with (RLm−1)∞ and (RLm)∞. We can see

this period-adding behaviour and repeating pattern of coexistence clearly in the

bifurcation diagram shown in Figure 7.1b) for orbits of period 2 to 11. In Figure

7.1a) we see an example of the coexistence of stable periodic orbits with codes

(RL)∞ and (RLL)∞ on the interval (µs2, µ
e
3). Following this we will refer to the

intervals (µsm, µ
e
m+1) on which stable periodic orbits (RLm−1)∞ and (RLm)∞ coexist

as coexistence intervals or intervals of multistability.

If Rm and L1
m, L

2
m, . . . , L

m−1
m are respectively the right iterate and left iterates of the

deterministic period-m orbit (RLm−1)∞ of S (see (7.1)) then using the fact that

Sm−1
L (SR(Rm)) = Rm, (7.16)

where SL is the linear part (left-hand side) of the square root map and SR is the

square root part (right-hand side), we find that

Rm =

1

2

−abm−1 +

√√√√(abm−1)2 + 4
m−1∑
i=0

biµ

2

. (7.17)

Hence we have that

L1
m = µ− a

√
Rm and Lim = µ+ bLi−1

m (7.18)

for i ∈ {2, 3, . . . ,m− 1}.

The square root map is a continuous unimodal map and so Sharkovsky’s Theorem

[21] holds. As a result, in a region where stable orbits of period-m and period-(m+ 1)

coexist, periodic orbits of period n exist for every n such that n is preceded by either

m or m+ 1 in the Sharkovsky ordering. This can be used to show that there is an

unstable Cantor set of solutions that separate connected components of the basins of
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Figure 7.2: a) Boundaries of the basins of attraction of the coexisting period-2 and
period-3 attractors in the (µ, x) plane for µ values between µs2 and µe3. Each dot,
calculated numerically, represents a basin boundary for a given value of µ. This plot
reveals the basins of attraction of the two attractors on (µs2, µ

e
3), showing for each

value of µ the initial values of x attracted to the period-two orbit (RL)∞ (magenta)
or the period-three orbit (RL2)∞ (green). b) A blow-up of a small region in the first
showing the persistence of structure indicating that the basins are riddled. a = 0.5,
b = 0.2.

attraction of the two stable orbits, i.e. the basins have complicated structure often

called riddled [22, 23]. An example of this is shown in Figure 7.2 for period-2 and

period-3 coexistence.

It will be useful for us to consider the immediate basin of attraction of each of the

coexisting periodic orbits (RLm−1)∞ and (RLm)∞ on an interval of multistability

(µsm, µ
e
m+1). The immediate basin of a period-N attractor on an interval of multi-

stability is given by the union of largest N intervals containing the N iterates of

the orbit, such that all initial conditions within those intervals are attracted to the

periodic orbit. On the interval of multistability (µsm, µ
e
m+1) the closest boundaries of

the two immediate basins of attraction are given by unstable periodic orbits. The

closest boundary of the basin of attraction of the period-m orbit is given by an un-

stable period-2m orbit with code (RLm−1RLm−1)∞, which is created in a subcritical

pitchfork bifurcation as µ increases through µsm. On the other hand, the closest

boundary of the period-(m+ 1) orbit’s basin is given by an unstable period-(m+ 1)

orbit with code (RRLm−1)∞, which is created in a border-collision bifurcation as
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µ decreases through µem+1. These unstable orbits that form the boundaries of the

immediate basins of attraction can be seen in Figure 7.3a) for the case of period-2

and period-3 coexistence.

Here we will primarily be interested in the minimum distance, D, in terms of absolute

difference, from each iterate of a stable periodic orbit to the boundary of its immediate

basin of attraction. For example, on (µsm, µ
e
m+1)

D(Rm) = min{|Rm −Rp1
2m|, |Rm −Rp2

2m|}, (7.19)

where Rp1
2m and Rp2

2m are the two right iterates of the unstable period-2m orbit

with code (RLm−1RLm−1)∞ which is created in a subcritical pitchfork bifurcation as

µ increases through µsm. On the other hand,

D(Rm+1) = |Rm+1 −Rg2
m+1|, (7.20)

where Rg2
m+1 is the greatest right iterate of the unstable period-(m+ 1) orbit with

code (RRLm−1)∞, which is created in a border-collision bifurcation as µ decreases

through µem+1.
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a)

D

b)

Figure 7.3: Analytic bifurcation diagrams of the interval of multistability (µs2, µ
e
3)

showing the stable RL and RLL orbits, marked in magenta and green respectively for
a = 0.5, b = 0.2, along with a) Dashed black lines marking the unstable RLRL and
RRL orbits which give the closest boundaries of their respective basins of attraction.
The distance D = D(L1

2) is also indicated for µ = 6.6× 10−3. b) Blue dashed lines
indicating one steady-state deviation standard deviation, given by (7.39) from each
iterate for a constant small noise amplitude ∆.

7.3 Noise

7.3.1 The Square Root Map With Noise

We wish to examine the effect of uncertainty and noise on the deterministic structures

of the square root map (7.1). In particular we are interested in the effect of noise on

the period-adding cascade and the intervals of multistability discussed in Section 7.2.3.

The complex structure of the basins of attraction in regions of multistability revealed

in Section 7.2.3 and Figure 7.2 imply that there can be very different sensitivity to

noise as a function of initial conditions. Thus, the addition of noise to the system

has the potential to create non-trivial effects on the long-term qualitative behaviour

of the map.

Simpson and Kuske [24] show in a careful analysis that noise in impacting systems

manifests in the two-dimensional square root map in several different ways including

parametric noise, depending on the source of uncertainty. Hogan, Simpson and Kuske

[25] show that the square root map in two dimensions with additive Gaussian white
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noise arises when the source of uncertainty in the full system is practically independent

of the state of the system. In both cases the authors present numerically calculated

invariant densities of periodic attractors, while expressions for the approximate

Gaussian invariant are obtained via linearisation in [25].

In this paper we consider small amplitude, additive, Gaussian white noise and in

Section 7.4 derive approximate steady-state deviation distributions associated with

periodic attractors. The square root map with additive Gaussian white noise is given

by

xn+1 = Sa(xn) =

 µ+ bxn + ξn, xn < 0,

µ− a√xn + ξn, xn ≥ 0,

ξn
iid∼ N(0,∆2), (7.21)

where ξn are identically distributed independent normal random variables with mean

0 and standard deviation ∆.

7.3.2 Numerical Observations

The effect of noise on the dynamics of a system with multiple coexisting attractors has

long been of interest [26, 27, 28]. In this article we focus on phase-space sensitivity for

period-m and period-(m+1) coexistence and the relationship between noise amplitude

and the proportion of time spent in either dynamic behaviour. Interestingly, we find

that the relationship between the proportion of orbits with varying initial conditions

going to each of the coexisting attractors, or at least to RLm−1 and RLm behaviour,

is non-monotonic. In particular, Figure 7.4 shows the relationship between the

noise amplitude ∆, and the proportion of time spent in RL and RLL behaviour,

and in transition (RR) between the two behaviours. We numerically calculate this

proportion over 5,000 iterates, discounting 195,000 transient iterates. Each bar chart

shows the proportion of iterates spent by 1,000 orbits, with linearly spaced initial

conditions, in each of the three types of behaviour for given values of µ. On the
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interval of multistability (µs2, µ
e
3) we see that the relationship depends strongly on

the value of µ. Here follows a short description of what we see in regions a)-f) of

Figure 7.4.

Figure 7.4a): For µ in a small neighbourhood of µs2 with µ > µs2 (region a)) even

the smallest noise amplitude considered was enough to destroy the RL attractor.

Initially, the proportion of time spent by orbits in RLL behaviour increases as the

noise amplitude, ∆, increases until we only see RLL behaviour. After some threshold

value of ∆ as noise amplitude increases further the proportion of time spent by orbits

in RLL dynamics begins to decrease.

Figure 7.4b): For µ in region b) we see that the proportion of time spent by

orbits in RLL behaviour initially increases as ∆ increases past some threshold value.

Increasing ∆ further results in reaching a maximum proportion for RLL close to 1,

effectively destroying the RL attractor. As the noise amplitude increases beyond this

point the proportion of time spent by orbits in RLL dynamics begins to decrease

and the proportion of time spent by orbits in RL dynamics begins to increase once

more.

Figure 7.4c): For µ in region c), closer to the centre of the coexistence interval

(µs2, µ
e
3), the proportion of time spent by orbits in RLL behaviour initially increases

as the noise amplitude increases past some threshold value. This increase in the

proportion of time spent in RLL behaviour continues until it reaches some maximum,

but in this case, unlike in region b), the RL orbit is never destroyed. As the noise

amplitude increases further we once again see that the proportion of time spent by

orbits in RL dynamics begins to increase.

Figure 7.4d): Increasing µ further, we find that increasing noise amplitude has no

significant impact on the observed proportions until it increases above some threshold

value. Beyond this value a further increase in noise amplitude leads to a decrease in

the proportion of RLL behaviour until it appears to reach some minimum. In this

case the RLL behaviour is never entirely eliminated.
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Figure 7.4: Each of the bar charts in this schematic shows the changing proportion
of time spent in RL and RLL behaviour for increasing amplitude of additive noise, ∆
ranging from 0 (deterministic system) to 2× 10−4. We plot the different relationships
observed for values of µ on the interval of multistability (µs2, µ

e
3) and consider dynamics

over 5,000 iterates for 1,000 different orbits with linearly spaced initial conditions on
the interval [−0.04, 0.01] neglecting 195,000 transients. (Regions not to scale.)
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Figure 7.4e): For µ in region e) the proportion of time spent by orbits in RLL

behaviour reduces dramatically as the noise amplitude increases above some threshold

value, until the attractor is effectively destroyed, i.e. the proportion of time spent in

RLL behaviour drops to 0. However, as the noise amplitude is increased further still

we see a return of RLL behaviour for higher amplitude noise.

Figure 7.4f): For µ in a small neighbourhood of µe3 with µ < µe3 the proportion

of time spent by orbits in RLL behaviour reduces as the noise amplitude increases,

until the attractor is effectively destroyed once noise amplitude is increased over a

certain threshold value. As the noise amplitude is increased further still we see a

very weak return of RLL behaviour, but only for relatively high amplitude noise.

We have determined numerically that the relationships between the noise amplitude

∆ and the proportion of RL and RLL behaviour for µ about (µs2, µ
e
3) hold for both

additive and parametric, Gaussian and uniform noise. We have observed that these

relationships can be determined by looking at either the proportion of iterates spent

in each behaviour over a certain period as we have done in Figure 7.4 or by looking

at the proportion of orbits in each of the behaviours after a given number of iterates.

However the analysis in this paper focuses solely on the case of additive Gaussian

white noise and numerical results for parametric noise and other distributions are

not shown.

7.4 The Evolution of Deviations

In order to more formally understand how the addition of noise affects the qualitative

behaviour of the square root map we will now construct an approximation for the

distribution of trajectory deviations resulting from the addition of noise to the system.

In particular we are interested in how these deviations can be used to explain the

relationships between noise amplitude and the proportions of time spent in each

coexisting periodic behaviour observed in Section 7.3.2 and Figure 7.4, which will be

93



Chapter 7. Paper 1

further discussed in Section 7.5. There are two potential approaches to approximating

such distributions. The first, which we present in Section 7.4.1 involves calculating

the actual distribution of trajectory deviations iteratively and approximating any non-

Gaussian distributions by a Gaussian. The second approach involves the linearisation

of the right-hand side SR(x) of the square root map (7.1) and the derivation using

this approach is included in 7.A for completeness. Interestingly, both approaches lead

to the same estimate despite the fact that there is no explicit linearisation involved

in the first approach.

7.4.1 Analysis

We consider two trajectories {xk} and {zk} with identical initial conditions x0 =

z0 = Rm+1, i.e. two trajectories with initial conditions equal to the right iterate of

the deterministic (RLm)∞ orbit of the system. We then iterate forward using the

square root map with additive noise (7.21) in the case of x0, letting xk+1 = Sa(xk),

and the deterministic square root map (7.1) in the case of z0, letting zk+1 = S(zk).

The deviation due to noise in the trajectory {xk} is then given by the difference

{εk} = {xk − zk}. From (7.1) and (7.21) we have that, provided the deviations are

not so large as to push {xk} out of RLm behaviour, the error terms εk are given by

εk = xk − zk =

 a
(√

Rm+1 −
√
Rm+1 + εk−1

)
+ ξk−1, k mod (m+ 1) = 1,

bεk−1 + ξk−1, otherwise,

(7.22)

with ε0 = 0. Let us now consider the evolution of the trajectory of εk for m = 1, 2, . . ..

First we will approximate the distribution of W =
√
Rm+1 + εk−1, where k mod (m+

1) = 1. We have that the cumulative density function (CDF) GW (w) of W is given
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by

GW (w) = P (W < w) = P
(√

Rm+1 + εk−1 < w
)

= P
(√

Rm+1 + εn(m+1) < w
)

= P
(
0 ≤ Rm+1 + εn(m+1) < w2

)
=

∫ w2

0

gY (y)dy, (7.23)

for m = 1, 2, . . ., where P (E) is the probability of the event E, gY (y) is the probability

density function (PDF) of Y = Rm+1 + εn(m+1), and P (Rm+1 + εn(m+1) < 0) = 0

since we have assumed that the deviations are not so large as to push {xk} out of

RLm behaviour. Suppose now that εn(m+1) is normally distributed with mean 0 and

variance σ2
Y , then Y ∼ N (Rm+1, σ

2
Y )1. This gives that

gW (w) =
d

dw

(∫ w2

0

gY (y)dy

)
= 2wgY (w2) =

√
2w√
πσY

exp

(
−(w2 −Rm+1)2

2σ2
Y

)
,

(7.24)

which is defined for w ≥ 0. The mode of this distribution is given by

d

dw
(gW (w)) =

d

dw

( √
2w√
πσY

exp

(
−(w2 −Rm+1)2

2σ2
Y

))
= 0, (7.25)

which gives that

√
2√
πσY

exp

(
−(w2 −Rm+1)2

2σ2
Y

)(
1− 4w2

(
w2 −Rm+1

2σ2
Y

))
= 0 (7.26)

and so

w = ±

√
Rm+1 ±

√
R2
m+1 + 2σ2

Y

2
. (7.27)

From (7.27) we see that (7.26) has only one positive real solution

w∗ ≈
√
Rm+1 = E(W ) (7.28)

1Note that this is guaranteed when n = 1 as ε0 = 0 and so εm+1 is the sum of independent

random variables
m∑
i=0

bm−iξi.
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corresponding to the mode of the distribution gW (w), and the distribution of W

is approximately normal. We approximate W with a normal random variable W̃

with mean
√
Rm+1 = E(W ) and variance σ2

W̃
given by solving gW̃

(√
Rm+1

)
=

gW
(√

Rm+1

)
, where

gW̃ (w̃) =
1√

2πσW̃
exp

(
−(w̃ −

√
Rm+1)2

2σ2
W̃

)
(7.29)

and gW (w) is given by (7.24), which gives that

σ2
W̃

=
σ2
Y

4Rm+1

. (7.30)

Now, given the fact that ξi ∼ N(0,∆2) for all i, we have that

εm+1 =
m∑
i=0

bm−iξi ∼ N

(
0,

m∑
i=0

b2i∆2

)
(7.31)

and

εn(m+1)+1 = a
√
Rm+1 − aW + ξn(m+1), (7.32)

and thus εk is given by a linear combination of approximately normal random

variables with mean 0 for all k. This means that εk is itself normal with mean 0 for

all k. The variances of these distributions are given by

σ2
εk

=


a2σ2

εk−1

4Rm+1

+ ∆2, k mod (m+ 1) = 1,

b2σ2
εk−1

+ ∆2, otherwise.

(7.33)

Working mod(m+ 1) we can write (7.33) as a system of m+ 1 difference equations

σ2
ε(n+1)(m+1)+k

= fk(σ2
εn(m+1)+k

) with initial conditions given by σ2
εk

for 1 ≤ k ≤ m+ 1.

Letting
a2σ2

4Rm+1

+ ∆2 = j(σ2) (7.34)
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and

b2σ2 + ∆2 = h(σ2) (7.35)

we can write

fk(σ2) = hk−1 ◦ j ◦ h(m+1)−k(σ2), (7.36)

where

hr(σ2) =

r times︷ ︸︸ ︷
h ◦ h ◦ . . . ◦ h ◦ h(σ2), r = 1, 2, . . . . (7.37)

Referring to (7.34)-(7.36) we can now write fk explicitly as

fk(σ2) =

(
abm

2
√
Rm+1

)2

σ2 +

(
a∆

2
√
Rm+1

)2 m−k∑
i=0

b2(k+i−1) + ∆2

k−1∑
i=0

b2i, (7.38)

which has a fixed point σ̂2
k,(m+1) for each of the m+ 1 difference equations such that

σ̂2
k,(m+1) = ∆2


a2

m∑
i=k

b2(i−1) + 4Rm+1

k−1∑
i=0

b2i

4Rm+1 − (abm)2


=

(
∆

√
4Rm+1

4Rm+1 − (abm)2

(
1− b2k

1− b2
+

(abk−1)2

4Rm+1

(
1− b2(m+1−k)

1− b2

)))2

.

(7.39)

We require σ̂2
k,(m+1) > 0 and so (7.17) and (7.39) imply that

4Rm+1 =

−abm +

√√√√(abm)2 + 4
m∑
i=0

biµ

2

> (abm)2, (7.40)

which gives that

µ >
1− b

1− bm+1

(a
b

)2
(

3

4

)
b2(m+1) = µsm+1. (7.41)

This implies that the fixed points given in (7.39) exist for values of µ in the interval of
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stability for the deterministic RLm orbit, (µsm+1, µ
e
m+1). In addition, (7.39) also gives

σ̂2
k,(m+1) →∞ as µ→ µs+m+1 since the numerator → a2∆2

(
m+k−1∑
i=k−1

b2i

)
as µ→ µs+m+1,

while σ̂2
k(m + 1) → c as µ → µe−m+1, where c > 0. The difference equations (7.38)

converge for (
abm

2
√
Rm+1

)2

< 1, (7.42)

which along with (7.17) gives that

µ ∈

(
− 4

a2

m∑
i=0

bi−2m,
12

a2

m∑
i=0

bi−2m

)
=: Aµ. (7.43)

Now, since 0 < b < 1/4 and 0 < a < 1, we have that

(µsm+1, µ
e
m+1) ⊂

[
0, 12

2m∑
i=m

4i

]
⊂ Aµ (7.44)

and so (7.38) converges for all relevant values of the bifurcation parameter µ.

The steady-state standard deviations of the deviation distributions σ̂k,(m+1) given

in (7.39) are of particular interest. As each of these deviations is associated with

an iterate of the deterministic period-(m+ 1) orbit {L1
m+1, L

2
m+1, . . . , L

m
m+1, Rm+1},

going forward we will emphasise this relationship by writing

σ̂k,(m+1) =

 σ̂(Lkm+1), k ∈ {1, 2, . . . ,m},

σ̂(Rm+1), k = m+ 1.
(7.45)

Referring to equation (7.39) we can now write

σ̂(Rm+1) = ∆

√
4Rm+1

4Rm+1 − (abm)2

(
1− b2(m+1)

1− b2

)
,

σ̂(Lkm+1) = ∆

√
4Rm+1

4Rm+1 − (abm)2

(
1− b2k

1− b2
+

(abk−1)2

4Rm+1

(
1− b2(m+1−k)

1− b2

))
,

for k = 1, 2, . . . ,m (7.46)
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a) b)

Figure 7.5: a) The evolution of the standard deviations of the normal fits of the
distributions of the deviations εm and εk(m+1)+m such that ε(k−1)(m+1)+m < −Lmm+1

for 1 ≤ k ≤ 20, fitted using Matlab®’s fitdist function, (blue circles) compared
to our semi-analytic prediction given by (7.38) (red dashed line). b) The histogram
and normal fits of the distributions (red curve) of the deviations ε20(m+1)+m such
that ε(k−1)(m+1)+m < −Lmm+1 for 1 ≤ k ≤ 20. In both cases we have taken m = 2,
µ = 6.65 × 10−3 and ∆ = 6 × 10−5. This gives that Lmm+1 ≈ −1.5564 × 10−4 and
σ̂(Lmm+1) ≈ 0.7199× 10−4

and note that these are identical to the values for σ̃ given in (7.75), where the

linearisation approach is used.

7.4.2 Comparison to Numerical Observations

Taking m = 2 as an example and examining the case of deviations on the last left

iterate, L2
3 of the deterministic period-3 orbit for µ ∈ (µs2, µ

e
3), we can see that the

analysis in Section 7.4.1 agrees well with our numerical results. Taking one million

orbits with initial condition x0 = R3 we examine the distribution of the deviations

εn(3)−1 for n = 1, 2, . . . , 20 such that εk(3)−1 < −L2
3 for k < n. In Figure 7.5a) we show

that the fitted normal distributions (fit using the Matlab® fitdist function) of

these deviations appear to have an approximately zero mean with standard deviation

converging quickly to some limit σ̄ as n→∞. We see that the standard deviations

of these fitted distributions closely mirror the approximate standard deviations

predicted by our analysis (7.38), in particular the standard deviations do indeed

appear to converge to the value of σ̂(L2
3) given by (7.39). In Figure 7.5b) we compare
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an example of these fitted normal distributions to the histogram of the observed

numerical deviations and find that the fitted distributions are indeed good fits for the

actual distributions. We can therefore use the approximate deviation distributions

derived in Section 7.4.1 to better understand the noise induced transitions observed

in the square root map.

7.5 Deviation Distributions and Noise Thresholds

In this section we examine the threshold noise amplitudes required to induce changes

in the qualitative behaviour of the square root maps (7.1) and (7.21). We explain

the observed thresholds by examining the relationships between the approximate

deviation distributions derived in Section 7.4 and features of the deterministic

structures of the square root map described in Section 7.2.

We will explain the relationships between the proportion of time spent in period-m or

period-(m+ 1) behaviour and noise amplitude shown in Figure 7.4 by investigating

the relationships between the distributions of the approximate steady-state deviation

distributions we have derived in Section 7.4.1 and the deterministic structures of the

square root map investigated in in Section 7.2.3. In particular, for each period-N

attractor {p1, p2, . . . , pN}, we define % to be the ratio between the minimum distance

from pi to the boundary of the immediate basin of attraction, and the standard

deviations of the steady-state distributions associated with each iterate (Section

7.2.3),

%(pk) :=
D(pk)

σ̂(pk)
. (7.47)

In order to have the potential to transition from one behaviour to another within

an interval of multistability a given orbit must first leave the immediate basin of

attraction of its current orbit. Discounting transients, the expected values of the

iterates of an orbit within a immediate basin of attraction will be given by the

attractor of that basin. As a result, for small amplitude noise, we can consider the
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deviations εmnm+k and ε
m+1
n(m+1)+k of orbits with initial conditions given by Rm and Rm+1

respectively (see (7.17) and (7.22)). We know from our previous analysis in Section

7.4.1 that the steady-state distributions of these deviations can be well-approximated

by normal distributions with mean 0 and standard deviations σ̂. As a result, the

ratios % give us a measure of how likely an orbit is to remain within its current basin

of attraction and hence remain in its current periodic behaviour. They also give us

the minimum distance, in standard deviations, from the attractor to the basin of

attraction of the other coexisting attractor.

For example, in Figure 7.3a) we show the structure of the relevant boundaries of

the basins of attraction and in Figure 7.3b) the steady-state deviation distributions

for each iterate of each of the stable periodic orbits on the interval (µs2, µ
e
3) of multi-

stability. We see that σ̂ → ∞ and D → 0 as µ → µs+2 , but, on the other hand,

σ̂ → c > 0 and D → 0 as µ → µe−3 . This means that as we approach the ends of

the interval of multistability even the smallest amplitude noise will perturb orbits

enough to move them out of the main basin of attraction of the period-2 RL orbit

(as µ → µs2) and the period-3 RLL orbit (as µ → µe3). Such orbits will then be

absorbed by the other behaviour and with high probability remain in that behaviour

provided the noise level is not too high. If the noise level is too high, the % values of

the other attractor will be low enough to result in the orbit also being kicked out of

that attractor’s immediate basin of attraction with high probability.

For a given value of the bifurcation parameter µ on the interval of multistability, the

overall effect of the addition of noise on the proportion of time spent in each of the

two periodic behaviours can be understood by balancing the % values of the coexisting

attractors. We identify three main possible effects of the addition of noise to the

system that contribute to the nonmonotonic relationships between noise amplitude

and behaviour shown in 7.4. We then explain the observed thresholds of the noise

amplitude ∆ that relate to these features by referring to the balancing of % values.

The three effects considered are highlighted in the example shown in Figure 7.6.

101



Chapter 7. Paper 1

-4

Signi cant Shift

E ective Destruction

Relationship Reversal

RL

RLL

Figure 7.6: The threshold values of the noise amplitude ∆ for which the three
effects described in Section 7.5 occur in the square root map with a = 0.5, b = 0.2
and µ = 0.0634. The bar chart shows the changing proportion of time spent in RL
and RLL behaviour for increasing amplitude of additive noise, ∆ ranging from 0
(deterministic system) to 2× 10−4.

The first effect we will consider is a significant shift in the proportion of time spent

in each behaviour after transients are discarded due to the addition of noise. We will

compare the proportions in the noisy system with the proportion of time spent in

each behaviour in the deterministic system after transients are discarded, i.e. the

proportion of phase space taken up by the basin of attraction of each attractor.

In the case of the numerical results which follow, we will consider a 15 per cent

decrease in the proportion of time spent in the behaviour we are shifting away from

as significant. In Figure 7.6 the significant shift highlighted is from RL to RLL

behaviour.

The second effect we will consider is the effective destruction of one of the attractors

by the addition of noise. We will consider an attractor to be effectively destroyed

when the proportion of time spent in that behaviour, after transients are discarded,

falls below a given threshold. In the numerical work we present in Section 7.5.2

we have taken this threshold to be 0.0001. In Figure 7.6 the effective destruction

highlighted is of the destruction of RL behaviour.
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The final effect we will consider is the reversal of the relationship between increasing

noise amplitude and the the change in proportion of time spent in each behaviour.

If adding noise initially results in the proportion of time spent in period-m RLm−1

behaviour decreasing as noise amplitude increases, we look for the point when

increasing noise amplitude further will result in the proportion of time spent in

period-m RLm−1 behaviour increasing and vice-versa. In the numerical results

in Section 7.5.3 we have considered the relationship between noise amplitude and

proportion to have reversed when we observe consecutive increases in the proportion

which initially decreased, for consecutive increases of ∆.In Figure 7.6 we highlight

the return of RL behaviour following its initial decrease and destruction.

In Figure 7.7 we plot the threshold values of the noise amplitude ∆∗ required to

trigger each one of these effects, where it is observed for a given value of µ on the

interval of multistability (µs2, µ
3
3), while in Figure 7.8 we plot the related values of %.

7.5.1 Significant Shifts in Behaviour

Let us first focus on the threshold value ∆∗ of ∆, required to induce a significant shift

in the proportion of time spent in RL and RLL behaviour. In Figure 7.7a) we see that

on the interval of multistability the threshold value of the noise amplitude required

to induce a significant shift in proportions increases until it spikes at some maximum

as µ increases from an initial threshold value ∆∗ of 0 at µ = µs2 ≈ 6.25× 10−3. The

threshold value ∆∗ then decreases to 0 at µ = µe3 ≈ 6.94× 10−3, which is the end of

the interval.

This relationship between µ and ∆∗ can be understood by examining the relationship

between µ and the related values of the ratio % (see (7.47)). As we have seen in

Section 7.4.1 σ̂ → ∞ and D → 0 as µ → µs+2 while on the other hand, σ̂ → c > 0

and D → 0 as µ→ µe−3 . This means that at the end points of the interval of stability

any noise amplitude greater than zero will eventually perturb orbits enough to move

them out of the main basin of attraction of the period-2 RL orbit (as µ→ µs2) and
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Figure 7.7: Numerically calculated threshold noise amplitudes ∆∗ to a) cause a
significant change in the proportion of time spent in the RL and RLL behaviours, b)
to destroy periodic behaviour, and c) to induce a reversal in the proportion changes,
for µ ∈ (µs2, µ

e
3) ≈ (0.00625, 0.00694).
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Figure 7.8: The % values associated with the threshold ∆ values shown in Figure
7.7 to a) cause a significant change in the proportion of time spent in the two periodic
behaviours, b) destroy periodic behaviour, and c) induce a reversal in the proportion
changes (final panel), for µ ∈ (µs2, µ

e
3) ≈ (0.00625, 0.00694). Each of the % values of

the period-2 orbits are marked with a magenta ◦ while each of the % values of the
period-3 orbits are marked with a green +. In all three cases the blue line traces the
minimum % ratio of the attractor whose proportion is diminishing in order to create
the feature of the relationship in question.
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the period-3 RLL orbit (as µ → µe3). At the threshold noise amplitudes ∆∗ these

orbits will be absorbed by the other attractor, where their % values will be so large

that they will have probability ≈ 0 of leaving the immediate basin of attraction of

the periodic orbit.

Away from the endpoints of the interval, in Figure 7.8a), we see that the threshold

noise amplitude ∆∗ is associated with an approximately constant % values for the

attractor whose proportion is reducing, provided the the % values are high enough for

the other attractor. At these % values there is sufficient probability for orbits to escape

the immediate basin of attraction of the attractor whose proportion is diminishing to

result in a significant number of orbits being shifted into the basin of attraction of the

other attractor. On the other hand, there is a very small probability of orbits in the

other behaviour escaping the immediate basin of attraction of the other attractor once

absorbed. The threshold minimum % values for each attractor are different, which

can be explained by noting that for µ ∈ (µs2, µ
e
3) we have that %(L1

2) ≈ %(R2) while

%(L1
3) ≈ %(R3) > %(L2

3). This means that the probability of leaving the immediate

basin of attraction of the period-2 RL orbit is approximately equal on each iterate,

while on the other hand, the probability of leaving the immediate basin of attraction

of the period-3 RLL orbit is higher on the last left iterate of each orbit than it is

on the other two. The spike in the threshold noise amplitude required to induce a

significant shift in proportions where ∆∗ reaches its maximum at µmax is associated

with a switch from an initial shift from RL → RLL behaviour to an initial shift

from RLL→ RL behaviour. Around this value of µ, the noise amplitude required to

reduce the % values of both attractors to the point where there is sufficient probability

for orbits to escape their respective immediate basins of attraction are approximately

equal. This means that orbits jump back and forth between the two attractors at

approximately the same rate and so we we require an even higher noise amplitude to

induce a significant change in proportions.

In Figures 7.9-7.11 we can see how the proportion of iterates spent by orbits with
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initial conditions in the immediate basins of attraction of the two coexisting periodic

orbits and outside these regions are related to the noise amplitude ∆. Close to the

endpoints of the interval (µ = 0.0063 in Figure 7.9 and µ = 0.0068 in Figure 7.11)

we can see that the relationships are similar for all three regions.

In Figure 7.9, close to the left endpoint of the interval, µs2, we see that increasing

noise amplitude initially results in a fall in period-2 behaviour (where it exists in

the deterministic case), until it is effectively destroyed for the same value of noise

amplitude in all three cases. We also see RL behaviour return in all three cases once

∆ increases beyond some threshold. In Figure 7.11, close to the right endpoint of the

interval, µe3, we see that increasing noise amplitude initially results in a fall in RLL

behaviour until it is effectively destroyed for the same value of noise amplitude in

all three cases. On the other hand, in Figure 7.10, close to the value of µ for which

we have a spike in the value of ∆∗ required to cause a significant shift in behaviour,

we see that increasing ∆ initially results in a shift towards RLL behaviour in the

case of the period-2 immediate basin of attraction and a shift towards RL behaviour

in the case of the period-3 immediate basin. These offsetting effects mean that a

higher noise amplitude is required to induce a significant change in proportions when

considering the phase space as a whole.

7.5.2 The Effective Destruction of Attractors

We now examine the threshold value ∆∗ of ∆, required to effectively destroy one

of the attractors where possible, as shown in Figure 7.7b). On the interval of

multistability the threshold value of the noise amplitude increases as µ increases

from an initial threshold value of 0 at µ = µs2 until the period-2 attractor can no

longer be destroyed. As we increase µ further, there is an interval of µ values within

the interval of multistability for which neither attractor can be effectively destroyed

by the addition of noise. Beyond this interval the period-3 RLL attractor can be

destroyed by the addition of noise above a threshold ∆∗. This threshold value
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decreases to 0 at µ = µe3 at the end of the interval. Examining the related % values

we can get a better understanding of this relationship between the threshold value of

the noise amplitude required to destroy an attractor and the bifurcation parameter

µ. Again we see that at the endpoints of the interval of multistability any noise is

sufficient to push all orbits out of the immediate basins of attraction of the period-2

RL orbit at µs2 and out of the immediate basins of attraction of the period-3 RLL

orbit at µs3. Once these orbits are absorbed by the other attractor it has almost zero

probability of leaving its immediate basin of attraction as the % values are very high

for the period-3 RLL orbit at µs2 and the the period-2 RL orbit at µe3.

Away from the endpoints of the interval, in Figure 7.8b), we again see that the

threshold noise amplitude ∆∗ is associated with approximately constant % values

for the attractor which is being effectively destroyed, provided the % values are high

enough for the other attractor. For these % values there is sufficient probability for

all orbits to escape the immediate basin of attraction of the attractor which is being

effectively destroyed at a reasonable rate. However at the same % values there is a

very small probability of orbits in the other behaviour escaping the immediate basin

of attraction of the other attractor once absorbed. In the centre of the interval, the

noise amplitude required to reduce the % values to a level where a significant number

of orbits can escape the immediate basin of one of the orbits will also reduce the %

values of the other attractor to a level where a significant number of orbits will be

thrown back. This means that instead of effectively destroying one of the attractors

the dynamics will instead switch back and forth between the two behaviours. As a

result, for this interval of µ values, we can never entirely eliminate the coexistence

of the two behaviours. Both behaviours will persist on this interval for any noise

amplitude which does not entirely wash out all deterministic dynamics.
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Figure 7.9: Bar charts showing how the proportion of iterates in a) the immediate
basin of attraction of the period-2 orbit, b) the immediate basin of attraction of the
period-3 orbit, and c) outside of the two immediate basins, vary with noise amplitude
for µ = 0.0063. For each region we consider dynamics over 5,000 iterates, neglecting
195,000 transients, for 1,000 different orbits with linearly spaced initial conditions.
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Figure 7.10: Bar charts showing how the proportion of iterates in a) the immediate
basin of attraction of the period-2 orbit, b) the immediate basin of attraction of the
period-3 orbit, and c) outside of the two immediate basins, vary with noise amplitude
for µ = 0.00642. For each region we consider dynamics over 5,000 iterates, neglecting
195,000 transients, for 1,000 different orbits with linearly spaced initial conditions.
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Figure 7.11: Bar charts showing how the proportion of iterates in a) the immediate
basin of attraction of the period-2 orbit, b) the immediate basin of attraction of the
period-3 orbit, and c) outside of the two immediate basins, vary with noise amplitude
for µ = 0.0068. For each region we consider dynamics over 5,000 iterates, neglecting
195,000 transients, for 1,000 different orbits with linearly spaced initial conditions.
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7.5.3 The Reversal of Relationships

Finally, we focus on the threshold value ∆∗ of ∆, required for the reversal of the

relationship between increasing noise amplitude and the the change in proportion of

time spent in each behaviour shown in Figure 7.7c). We note that these threshold

values are higher than the maximum threshold values of noise amplitude required

to either induce a significant change in proportions of time spent in each behaviour

or to effectively destroy one of the attractors. We see that the threshold noise

amplitude required to induce a comeback in the attractor whose proportion was

initially diminished by the addition of noise appears to fluctuate around a constant

level when bringing back period-2 RL behaviour on the left end of the interval, and

to increase with increasing µ when bringing back period-3 RLL behaviour on the

right end of the interval. In between we see an interval of µ values where we require

higher noise amplitudes to cause such an effect.

In Figure 7.8c), we see that on either end of the interval of multistability these ∆∗

values are associated with minimum % values fluctuating around constant values. At

these values of %, orbits can now escape the immediate basins of attraction of the

attractor, to which there was an initial shift in proportions at a significant rate. The

difference in the constant they fluctuate around can again be explained at least in

part by the fact that %(L1
2) ≈ %(R2), while %(L1

3) ≈ %(R3) > %(L2
3). This means that

the probability of leaving the immediate basin of attraction of the period-2 RL orbit

is approximately equal on each iterate, while the probability of leaving the immediate

basin of attraction of the period-3 RLL orbit is higher on the last left iterate of

each orbit than it is on the other two. The jump to relatively large-amplitude noise

required to induce the effect in the interval away from the endpoints of the interval

in multistability can again be explained by the conflict between orbits switching back

and forth between behaviours at similar rates due to having % values which allow

orbits to escape at those rates at the lower noise amplitudes.
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7.5.4 Generalising to Higher Periods

The relationships between the noise amplitude ∆ and the proportion of time spent

in period-m and period-(m+ 1) behaviour on the interval of multistability (µs2, µ
e
3)

described in sections 7.5.1-7.5.3 can be generalised to higher m on the interval

(µsm, µ
e
m+1). In all cases investigated we have seen that the threshold value of noise

amplitude ∆∗ required to induce a significant shift in the proportion of time spent

in each behaviour increases, until it spikes at some maximum as µ increases, from

an initial threshold value of 0 at µ = µsm. ∆∗ then decreases to a threshold value

of 0 at µ = µem+1, at the end of the interval, just as we saw in the case of period-2

and period-3 coexistence. Similarly, when we look at both the effective destruction

of an attractor and the reversal of the relationship between noise amplitude and

proportions, the relationships resemble the relationships for period-2 and period-3

coexistence.

Again these relationships can be explained by examining the associated % values. We

see that close to the endpoints of the interval of multistability any noise above zero

is sufficient to effectively destroy one of the attractors. Elsewhere on the interval,

apart from on a small interval of µ values, the threshold value ∆∗ for each feature

is associated with a minimum % ratio that fluctuates around some approximately

constant value for the attractor whose proportion is diminishing. This is true provided

the % values of the other attractor are sufficiently high so that there is no conflict

between orbits being thrown back and forth between the two immediate basins of

attraction at similar rates.

7.6 Scaling

Let us now consider the scaling of %(pk) on intervals of multistability of increasing

period and how this relates to the scaling of the effect of noise on the dynamics of

the system. First note that it has been shown by Nordmark [11] amongst others that
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the width and location of periodic windows in the one-dimensional square root map

decrease geometrically with asymptotic ratio b2. Explicitly we can show that

µem+2

µem+1

= b2

(
1− bm

1− bm+1

)2

,
µsm+2

µsm+1

= b2 1− bm+1

1− bm+2
, (7.48)

and thus µem+2/µ
e
m+1 ≈ b2 and µsm+2/µ

s
m+1 ≈ b2 with

lim
m→∞

µem+2

µem+1

= lim
m→∞

µsm+2

µsm+1

= b2. (7.49)

Using (7.47) and examining the ratio %(qk+1)/%(pk), where

{p1, p2, . . . , pm, pm+1} = {L1
m+1, L

2
m+1, . . . , L

m
m+1, Rm+1}

are the iterates of the period-(m+ 1) attractor and {qi} are the equivalent iterates of

the period-(m+ 2) attractor, evaluated at µ and µ′ = b2µ, respectively, we find that

%(qk+1)

%(pk)
=
D(qk+1)

D(pk)

σ̂(pk)

σ̂(qk+1)
. (7.50)

This scaling has a deterministic part, the distances D, from the iterate of each

attractor to the closest boundary of the iterate’s immediate basin of attraction, and

a stochastic part, the standard deviation of the deviation distribution associated

with each iterate.

First, let us consider the scaling of the deterministic structures of the map on intervals

of multistability of increasing period. Recall that

D(pk) = min{|pk − P 1→k
2(m+1)|, |pk − P 2→k

2(m+1)|} or D(pk) = |pk −Gk
m|, (7.51)

where P 1→k
2(m+1) and P

2→k
2(m+1) are the iterates of the unstable (RLmRLm)∞ orbit created

in a pitchfork bifurcation as µ increases through µsm+1, and Gk
m+1 is the iterate of the

unstable (RRLm−1)∞ orbit created in a border-collision bifurcation as µ decreases
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through µem+1. Thus (7.51) gives the distance from pk to the closest boundary of the

immediate basin of attraction surrounding pk on (µsm, µ
e
m+1). In general we find that

qm+2

pm+1

=
Rm+2

Rm+1

= b2


−abm +

√√√√(abm)2 + 4
m+1∑
i=0

biµ

−abm +

√
(abm)2 + 4

m∑
i=0

biµ



2

→ b2 as m→∞ (7.52)

and so Rm+1 scales as b2. Now, since Lj+1
n = Sj+1(Rn) = SjL (SR(Rn)), if Rm+1 scales

as b2 then the scaling of Lkm+1 is given by

qk+1

pk
=
Lk+1
m+2

Lkm+1

= b2

(
1 +

bkµ

Lkm+1

)
= b2

(
1 +
O(b2m+k)

O(bm+k)

)
= b2 (1 +O(bm))→ b2

(7.53)

as m→∞. This means that qk+1/pk ≈ b2 for all m and k with

lim
m→∞

qk+1

pk
= b2, (7.54)

and so the iterates of the attractor scale as b2 for increasing period.

In the case where the boundaries of the immediate basins are given by the iterates

of the unstable (RLnRLn)∞ orbit created in a pitchfork bifurcation as µ increases

through µsn+1 we have that

Rp1,2
2(m+2)

Rp1,2
2(m+1)

= b2


abm ±

√√√√−3(abm)2 + 4
m+1∑
i=0

biµ

abm ±
√
−3(abm)2 + 4

m∑
i=0

biµ



2

→ b2 as m→∞ (7.55)

and

Lp1,2→k+1
2(m+2)

Lp1,2→k
2(m+1)

= b2

(
1 +

bkµ

Lp1,2→k
2(m+1)

)
= b2 (1 +O(bm))→ b2 as m→∞, (7.56)
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which gives that P 1,2→k+1
2(m+2) /P 1,2→k

2(m+1) ≈ b2 for all m and k with

lim
m→∞

P 1,2→k+1
2(m+2)

P 1,2→k
2(m+1)

= b2. (7.57)

Equation (7.57) together with (7.54) gives that in this case the distance to the

boundary of the immediate basin of attraction D scales as b2.

Let us now look at the case where the boundaries of the immediate basins are given by

the iterates of the unstable (RRLn−1)∞ orbit created in a border-collision bifurcation

as µ decreases through µen+1 The first right iterate Rg1
m+1 of the (RRLm−1)∞ orbit

created in a border-collision bifurcation at µem+1 is contained in the interval

ARRLm−1R =

(µ
a

)2

1− µ

a2

(
m−1∑
i=0

b−i

)2
2

,
(µ
a

)2

1− µ

a2

(
m−2∑
i=0

b−i

)2
2

:= (Lm,Um), (7.58)

where AX1X2...Xm is the set of values x1 ∈ R such that the sequence x1, x2, . . . , xm

generated under iteration by S has the symbolic representation X1, X2, . . . , Xm.

Note that this interval is positive valued for µ < µem+1 and Lm = 0 at the boundary

collision bifurcation at µem+1. We find that

Lm+1

Lm
= b4


1− µ

a2

(
m−2∑
i=0

b−i + b

)2

1− µ

a2

(
m−2∑
i=0

b−i

)2


2

→ b4 as m→∞. (7.59)

Similarly we find that
Um+1

Um
→ b4 as m→∞, (7.60)

and so the lower and upper bounds of the interval containing Rg1
m+1 scale as b4

which implies that Rg1
m+1 scales as b4. Now since Rg1

m+1 = S(Rg1
m+1) = SR(Rg1

m+1),
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if Rg1
m+1 scales as b4, the scaling of Rg2

m+1 is given by

Rg2
m+2

Rg2
m+1

=
µ′ − a

√
Rg1

m+2

µ− a
√
Rg1

m+1

=
b2µ− a

√
b4Rg1

m+1

µ− a
√
Rg1

m+1

= b2. (7.61)

The scaling of Lgkm+1 is given by

Lgkm+2

Lgkm+1

= b2

(
1 +

bkµ

Lgkm+1

)
= b2 (1 +O(bm))→ b2 as m→∞. (7.62)

Finally, we have that Gk+1
m+2/G

k
m+1 ≈ b2 for all m and k with

lim
m→∞

Gk+1
m+2

Gk
m+1

= b2. (7.63)

We now have that

lim
m→∞

D(qk+1)

D(pk)
= b2 (7.64)

and so all the relevant deterministic structures of the map scale as b2.

Let us next consider the stochastic part of the % ratio given in (7.50). Taking ∆ and

∆′ as the noise amplitudes in the cases of σ̂(pk) and σ̂(qk+1), respectively, we find

that

σ̂(pk)

σ̂(qk+1)
=

∆

∆′

√√√√√√√√√√√


−2abm

√√√√(abm)2 + 4
m+1∑
i=0

biµ+ (abm)2 + 4
m+1∑
i=0

biµ

−2abm

√
(abm)2 + 4

m∑
i=0

biµ+ (abm)2 + 4
m∑
i=0

biµ

×
√√√√√√√√√√√√


a2

m∑
i=k

b2(i−1) +

2(abm)2 − 2abm

√√√√(abm)2 + 4
m∑
i=0

biµ+ 4
m∑
i=0

biµ

 k−1∑
i=0

b2i

a2

m∑
i=k

b2(i−1) +

2(abm)2 − 2abm

√√√√(abm)2 + 4
m+1∑
i=0

biµ+ 4
m+1∑
i=0

biµ

 k∑
i=0

b2i


(7.65)
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and so σ̂(pk)/σ̂(qk+1) ≈ ∆/∆′ with

lim
m→∞

σ̂(pk)

σ̂(qk+1)
=

∆

∆′
. (7.66)

This means that the scaling of the stochastic part depends only on the noise amplitude.

Combining (7.50) with (7.64) and (7.66) we find that %(qk+1)/%(pk) ≈ b2∆/∆′ with

lim
m→∞

%(qk+1)

%(pk)
= b2 ∆

∆′
(7.67)

and so choosing the noise amplitude to be ∆′ = b2∆ on the interval of multistability

(µsm+1, µ
e
m+2) will result in a similar effect of noise on the dynamics of the map as

choosing the noise amplitude to be ∆ on the interval (µsm, µ
e
m+1).

7.7 Discussion

In this paper we have investigated the effects of small amplitude additive Gaussian

white noise on the dynamical behaviour of the square root map (7.1) in regions of

multistability. The focus on this map comes from Simpson et al. [25] who added

white noise to the forcing term in a one-dimensional impact oscillator. They showed

that the corresponding normal form of the grazing bifurcation is a two-dimensional

square root map with additive Gaussian white noise. Following this, we have shown

that the introduction of small amplitude additive Gaussian white noise to the square

root map (7.21) has the potential to induce significant changes in the qualitative

behaviour of the system.

In particular, we have investigated the effect of noise on the period-adding cascade of

the map, which exists for 0 < b < 1/4 in the deterministic system. The period-adding

cascade is such that there are values of the bifurcation parameter µ > 0 for which a

stable periodic orbit of period m exists for each m = 2, 3, . . ., and also such that there

are two coexisting stable periodic orbits, one period-(m+ 1) orbit and one period-m
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orbit. Our focus is on intervals (µsm, µ
e
m+1) of multistability, where both the period-m

and the period-(m+ 1) orbits are stable. In Section 7.2 we derived expressions for

the relevant bifurcation points and periodic orbits. We also showed that the basins

of attraction on intervals of multistability have a complex intermingled structure.

The boundaries of the immediate basins of the coexisting periodic orbits are given

by unstable periodic orbits, born in a border-collision bifurcation at µem+1 in the case

of the period-(m+ 1) attractor and destroyed in a subcritical pitchfork bifurcation

in the case of the period-m attractor.

In Section 7.3.2 we have identified relationships between the noise amplitude and

the proportion of time spent in the two different periodic behaviours of intervals of

multistability (µsm, µ
e
m+1), where both the period-m and the period-(m+ 1) orbits are

stable in the deterministic system. These relationships have been shown numerically

in Section 7.3.2 (see Figure 7.4) to depend on the value of the bifurcation parameter

µ and to be non-monotonic.

In order to better understand the relationships shown in Figure 7.4 we first derived

approximate Gaussian steady-state deviation distributions associated with each of

the coexisting periodic attractors in Section 7.4.1. These approximate distributions

were shown in Section 7.4.2 to be a good fit provided the noise amplitude is not too

high. We then explained the non-monotonic relationships between noise amplitude

and periodic behaviour seen in Figure 7.4 by examining how our estimates of the

steady-state distributions of deviations due to noise interact with the deterministic

structures of the map.

For pk, an iterate of a deterministic periodic attractor, we let %(pk) (see (7.47)) be

the ratio of the minimum distance from pk to the boundary of its immediate basin

of attraction, to the standard deviation of the steady state deviation distribution

associated with pk. In Section 7.5 we have shown that the threshold noise amplitudes

associated with three distinguishing features of the non-monotonic relationships

between noise amplitude and the proportion of time spent in different periodic
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behaviours, are associated with threshold values of the ratio %. The distinguishing

features we considered were; a significant shift in the proportions of iterates spent

in each periodic behaviour (Section 7.5.1), the effective destruction of an attractor

(Section 7.5.2), i.e. the noise amplitude required to have less than 0.01 per cent of

iterates spent in the destroyed behaviour, and the reversal of the direction of the

shift in proportions (Section 7.5.3), i.e. if increasing noise amplitude initially resulted

in an increase (decrease) in the proportion of iterates spent in period-m behaviour

this is the noise amplitude required for this proportion to decrease (increase) once

more. Where they occur, these three features are observed in the same order as

listed above when noise amplitude increases from 0. The relationship between noise

amplitude and proportions is highly dependent on the value of µ.

For all three features of the nonmonotonic relationships identified, we showed that

the threshold noise amplitudes were associated with an approximately constant

minimal % value for the attractor whose proportion was diminishing, apart from

on a small interval of µ values on the interior of the interval of multistability and

at the endpoints. This can be understood by recognising that % effectively gives

us a measure of the likelihood that a trajectory can escape the immediate basin

of attraction of its current behaviour due to the effects of the addition of noise.

The lower the minimum % ratio of an attractor the higher the rate of trajectories

escaping its immediate basin of attraction and having the potential to be absorbed

by the other attractor. As all three features we have identified are associated with

trajectories being pushed from one periodic behaviour to another at a particular rate

it is unsurprising that this link exists when the % ratios of the other attractor are high

enough so that the rate at which trajectories are being pushed out of its behaviour

is negligible. This link breaks down as we approach the endpoints of the interval of

multistability and the size of the basin of attraction of one of the iterates tends to

zero. When the size of and attractors basin is effectively zero any amplitude of noise

is sufficient to destroy the periodic behaviour associated with the attractor. It also

breaks down when % ratios of the other attractor are low enough so that the rate at
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which trajectories are being pushed out of its behaviour is no longer negligible. In

this case an even higher amplitude is required for one effect to dominate the other

and produce a significant overall change in proportions.

Finally, in Section 7.6 we investigated how the effect of the addition of noise scales

on intervals of multistability of increasing minimal periodic orbit by investigating the

scaling of %. Our results revealed that choosing the noise amplitude to be ∆′ = b2∆

on the interval of multistability (µsm+1, µ
e
m+2) will result in a similar effect of noise

on the dynamics of the map as choosing the noise amplitude to be ∆ on the interval

(µsm, µ
e
m+1) for large m.

It remains to be shown how these results can be extended to the case of the two-

dimensional square root map derived as an approximation for the full nonsmooth

ordinary differential equation (ODE) system describing an impact oscillator near

grazing [14, 29] and indeed to the full ODE system itself. In [30] we have also

considered the one-dimensional map studied here for values of µ outside intervals of

multistability and how noise influences periodic behaviour in that case.
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Chapter 7. Appendix to Paper 1

7.A Appendix: A Linearisation Approach

An alternative approximation to the one given in Section 7.4.1 for the steady-state

deviation distributions associated with each iterate of the deterministic period-(m+1)

orbit can be found by linearising the square root part of the map SR(x) about Rm+1.

Local to the periodic orbit this allows us to replace (7.21) with the piecewise-linear

map with additive noise

xn+1 = S ′a(xn) =


µ+ bxn + ξn, xn < 0,

µ− a

2

√
Rm+1 −

a

2
√
Rm+1

xn + ξn, xn ≥ 0,

ξn
iid∼ N(0,∆2). (7.68)

The return map local to Rm+1 is now given by the linear map

r(x) = A−Bx+ ξ′

ξ′ ∼ N

(
0,∆2 1− b2(m+1)

1− b2

)
, (7.69)

where

A =
m−1∑
i=0

biµ+ bm
(
µ− a

2
Rm+1

)
, B =

abm

2
√
Rm+1

, ξ′ =
m+1∑
i=1

bm+1−iξi, (7.70)

and

ξi
iid∼ N(0,∆2). (7.71)

Similarly, the return maps local to Lkm+1 for k = 1, 2, . . . ,m are given by the linear

maps

r(x) = A−Bx+ ξ′

ξ′ ∼ N

(
0,∆2

(
1− b2k

1− b2
+

(
abk−1

2
√
Rm+1

)2
1− b2(m+1−k)

1− b2

))
, (7.72)
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where

A =
k−2∑
i=0

biµ+ bk−1(µ− a

2
Rm+1)− abk−1

2
√
Rm+1

m−1∑
i=k−1

biµ,

B =
abm

2
√
Rm+1

, ξ′ =
k∑
i=1

bk−iξi+m+1−k −
abk−1

2
√
Rm+1

m+1−k∑
i=1

bm+1−k−iξi, (7.73)

and

ξi
iid∼ N(0,∆2). (7.74)

In the absence of noise the iterates of the period-(m+ 1) orbit are stable fixed points

of their corresponding linear return maps. As a result, their associated invariant

distributions are Gaussian with mean 0 and standard deviations given by

σ̃(Rm+1) = ∆

√
4Rm+1

4Rm+1 − (abm)2

(
1− b2(m+1)

1− b2

)
,

σ̃(Lkm+1) = ∆

√
4Rm+1

4Rm+1 − (abm)2

(
1− b2k

1− b2
+

(abk−1)2

4Rm+1

(
1− b2(m+1−k)

1− b2

))
,

for k = 1, 2, . . . ,m. (7.75)

We note that these steady-state deviation distributions of the linearised map are

equal to the approximations σ̂ (see (7.46)) derived by an alternative method in

Section 7.4.1.
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National University of Ireland, Galway.

Abstract. The effects of small-amplitude additive Gaussian white noise

on the one-dimensional square root map are investigated. In particular

the focus is on the unexpected effects noise of varying amplitudes has on

the system for parameter regions just outside intervals of multistability.

It is shown that in these regions periodic behaviour that is unstable in

the deterministic system can be effectively stabilised by the addition of

noise of an appropriate amplitude. Features of noise-induced transitions

from stable to stabilised unstable periodic behaviour are highlighted and

it is shown how these features can be understood by examining relative
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levels of expansion and contraction in the deterministic map.

8.1 Introduction

An impact oscillator is a forced mechanical system that undergoes impacts at rigid

stops. Many real-world mechanical systems including systems arising in engineering,

for instance moored ships impacting a dock or rattling gears are modelled using

impact oscillators [1]. It is important to understand such systems in order to avoid

problems, such as wear and noise. In particular, since real-world systems, including

mechanical systems, are subject to uncertainties, we must also investigate how

stochastic noise can affect such systems. In the case of impact oscillators, noise could

for instance arise due to background vibrations or measurement errors.

In this paper we will investigate the effects of the additive noise on the qualitative

behaviour of a piecewise-smooth map known as the square root map [2, 3, 4, 5, 6]. The

map can be derived as an approximation for solutions of a piecewise-smooth ordinary

differential equation describing the dynamics of an impact oscillator near grazing

(low-velocity) impacts [2, 7] and it exhibits non-standard qualitative behaviour as a

result of a discontinuity in its first derivative.

In smooth nonlinear systems the addition of noise has been shown to have the

greatest effect on the outcome of the system in the neighbourhood of bifurcation

points [8, 9, 10]. Bifurcation points are values of the system parameters that separate

regions of parameter space where we observe topologically equivalent dynamics

[11, 12, 13, 14]. In nonsmooth dynamical systems, such as the square root map, we

find certain types of bifurcations that do not occur in the smooth setting, known

as discontinuity induced bifurcations [15, 16]. We will focus on the effect of the

introduction of noise near bifurcation points in the period-adding cascade of the

square root map, a bifurcation structure which is unique to nonsmooth systems.
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The remainder of this paper is organised as follows. In Section 8.2 we will describe

the deterministic bifurcation structure of the square root map. Section 8.3 introduces

noise to the square root map and presents our numerical observations of the effect of

noise on the square root map in the neighbourhood of regions of multistability. In

Section 8.4.1- 8.4.2 we examine relative levels of contraction and expansion in the

deterministic square root map in order to explain the distinguishing features of the

noise induced transitions between periodic behaviours observed in Section 8.3. We

then examine how the steady state trajectory deviation distributions derived in [17]

can interact with the deterministic features of the map to produce such transitions

given appropriate noise amplitude in Section 8.4.3-8.4.4. A concluding discussion is

presented in Section 8.5.

8.2 The Deterministic Square Root Map

8.2.1 The Map

We will first consider the one-dimensional square root map

xn+1 = S(xn) =

 SL(xn) = µ+ bxn, xn < 0,

SR(xn) = µ− a√xn, xn ≥ 0,
(8.1)

where a > 0, 0 < b < 1, SL(x) is the linear part of the map applied on the left-hand

side, and SR(x) is the square root part applied on the right. In this paper we will

assume that the parameter b is such that 0 < b < 1
4
. For values of b in this range the

deterministic square root map undergoes a period-adding cascade with intervals of

multistability as the bifurcation parameter µ is decreased [3]. We will discuss the

deterministic structures of the square root map in this case more detail in Section

8.2.3.
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8.2.2 Symbolic Dynamics

Here we will be interested in the qualitative behaviour of the map (8.1), i.e. whether

an iterate is on the left-hand side of the map or on the right-hand side of the map,

than the exact numerical value of each iterate. As a result we will describe the

dynamics of the square root map through the use of symbolic sequences. Any orbit

{xn} may be assigned a symbolic sequence {Xn} comprised of the letters L and R,

where

Xn =

 L, xn < 0,

R, xn ≥ 0.
(8.2)

Therefore, an L denotes an iterate on the left, while an R denotes an iterate on the

right. Using symbolic sequences we will describe deterministic N -periodic orbits by

their code (Rn1Ln2 . . . Rnm−1Lnm)∞, where ni ∈ N and
∑
ni = N . On the other hand,

an orbit with a corresponding symbolic sequence (Rn1Ln2 . . . Rnm−1Lnm)r, where r is

finite, will be described as undergoing Rn1Ln2 . . . Rnm−1Lnm behaviour or dynamics

for those rN iterates.

8.2.3 Bifurcations and Deterministic Structures

For µ < 0 the map (8.1) has a globally stable fixed point. In the case where µ > 0

Nordmark and other authors [2, 3, 5, 16] have shown that:

1. If 0 < b < 1
4
there is a period-adding cascade of stable periodic orbits. That is,

there are values of µ > 0 for which a stable periodic orbit of period m with

code (RLm−1)∞ exists for each m = 2, 3, . . . with m→∞ as µ→ 0. Moreover

adjacent periodic windows overlap, i.e. there are values of µ > 0 such that

there are two stable periodic orbits, one with period m and code (RLm−1)∞

and the other with period m+1 and code (RLm)∞. These are the only possible

attractors except at bifurcation points.

2. If 1
4
< b < 2

3
there is a period-adding cascade of stable periodic orbits such
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a) b)

Figure 8.1: Bifurcation diagrams for the deterministic square root map, S, with
a = 0.5, b = 0.2. The threshold µ values for stability and existence are given by (8.4)
and (8.5) while the iterates of the periodic orbits are given by (8.8) and (8.9). a)
The coexistence of attractors (RL)∞ and (RLL)∞ for µ about the interval (µs2, µ

e
3).

The period-2 (RL)∞ orbit is coloured red on the interval of multistability. b) The
period adding cascade of attractors (RLm)∞ for m ∈ {1, . . . , 10}. On the intervals
of µ where (RLm−1)∞ and (RLm)∞ coexist as attractors the iterates of (RLm−1)∞

are marked in red. A symmetric logarithmic transformation [18] has been applied to
the x-axis in order to clearly show the structure of the period adding cascade.

that stable periodic orbits of period m with code (RLm−1)∞ exist for each

m = 2, 3, . . .. However, between period-m and period-m+ 1 windows we now

see chaotic attractors.

3. If 2
3
< b < 1 as µ decreases towards zero there are a finite number of period-

addings followed by a chaotic attractor on an interval of µ values that extends

to µ = 0.

We will focus on the first case where there is a period-adding cascade of stable

periodic attractors with overlaps between adjacent periodic windows where we

observe multistability. A bifurcation diagram for this case is shown in Figure 8.1.

In the deterministic system (8.1) orbits of period m of the form (RLm−1)∞ exist as

attractors over the range in the parameter µ given by

µsm < µ < µem, (8.3)
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where

µsm =
1− b

1− bm
(a
b

)2
(

3

4

)
b2m (8.4)

is the threshold value for the stability of the period-m orbit and

µem =

[
1− b

1− bm−1
abm−2

]2

(8.5)

is the threshold value for its existence. We also have that

µem > µsm−1 > µem+1 > µsm (8.6)

holds for b < 1
4
. This implies that if µ ∈ (µsm−1, µ

e
m) then the stable periodic orbits

(RLm−2)∞ and (RLm−1)∞ coexist. On the other hand, if µ ∈ (µem+1, µ
s
m−1) then a

stable periodic orbit (RLm−1)∞ exists and is the only attractor. If µ ∈ (µsm, µ
e
m+1)

the pattern of coexistence starts again. We can see this period-adding behaviour

and repeating pattern of coexistence clearly in the bifurcation diagram shown in

Figure 8.1b) for orbits of period 2 to 11. In Figure 8.1a) we see an example of the

coexistence of stable periodic orbits with codes (RL)∞ and (RLL)∞ on the interval

(µs2, µ
e
3). We will refer to the intervals, (µsm, µ

e
m+1) on which stable periodic orbits

(RLm−1)∞ and (RLm)∞ coexist as coexistence intervals or intervals of multistability.

If Rm and L1
m, L

2
m, . . . L

m−1
m are, respectively, the right iterate and left iterates of the

deterministic period m orbit (RLm−1)∞ of S (see (8.1)) then using the fact that

Sm−1
L (SR(Rm)) = Rm, (8.7)

where SL is the linear part (left-hand side) of the square root map and SR is the the

square root part (right-hand side), we find that

Rm =

1

2

−abm−1 +

√√√√(abm−1)2 + 4
m−1∑
i=0

biµ

2

. (8.8)
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Hence we have that

L1
m = µ− a

√
Rm and Lim = µ+ bLi−1

m (8.9)

for i ∈ {2, 3, . . . ,m− 1}.

8.3 The Addition of Noise

8.3.1 The Square Root Map With Noise

We wish to examine the effect of uncertainty and noise on the square root map (8.1).

In particular we are interested in the effect of noise on the period-adding cascade

close to intervals of multistability, as discussed in Section 8.2.3.

Simpson and Kuske [19] show in a careful analysis that noise in impacting systems

manifests itself in the corresponding two-dimensional square root map in several

different ways, including coloured parametric noise. This is especially the case where

there is coloured noise in the impacting dynamics of the full system. Hogan, Simpson

and Kuske [20] show that the square root map in two dimensions with additive

Gaussian white noise arises when the source of uncertainty in the full system is

practically independent of the state of the system.

In this paper we consider small amplitude, additive, Gaussian white noise. However,

our investigations indicate similar results for both additive and parametric noise of

various distributions although we will not consider these noise formulations here.

The square root map with additive Gaussian white noise that we consider is

xn+1 = Sa(xn) =

 µ+ bxn + ξn, xn < 0,

µ− a√xn + ξn, xn ≥ 0,

ξn
iid∼ N(0,∆2), (8.10)
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a) b) c)

d) e) f)

Figure 8.2: Bifurcation diagrams for the square root map with additive Gaussian
white noise (8.10), with increasing levels of noise amplitude, ∆ = a) 2 × 10−5, b)
4×10−5, c) 6×10−5, d) 8×10−5, e) 1×10−4, f) 1.2×10−4, for µ in a neighbourhood of
the coexistence interval (µs2, µ

e
3). The deterministic values of µs2 and µe3 are indicated

by dashed lines. Where the two periodic behaviours coexist the iterates of the
behaviour with lower period are marked in red. For the corresponding deterministic
bifurcation diagram refer to Figure 8.1a).

where ξn are identically distributed independent normal random variables with mean

0 and standard deviation ∆.

8.3.2 Numerical Observations

The effect of noise on the dynamics of a system with multiple coexisting attractors has

long been of interest [21, 22, 23]. In this article we focus on phase-space sensitivity for

values of the bifurcation parameter µ close to intervals where period-m and period-

(m+ 1) attractors coexist (8.6), but actually outside the interval itself. Investigating

the effect of noise close to regions of multistability and the potential for such noise

to attenuate the effect of bifurcation points has been done for the Duffing oscillator

in [24]. Our numerical results indicate that a similar phenomenon occurs here in the

square root map.

First, examining the neighbourhood of the coexistence interval (µs2, µ
e
3) as a whole,
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in Figure 8.2 we plot numerically computed bifurcation diagrams for the square

root map with additive Gaussian white noise (8.10) of varying amplitude. The

corresponding analytic bifurcation diagram for the deterministic square root map

(8.1) is shown in Figure 8.1a). For low noise amplitude we see both a reduction

in the effective value of µe3, the threshold for the existence of the period-3 orbit

and an increase in the effective value of µs2, the threshold for the stability of the

period-2 orbit. This results in an effective shortening of the interval of multistability

at both end points compared to the deterministic system (see Figure 8.1a)). However,

beyond some threshold further increases in noise amplitude appear to lead to an

effective increase in the length of the coexistence interval. We see a weak return

of RLL behaviour for higher values of µ but the effective value remains below the

deterministic value of µs3. On the other hand, RL behaviour appears to return for all

values of µ > µs2 and potentially extends into the region µ < µs2. In this paper we are

particularly interested in investigating the apparent presence of period-2 behaviour

in a region where it is unstable in the corresponding deterministic system.

The bifurcation diagrams shown in Figure 8.2 leads us to believe that for fixed µ close

to µs2 with increasing noise amplitude we first see a decrease in the probability of

being in RL behaviour to some minimum followed by an increase in this probability

as µ increases further. Looking at both the proportion of points in RL behaviour

at a certain point in time and the proportion of time spent in RL behaviour over

a long time period we have confirmed these relationships between noise amplitude

and behaviour for additive noise. In particular, Figure 8.3 shows the relationship

between the noise amplitude ∆ and the proportion of time spent in RL behaviour,

RLL behaviour and in transition between the two behaviours over 5,000 iterates,

discounting 195,000 transients, for additive white noise where µ < µs2. The bar

chart shows the proportion of iterates spent by 1,000 orbits with linearly spaced

initial conditions in each of the three types of behaviour. We see that, as expected,

the deterministic system (∆ = 0) exhibits only RLL behaviour once transients

are discounted. This is also the case for the lowest noise amplitudes investigated.
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Figure 8.3: Bar chart showing the changing proportion of time spent in RL &
RLL behaviour and transition (RR) for increasing amplitude of additive noise, ∆,
where a = 0.5 and b = 0.2 and µ = 0.00623 < µs2 = 0.00625. We plot the different
relationships observed, considering dynamics over 5,000 iterates for 1,000 different
orbits with linearly spaced initial conditions on the interval [−0.04, 0.01] neglecting
195,000 transients.

However, once the amplitude has been increased beyond some threshold ∆∗, we

see that the addition of noise appears to induce some level of multistability, where

both RL and RLL behaviours are present. This phenomenon could be considered

to be a phenomelogical bifurcation or p-bifurcation [25]. A p-bifurcation refers to

a qualitative change in the topology of the stationary distribution of a dynamical

system. Here we see that noise above the threshold amplitude causes the stationary

monostable distribution of the square root map to become multistable.

8.3.3 The Evolution of Deviations

In order to more formally understand how the addition of noise affects the qualitative

behaviour of the square root map we will use an approximation for the distribution

of trajectory deviations resulting from the addition of noise to the system derived in

[17]. In particular we are interested in how these deviations can be related to the

persistence of unstable periodic behaviour. Using an approach involving linearisation

the authors of [20] have derived approximate invariant Gaussian densities associated

with periodic attractors of the square root map in two dimensions.
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We consider two trajectories, {xk} and {zk}, with identical initial conditions x0 =

z0 = Rm+1, i.e. two trajectories with initial conditions equal to the right iterate of

the deterministic (RLm)∞ orbit of the system. We then iterate forward using the

square root map with additive noise (8.10) in the case of x0, letting xk+1 = Sa(xk),

and the deterministic square root map (8.1) in the case of z0, letting zk+1 = S(zk).

The deviation due to noise in the trajectory {xk} is then given by the difference

{εk} = {xk − zk}. From (8.1) and (8.10) we have that, provided the deviations are

not so large as to push {zk} out of RLm behaviour, the error terms εk are given by

εk = xk − zk =

 aψk−1 + ξk−1, k mod (m+ 1) = 1,

bεk−1 + ξk−1, otherwise,
(8.11)

with ε0 = 0 and ψk−1 =
√
Rm+1 −

√
Rm+1 + εk−1. Referring to [17] we have that εk

is distributed approximately normal for all k with distribution N(0, σ2
εk

). Here the

variances are given by

σ2
εk

=


a2σ2

εk−1

4Rm+1

+ ∆2, k mod (m+ 1) = 1,

b2σ2
εk−1

+ ∆2, otherwise.

(8.12)

Working mod(m+ 1) we can write (8.12) as a system of m+ 1 difference equations

σ2
ε(n+1)(m+1)+k

= fk(σ
2
εn(m+1)+k

) (8.13)

with initial conditions given by σ2
εk

for 1 ≤ k ≤ m+ 1. The map fk has a fixed point

σ̂2
k,(m+1) for each of the m+ 1 difference equations such that

σ̂2
k,(m+1) = ∆2


a2

m∑
i=k

b2(i−1) + 4Rm+1

k−1∑
i=0

b2i

4Rm+1 − (abm)2

 . (8.14)
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We require σ̂2
k,(m+1) > 0 and so (8.8) and (8.14) imply that

4Rm+1 =

−abm +

√√√√(abm)2 + 4
m∑
i=0

biµ

2

> (abm)2, (8.15)

which gives that

µ >
3

4

(
1− b

1− bm+1

)
(abm)2 = µsm+1 (8.16)

and so the fixed points given in (8.14) exist for values of µ in the interval of stability for

the deterministic (RLm)∞ orbit, (µsm+1, µ
e
m+1), with σ̂2

k,(m+1) →∞ as µ→ µs
+

m+1 since

the numerator → a2∆2

(
m+k−1∑
i=k−1

b2i

)
as µ→ µs

+

m+1. On the other hand, σ̂2
k,(m+1) → c

where c > 0 as µ→ µe
−
m+1.

The difference equations (8.13) converge for

µ ∈

(
−4a−2

m∑
i=0

bi−2m, 12a−2

m∑
i=0

bi−2m

)
:= Aµ. (8.17)

Now, since 0 < b < 1
4
and 0 < a < 1 we have that

(µsm+1, µ
e
m+1) ⊂

[
0, 12

2m∑
i=m

4i

]
⊂ Aµ (8.18)

and so (8.13) converges for all relevant values of the bifurcation parameter µ and all

k.

Taking m = 2 as an example and examining the case of deviations on the last left

iterate L2
3 of the deterministic period-3 orbit for µ < µs2, we can see that the analysis

in Section 8.3.3 agrees well with our numerical results. Taking one million orbits

with initial condition x0 = R3 we examine the distribution of the deviations εn(3)−1

for n = 1, 2, . . . , 100, such that εk(3)−1 < −L2
3 for k < n. In Figure 8.4a) we show

that the fitted normal distributions, (fit using the Matlab® fitdist function) of

these deviations appear to have an approximately zero mean with standard deviation
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a) b)

Figure 8.4: a) The evolution of the standard deviations of the normal fits of the
distributions of the deviations εm and εk(m+1)+m such that ε(k−1)(m+1)+m < −Lmm+1

for 1 ≤ k ≤ 20, fitted using Matlab®’s fitdist function, (blue circles) compared
to our semi-analytic prediction given by (8.13) (red dashed line). b) The histogram
and normal fits of the distributions (red curve) of the deviations ε7(m+1)+m such that
ε(k−1)(m+1)+m < −Lmm+1 for 1 ≤ k ≤ 7.

converging quickly to some limit, σ̄ as n→∞. We see that the standard deviations

of these fitted distributions closely mirror the approximate standard deviations

predicted by our analysis (8.13), in particular the standard deviations do indeed

appear to converge to the value of σ̂2,3 given by (8.14). In Figure 8.4b) we compare

an example of these fitted normal distributions to the histogram of the observed

numerical deviations and find that the fitted distributions are indeed good fits for the

actual distributions. We can therefore use the approximate deviation distributions

derived in Section 8.3.3 to better understand the noise induced transitions observed

in the square root map.

8.4 The Persistence of Unstable Behaviour Due to

Noise

Let us now return to examine in more detail the potential for repeated intervals of

persistent RLm−1 dynamics in a noisy system of sufficiently high noise amplitude

with µ < µsm, as observed in Figure 8.2 in the m = 2 case. A related phenomenon

for a system with µ > µsm is that the proportion of time spent by the system in
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RLm−1 behaviour falls to almost zero as noise amplitude increases to some threshold

value, effectively destroying the attractor. However, for noise amplitudes above this

threshold RLm−1 behaviour returns [17].

In order to explain the persistence of unstable periodic behaviour in the stochastic

square root map (8.10), in Section 8.4.1 we will first look for qualitative similarities

in observed noise-induced transitions from stable to unstable periodic behaviour.

These transitions are essential in inducing multistability in regions in which only one

stable periodic attractor exists in the deterministic system (8.1). Without them the

system would simply remain in a noisy version of the stable periodic orbit. We will

then explain why the observed similarities between noise-induced transitions exist

by referring to features of the deterministic square root map (8.1) in Section 8.4.2.

By referring to Section 8.3.3 in Section 8.4.3 we will show additive Gaussian white

noise can induce transitions of the form observed and in Section 8.4.4 we will present

examples of such transitions observed in numerical simulations.

8.4.1 The Transition

In the numerical simulations we have found that noise-induced transitions between

RLL and RL behaviour display certain similarities. In particular, we have observed

that the transitions tend to take the following symbolic form

RLLRLL . . . RLLRLLRLRRLRL . . . RLRL. (8.19)

The significant feature of the symbolic representation of the transition (8.19) is the

repeated R corresponding to repeated iteration by SR on the right-hand side of the

square root map (8.1).

In general we see that the features of this transition are repeated as we look at

transitions from RLm behaviour to RLm−1 behaviour for increasing m. In particular
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we observe transitions of the form

RLmRLm . . . RLmRLm−1RLk−2RLm−1RLm−1 . . .

. . . RLm−1RLm−1
(8.20)

for µ in a neighbourhood of µsm such that µ < µsm and k ∈ {2, 3, . . . ,m}. The most

significant feature of transitions of the form given in (8.20) is the sequence RLk−2R

for k ∈ {2, 3, . . . ,m}, again corresponding to iterations on the right-hand side of the

map being repeated more quickly than is usual for a settled system with µ < µsm.

8.4.2 Contraction and Expansion

In order to understand the effect of noise on the square root map, and the importance

of the form of the transition characterised by (8.20), we will look at the sets associated

with the occurrence of this symbolic sequence in the deterministic dynamical system

(8.1). Let AX1X2...Xm denote the set of values x1 ∈ R such that the sequence

x1, x2, . . . , xm, generated under iteration by (8.1) has the symbolic representation

X1, X2, . . . , Xm. For example, the set ALL is the set of values to the left of zero, i.e.

less than zero, that remain on the left after a single iteration. We can construct ALL

as

ALL := {x ∈ (−∞, 0) : S(x) < 0}

= {x ∈ (−∞, 0) : µ+ bx < 0} =
(
−∞,−µ

b

)
(8.21)

and similarly we find

ALR :=
(
−µ
b
, 0
)
,

ARR :=

(
0,
(µ
a

)2
)
,

ARL :=

((µ
a

)2

,∞
)
. (8.22)
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Noting that

AX0X1...Xm = {x ≶ 0 : S(x) ∈ AX1...Xm} (8.23)

for X0 = L or R respectively, we can find the set A{Xi} associated with any symbolic

sequence {Xi} of finite length iteratively.

The sets AX1X2...Xm become small very quickly as the length of the sequence

X1, X2, . . . , Xm increases. In fact the sets associated with the longest symbolic

sequences lie outside [µ− a√µ, µ], the settled range of the map. The small sizes of

these intervals, or their location outside the map’s settled range, lead us to believe

that the noise-induced transition mechanism observed in simulations is not likely

based entirely on being pushed into one of the sets associated with a longer sequence,

which were derived based on the deterministic mapping. As a result we wish to

investigate the properties of the sets associated with shorter sequences.

We have noted previously that the most significant feature of the transition given

in (8.20) is the sequence RLk−2R corresponding to iterations on the right being

repeated more quickly than is usual for a settled system. As a result we would like

to see what the images of ARLk−2R look like under iteration by S. The nature of

these images may give us a better understanding of why close-together iterations on

the right-hand side of the map lead to a transition to RLm−1 behaviour. First we

recall from (8.22) that

ARR =

(
0,
(µ
a

)2
)

(8.24)

and note that

ARLk−2R =

(µ
a

k−3∑
i=0

b−i

)2

,

(
µ

a

k−2∑
i=0

b−i

)2
 (8.25)

for k ∈ {3, 4, . . . ,m}. These sets are located just to the right of zero and their

relative sizes are shown in Figure 8.5a. As a result, a small positive deviation due to

low amplitude noise could push settled RLm dynamics (a slightly blurred version of

the stable deterministic (RLm)∞ orbit) into one of these sets. This is because Lmm+1,
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a) b)

Figure 8.5: a) Graphical representation on a log scale of the sets ARLk−2R for
k ∈ {2, 3, . . . , 5} for µ = 0.99µs5. b) The distributions, (xk−2(s), dk−2(s)), of the
images of the sets ARLk−2R under gk−2 for k ∈ {2, . . . , 5} where µ = 0.99µs5. L1

5, the
first left iterate of the unstable (RL4)∞ orbit, is indicated by the dashed magenta
line. The 6 iterates of the stable (RL5)∞ obit are indicated by solid green lines.

the mth left iterate of that stable orbit, is very close to zero.

Let us now look at the images of these sets under iteration by S. We have that the

(k− 1)th and kth images of ARLk−2R under iteration by the square root map (8.1) are

given by

Sk−1(ARLk−2R) = (0, µ) and

Sk(ARLk−2R) = (µ− a√µ, µ) . (8.26)

Any trajectory {x0, x1, x2, . . .} iterated under the deterministic square root map (8.1)

with initial condition x0 < 0 will be increasing for the first j iterations, where j ∈ N

is the minimum such that xj > 0. This is as a result of the fact that µ > 0 and

0 < b < 1
4
. Furthermore since xj−1 < 0 we will have that xj ∈ (0, µ). Any trajectory

with initial condition x0 ∈ ((µ/a)2,∞) = ARL will be such that x1 < 0, while (8.26)

gives that the image of (0, (µ/a)2) = ARR is (0, µ) and so any trajectory with initial

condition x0 < 0 will also eventually enter the set (0, µ). Finally the image of the

set (0, µ) under a single iteration of the square root map S((0, µ)) = (µ− a√µ, µ).

This means that for any trajectory iterated under the square root map ∃N ∈ N such
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that ∀n > N we have xn ∈
[
µ− a√µ, µ

]
and so this gives us no more information

as to why repeated iterations on the right tend to result in a transition to RLm−1

behaviour.

Instead we will examine the relative levels of expansion and contraction experienced

by elements of ARLk−2R under iteration by S. We show that for µ in a neighbourhood

of µsm, the first iterate on the left of the unstable deterministic orbit (RLm−1)∞ is

‘close’ to xk−2
t where xk−2

t is the mode of the distribution of the kth image of the set

ARLk−2R for k ∈ {2, 3, . . . ,m}.

For x ∈ ARLk−2R we have that x > 0 and

Sk(x) = SR(Sk−2
L (SR(x)))

= µ− a

√√√√µ
k−2∑
i=0

bi − abk−2
√
x := gk−2(x). (8.27)

This gives that that

g′k−2(x) =
a2bk−2

4

1

√
x

√√√√µ
k−2∑
i=0

bi − abk−2
√
x

, (8.28)

where the dash ′ indicates differentiation with respect to x. We observe that g′k−2(x)→

∞ as x→ 0+ and as x→

(µ
a

k−2∑
i=0

b−i

)2
−. This means that the level of expansion

experienced by elements of the interval ARLk−2R over the course of two close together

iterations on the right tends to infinity as we approach the endpoints. On the other

hand, the elements of ARLk−2R that experience the least expansion over the course

of two close together iterations on the right are the points about xk−2
c , where xk−2

c

is such that the second derivative of gk−2 with respect to x, g′′k−2(x
k−2
c ) = 0. As a

result, the image of linearly spaced points in ARLk−2R will be concentrated about
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gk−2(xk−2
c ) = xk−2

t with distribution (xk−2(s), dk−2(s)), where

xk−2(s) = gk−2(s) = µ− a

√√√√µ

k−2∑
i=0

bi − abk−2
√
s (8.29)

and

dk−2(s) =
1

g′k−2(s)
=

4
√
s

a2bk−2

√√√√µ

k−2∑
i=0

bi − abk−2
√
s, (8.30)

for s ∈ ARLk−2R. Calculating the second derivative of gk−2 we find that

g′′k−2(x) =
a2bk−2

16

3abk−2
√
x− 2µ

k−2∑
i=0

bi

(
x

(
µ
k−2∑
i=0

bi − abk−2
√
x

)) 3
2

. (8.31)

Now, xk−2
c is given by finding the roots of (8.31) and thus

g′′k−2(xk−2
c ) = 0 =⇒ xk−2

c =
4

9

(µ
a

)2
(
k−2∑
i=0

b−i

)2

, (8.32)

which gives that

S(xk−2
c ) = µ− a

√
xk−2
c =

(
1− 2

3

k−2∑
i=0

b−i

)
µ (8.33)

and

xk−2
t = Sk(xk−2

c ) = g(xk−2
c ) = µ− a

√√√√µ

3

k−2∑
i=0

bi. (8.34)

The point xk−2
t , around which the image of ARLk−2R for k ∈ {2, . . . ,m} is concentrated

after undergoing two close together iterations on the right, is close to L1
m, the first

left iterate of the (RLm−1)∞ orbit of the deterministic system.

When µ is in the neighbourhood of µsm points in ARLk−2R, where 2 ≤ k ≤ m, undergo
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two iterations on the right-hand side of the map by SR in the first k ≤ m iterates.

This corresponds to iterations on the right-hand side of the map being repeated

more quickly than is usual for a settled system where it takes at least m+ 1 iterates

to repeat iterations on the right. The distribution of the image of ARLk−2R after k

iterates, the first and last of which are by SR, along with the high number of iterates

required by orbits to enter RLm behaviour for x0 ∈ ARLk−2R, gives us a significant

insight into why the sequence RLk−2R is such an important feature of the noise

induced transition from RLm to RLm−1 behaviour in the noisy version of the square

root map.

To illustrate this, in Figure 8.5b) we plot the distributions (xk−2(s), dk−2(s)) given

in (8.30), of the images of the sets ARLk−2R after undergoing two close together

iterations on the right for m = 5 and k ∈ {2, . . . , 5} where µ < µs5. We observe that

the modes of all four distributions are very close to the first left iterate of the unstable

(RL4)∞ orbit, especially when compared to their distance to any of the iterates of

the stable RL5 orbit. As a result of this, any orbit that enters one of the sets ARLk−2

for k ∈ {2, 3, . . . , 5}, when µ < µs5, will take a long time to exit RL4 behaviour and

converge to (RL5)∞, the only stable attractor in the system in that case. In general

any noisy RLm orbit pushed into one of the sets ARLk−2R for k ∈ {2, 3, . . . ,m} has

the potential to transition into RLm−1 behaviour for a sustained period of time.

In order to illustrate this behaviour let us take the m = 2 case and examine the

transition from RLL to RL behaviour as a example. We will consider values of

µ < µs2 in a small neighbourhood of µs2 where this orbit is unstable. In this case we

have only one choice of k corresponding to close together iterations by SR, k = m = 2,

and so we are concerned only with the images of the set ARR. After two iterations on

the right the distribution of linearly spaced orbits in ARR, given by (8.30) and shown

in Figure 8.6a), is concentrated around xt (8.34), close to L1
2, the left iterate of the

(RL)∞ orbit of the deterministic system. Orbits with initial conditions close to L1
2

will take a significant number of iterates to leave RL behaviour and converge to the
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a) b)

c)

Figure 8.6: a) Histogram showing the distribution of the image of 100,000 linearly
spaced points in ARR after two iterations, S2(ARR) along with d0(s) in red. b) and c)
Iterates of 300 linearly spaced points in ARR under the square root map S, 20 times
and until divergence from RL behaviour respectively. In all three cases we have
taken µ < µs2. The iterates of the stable (RLL)∞ orbit of the system are marked in
green, the iterates of the unstable (RL)∞ orbit of the system are marked in dashed
magenta and xt is marked in dash-dotted grey.
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(RLL)∞ attractor for such values of µ. This is clearly illustrated by Figures 8.6b)

and 8.6c). We examine 300 orbits with linearly spaced initial conditions in ARR. We

observe that, as a result of this distribution, a significant proportion of the orbits

with initial conditions in ARR do not exit RL behaviour until after a substantial

number of iterations. Indeed, after 1500 iterates a proportion of the orbits are still

in RL behaviour.

In general, the number of iterates required by orbits with different initial conditions

to enter RLL behaviour for the first time for µ in a neighbourhood of µs2 has a very

complicated structure. We have plotted this for the entire settled range of the map

[µ− a√µ, µ], and in more detail, for the subset ARR in Figure 8.7. This complicated

structure is analogous to the riddled structure of the basins of attraction of the

coexisting periodic attractors on intervals of multistability as discussed in [17].

We can now fully understand why a double R, corresponding to repeated iterations

on the right, is such an important feature of the noise-induced transition from RLL

to RL behaviour in the noisy version of the square root map (8.10). Our analysis

suggests that trajectories entering ARR could take a significant number of iterates to

return to RLL behaviour due to the deterministic structures of the map. We also

can see that, as L2
3, the second left iterate of the deterministic (RLL)∞ orbit is close

to zero for µ in a neighbourhood of µs2 (|L2
3|≪ 1), small deviations due to noise

would be enough to push an orbit from RLL behaviour near the deterministic orbit

into the set ARR = (0, (µ/a)2). The combination of these features means that noise

has the potential to push trajectories from RLL behaviour into ARR and as a result

concentrate these trajectories around the unstable (RL)∞ orbit of the deterministic

system where they have the potential to remain for a significant number of iterates.
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8.4.3 Deviation Distributions Under Repeated Iteration on

the Right

We can now combine our knowledge of the steady-state deviations of the period-

(m+1) orbit derived in Section 8.3.3, the expansion and contraction undergone during

repeated iterations on the right-hand side of the square root map described in Section

8.4.2 and the complicated structure of the relationship between initial conditions

and the number of iterates required to transition to the stable period-(m+ 1) orbit

in the deterministic map shown in Figure 8.7 to better understand the persistence of

unstable periodic behaviour. Again, taking the m = 2 case as an example, we know

from Section 8.4.2 that deviations εn(3)−1 such that −L2
3 < εn(3)−1 < −L2

3 + (µ/a)2

will induce consecutive iterations on the right, symbolically RR.

We consider the steady-state distribution of L2
3 + εn(3)−1, i.e. the normal distribution

with mean L2
3 and standard deviation σ̂2,3. We then truncate this distribution to

the interval (0, (µ/a)2) = ARR to find the distribution Tf which is shown in Figure

8.7b). Mapping this distribution under consecutive iterations on the right gives us

the distribution S2
R(Tf), shown in Figure 8.7c). We see the mode of this distribution

is close to the unstable left iterate of the RL orbit, and in a region where orbits will

take a significant number of iterates to return to RLL behaviour. In fact, taking

µ = 0.99µs2 and ∆ = 1.2 × 10−4 we find that the expected number of iterates to

return to period-3 behaviour for an orbit whose deviation has pushed the last left

iterate on the right-hand side is given by

E(Iterates to return| ε(n+1)(3)−1 ∈ (−L2
3,−L2

3 + (µ/a)2)) ≈ 175, (8.35)

with standard deviation

σ(Iterates to return| ε(n+1)(3)−1 ∈ (−L2
3,−L2

3 + (µ/a)2)) ≈ 255, (8.36)
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a) b)

c)

Figure 8.7: a) The number of iterates required for orbits with a range of initial condi-
tions to transition to RLL behaviour in the deterministic system where µ < µs2 shown
in blue. b) The steady-state distribution of the last left iterate of the RLL orbit trun-
cated to ARR, Tf in red, along with E(Iterates to return to period-3 behaviour) ≈
175 marked in dashed black and E(Iterates to return to period-3 behaviour) plus
one standard deviation ≈ 430 in dotted grey. c) The distribution of iterates with
deviations εn(3)−1 such that −L2

3 < εn(3)−1 < −L2
3 + (µ/a)2 after undergoing repeated

iterations on the right-hand side of the square root map in red. For the distributions
in both b) and c) we have taken ∆ = 1.2 × 10−4. In all cases the iterates of the
stable RLL orbit are indicated by solid green lines and the iterates of the unstable
RL orbit are indicated by dashed magenta lines.

where we iterate forward using the deterministic square root map (8.1). These

values indicate that noise has the potential to induce transitions to RL behaviour

for a significant number of iterates even when this behaviour is unstable in the

corresponding deterministic system.

150



Chapter 8. Paper 2

a) b)

Figure 8.8: a) An example of a noise-induced transition from settled RLL to
persistent RL behaviour in the square root map with additive noise and µ < µs2 and
the associated noisy signal. Here ∆ = 1.2× 10−4 and µ = 0.0062. b) An example
of a noise-induced transition from settled RL5 to persistent RL4 behaviour in the
square root map with additive noise and µ < µs5. Here k = 4.

8.4.4 Examples

In Figure 8.8a) we show an example of a transition from RLL to RL behaviour

of the form given in (8.19) along with the associated noisy signal. We focus on

the the characteristics of the noisy signal ξ0, ξ1, . . . , ξ7 associated with the eight

iterates x0, x1, . . . , x7 represented by the underlined portion of the symbolic sequence

(8.19) and note that none of the individual noise terms have an exceptionally large

magnitude. Instead in Figure 8.9 we see that the transition is triggered by the

accumulated deviation term ε5 > −L2
3, which pushes the trajectory into the set ARR

resulting in repeated iterations on the right.

In Figure 8.9b) we also see that the orbit in the noisy system remains in RL behaviour

for a far longer period of time than the equivalent orbit with the same initial condition

x7 in the deterministic system. This means that noise can play a role in maintaining

RL behaviour in systems with µ < µs2, in essence further “stabilising” an orbit which

is unstable in the associated deterministic system. We have not yet been able to

find any precise characteristics of a noisy signal that is likely to result in this further

“stabilisation” however it is something we intend to look at in the future.

In Figure 8.8b) we show an example of a transition of the form given in (8.20), for

m = 5 and k = 4. From results of experimental simulation of noisy square root
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a) b)

Figure 8.9: a) The iterates x0, . . . , x7 associated with the eight underlined terms in
the symbolic sequence (8.19) in the case of the transition shown in Figure 8.8a). We
also show their associated noise terms ξ0, . . . ξ7 in blue and the associated deviation
terms of the first 6 iterates ε0, . . . , ε5 in dash-dotted grey (not to scale). b) A close-up
look at the persistent noise induced RL behaviour shown in in Figure 8.8a) and the
associated deterministic square root map dynamics with initial condition given by
x7, where the iterates x0, . . . , x7 are the iterates associated with the eight underlined
terms in the symbolic sequence (8.19).

maps with µ in a neighbourhood of µsm such that µ < µsm for different values of m

it appears that transitions with certain k values occur more frequently and other k

values are associated with the “best” transitions. For example, in the m = 5 case

many of the “best” transitions were associated with symbolic sequences of the form

given in (8.20) with k = 4. We hypothesise that this is related to both the size and

the ordering of the sets ARLk−2R to the right of zero. For example ARR becomes

vanishingly small as m increases and so orbits are less likely to enter this set. On

the other hand, when k = m the set ARLm−2R is the largest of these intervals, but is

also located the furthest to the right and so requires a large deviation for orbits to

enter. If an orbit does enter this set it is likely to be near to the left endpoint and so

its image after two close together iterations on the right-hand side of the square root

map is not likely to be too close to L1
m, resulting in a “weak” transition. As a result,

we believe that “strong” transitions will generally be associated with k values that

are greater than 2 and less than m. The sets ARLm−2R for k ∈ {3, . . . ,m − 1} are

larger than ARR but closer to the left than ARLm−2R and so noisy orbits are more
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likely to have iterates landing near the centre of these sets, whose images after two

close together iterations on the right will be near to L1
m and thus result in a strong

transition.

8.5 Discussion

This paper is concerned with the effects of the introduction of small amplitude additive

Gaussian white noise on the dynamics of the square root map (8.1). This noise

formulation (8.10) was shown in [20] to be consistent with state-independent noise

in piecewise-smooth ordinary differential equations describing an impact oscillator

with low-velocity impacts. Our investigations show that introducing noise of this

type to the one-dimensional square root map has the potential to induce significant

changes in the qualitative behaviour of the system.

In particular, we have investigated the effect of noise on the period-adding cascade of

the map, which exists for 0 < b < 1
4
in the deterministic system. This period-adding

cascade is such that there are values of the bifurcation parameter µ > 0 for which

a stable periodic orbit of period m exists for each m = 2, 3, . . ., and also such that

there are two stable periodic orbits, one period-(m+ 1) orbit and one period-m orbit.

In Section 8.3.2 (see Figures 8.2-8.3) we have shown numerical evidence for the

persistence of unstable periodic behaviour in the neighbourhood of intervals of

multistability due to the addition of noise to the system. In other words, noise

of sufficient amplitude effectively induces multistability in these regions in a p-

bifurcation. In such regions we identified features of noise-induced transitions

from stable to unstable periodic behaviour, including the transition’s symbolic

representation which is given by (8.20). In Section8.4.1-8.4.2 we have highlighted

that the defining feature of these transitions is the presence of two iterations on

the right-hand side of the map, separated by a small number of iterations on the

left, i.e. less than the number of iterates on the left of the unstable periodic orbit.
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Our investigations revealed that trajectories that are iterated in the order given by

(8.20) become concentrated around the unstable periodic orbit due to relative levels

of expansion and contraction during iteration. Such trajectories are likely to take a

significant number of iterates to return to the stable periodic behaviour (see Figure

8.6).

Finally, we show in Section 8.4.3-8.4.4 that noise-induced transitions from stable to

unstable periodic behaviour can be understood by examining how estimates of the

steady-state distributions of deviations due to noise derived in [17] interact with the

deterministic structures of the map. We also present examples of such transitions,

from period-3 to period-2 behaviour and from period-6 to period-5 behaviour, in

numerical simulations in Figures 8.8-8.9.

In addition to the investigation required to more formally understand what features

of a noisy signal are require to drive “strong” transitions and to further “stabilise”

unstable behaviour once a noise-induced transition occurs, several problems remain for

future work. In particular, it remains to be shown how these results can be extended

to the case of the two-dimensional square root map derived as an approximation for

the full system describing an impact oscillator near grazing and indeed to the full

ODE system itself.
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Abstract. In a smooth dynamical system the characteristics of a given

reference trajectory can be determined, to lowest order, by examining the

linearised system about the reference trajectory. In other words, we can

approximate the deviations of trajectories after a given time, with starting

points in a neighbourhood of the reference trajectory, by multiplying the

initial deviations by the corresponding fundamental matrix solution.

This form of analysis cannot be used directly in nonsmooth systems as

the vector field is either not everywhere differentiable or the flow function

is not continuous. To account for this, one can derive the zero-time
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discontinuity mapping (ZDM) associated with the discontinuity boundary.

The Jacobian of this mapping is known as the saltation matrix and its

properties can tell us how the crossing of the discontinuity boundary

affects the deviations of trajectories from a reference trajectory. In partic-

ular, this matrix can be composed with the fundamental matrix solutions

of the individual flows on either side of the discontinuity boundary in

order to determine the overall fundamental matrix solution of a trajectory

that crosses the boundary.

In this paper we derive a saltation matrix for a piecewise-smooth dynam-

ical system in which the position of the discontinuity boundary oscillates

according to a mean-reverting stochastic process. The derived salta-

tion matrix contains the entire effect of both the discontinuity and the

uncertainty introduced into the system by the noisy boundary, and is

composable with the deterministic fundamental matrix solutions of the

individual flows to give the overall fundamental matrix solution of a

crossing trajectory.

We also present some simple examples of piecewise-smooth systems

with stochastically varying boundaries, analysed using the derived noisy

saltation matrix. In particular we focus on the analysis of a discontinuous

variant of the Chua circuit. In this case we apply noise to the system’s

discontinuity boundaries which are generated by the piecewise-linear

nature of the voltage-current response of the Chua diode. We find that

our method allows us to analyse the effects of boundary noise on periodic

attractors close to bifurcation points. In particular we show that we can

use the method to accurately predict the noise amplitudes required to

destroy or merge periodic attractors.
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9.1 Introduction

Piecewise-smooth dynamical systems are characterised by sudden changes in system

properties. Many real-world systems can be well modelled as piecewise-smooth

or hybrid systems, where the smooth evolution of the system is interrupted by

discrete events. Some examples of naturally arising piecewise-smooth systems are

electronic systems with switches [1, 2], mechanical systems involving friction or

impacts [3, 4], and control problems involving nonsmoothness such as relay control

[5]. Other systems that can be well modelled as piecewise-smooth include economic

or sociological systems involving decision thresholds [6, 7], climate systems such

as models with sharp ice-cap boundaries, box models of thermohaline circulation,

or ocean convection models with nonsmooth convective mixing functions [8, 9, 10],

and ecological systems such a migrational models with time-dependent switches

[11]. Piecewise-smooth dynamical systems can exhibit behaviour not seen in smooth

systems including discontinuity-induced bifurcations, such as grazing bifurcations,

C-bifurcations and others [12, 13, 14, 15, 16].

In real-world systems a level of noise and uncertainty is ubiquitous. Noise can

enter dynamical systems through measurement noise or through a high number of

unknown degrees of freedom. Brownian motion, for example, occurs as a result of a

collisions with a huge number of water molecules whose own complicated motion is

explained by the molecular-kinetic theory of heat, while Johnson-Nyquist noise refers

to fluctuations due to thermal agitation present in systems due to their temperature

being higher than absolute zero [17]. As a result, it is necessary to study piecewise-

smooth systems such as those described above in the presence of noise. The study of

the impact of noise on piecewise-smooth systems is a relatively new but growing field,

and noise has been shown to have a significant effect on a variety of piecewise-smooth

systems. In-depth studies have been carried out by Simpson, Kuske and Hogan into

the effects of noise on grazing bifurcations in impacting systems [18, 19] and by

Simpson and Kuske on periodic orbits with sliding [20]. Li, Jiang and Hong showed
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that additive noise on the dynamics of a piecewise-smooth rotor/stator rubbing

system has the potential to induce explosive and dangerous bifurcations or to have

positive effects on the rotor system by pushing the dynamics form destructive dry

friction backward whirl motion to no-rub motion [21]. Kim and Wang successfully

predicted the distribution of the onset of a non-smooth saddle-node bifurcation from

the Fokker-Planck equation corresponding to a newly developed scaled normal form

and verified their results numerically and experimentally using a double-well Duffing

analog circuit [22].

Much of the existing work in this area focuses on applying noise to the smooth

evolution of piecewise-smooth systems between switching events. In this paper we will

study the effects of applying noise to the discontinuity boundaries of discontinuous

piecewise-smooth systems where switching events occur. In particular, we will look

to apply linearisation techniques to such systems. These systems are appropriate for

modelling real-world phenomena where the primary sources of noise are the discrete

events which interrupt smooth evolution. For example, one could consider switched

control systems or electronic systems with noisy switches, mechanical systems with

stochastically vibrating impact surfaces or sociological/economical systems with

uncertain decision thresholds.

Since the first variational equations along trajectories in piecewise-smooth systems

that interact with discontinuity boundaries are locally ill-posed, the linearisation of

deterministic piecewise-smooth systems themselves require special techniques when

compared to smooth systems [13, 16, 23]. In Section 9.2.1 we give a brief overview of

the methods that are most relevant to the current paper. In particular we follow the

theory of Aizerman and Gantmacher [24], which allows us to calculate the saltation

or jump matrix that accounts for the discontinuous jump in the time evolution of

the fundamental solution matrix. Previously linearisation techniques and saltation

matrices have been used effectively in the analysis and simulation of piecewise-

smooth systems where noise is applied to the system’s dynamics, rather than its
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discontinuity boundaries. For example, linearisation techniques and deterministic

saltation matrices are used by Bizzari, Brambilla et al. [25, 26, 27] to analyse and

accurately simulate the effects of noise on piecewise-smooth models of fractional

phase-locked loops, analog mixed signal circuits and microelectromechanical system

oscillators. Our aim is to generalise existing linearisation techniques to allow one

to linearise piecewise-smooth systems in which trajectories cross noisy discontinuity

boundaries transversally.

This paper is organised as follows. In Section 9.2 we describe linearisation techniques

for transversal crossings in piecewise-smooth systems and extend the methods to

systems with stochastically varying discontinuity boundaries. Section 9.3 introduces

a stochastic process that is suitable to describe the stochastic component of the

position of a discontinuity boundary. Section 9.4 provides some examples including a

discontinuous formulation of the Chua circuit in Section 9.4.3. The paper concludes

in Section 9.5 with a discussion on possible generalisations to other types of piecewise-

smooth systems including hybrid systems and continuous piecewise-smooth systems

with higher-order discontinuities.

9.2 Basic Analysis

9.2.1 Discontinuity Mappings and Saltation Matrices

In a smooth dynamical system the characteristics of a given reference trajectory can

be determined, to lowest order, by examining the linearised system about the reference

trajectory. Here we will describe dynamical systems as initial-value problems (IVPs)

given by

ẋ = f(x), x(0) = x0, (9.1)

where x ∈ Rn is the state, ẋ ∈ Rn the time derivative of the state and f , which is Ck,

the corresponding vector field. We also define the flow function φ(x, t), which is Ck

in its arguments, as the collection of trajectories given by f , such that the unique
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solution to (9.1) can be written

x(t) = φ(x0, t). (9.2)

The deviation of a trajectory with an initial condition x0 ≈ xref
0 in a small neighbour-

hood of the reference trajectory based at xref
0 is given by

φ(x0, t)− φ(xref
0 , t) = φx(xref

0 , t)(x0 − xref
0 ) +O(‖x0 − xref

0 ‖), (9.3)

where the Jacobian φx(xref
0 , t) can be found as the solution to the IVP

Φ̇(x, t) = fx(φ(xref
0 , t))Φ(x, t), Φ(x, 0) = I, (9.4)

with Φ(x, t) = φx(x, t)

This form of analysis cannot be used in nonsmooth systems as f may not be

everywhere differentiable, or φ(xref
0 , t) may not be continuous. To account for this we

derive the zero-time discontinuity mapping (ZDM) associated with the discontinuity

boundary [28, 29]. When crossing a discontinuity boundary, one must compose this

extra mapping with the flow maps on either side of the boundary. In the case of

transversal crossings the Jacobian of this mapping is known as the saltation matrix

and its properties can tell us how the crossing of the discontinuity boundary affects

the deviations of trajectories in the neighbourhood of a given reference trajectory.

Let the discontinuity boundary be defined by

D = {x : h(x) = 0}, (9.5)

where h : Rn → R is at least C1. An incoming trajectory that intersects with the

discontinuity boundary at some state xin is mapped by a jump map j to an outgoing

state xout, somewhere in the state space as shown in Figure 9.1. Here, we assume

the reference trajectory, with initial point xref
0 , intersects the discontinuity boundary
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Figure 9.1: Schematic of a reference trajectory starting at xref
0 crossing a disconti-

nuity boundary transversally in a hybrid dynamical system.

at time tref, i.e.

h(φ1(xref
0 , tref)) = 0, (9.6)

where φ1 is the flow function prior to reaching D with corresponding vector field f1.

After the discontinuity the flow function is given by φ2 with corresponding vector

field f2, and so after a time T > tref the trajectory reaches the point

xref
T = φ2(j(φ1(xref

0 , tref)), T − tref). (9.7)

We further assume that the vector fields f1 and f2 and their corresponding flows are

smoothly extendible in a neighbourhood of xin and xout, respectively. Since we are

interested in a representation of the flow of the overall system for trajectories with

initial conditions x0 ≈ xref
0 and total time T we study the mapping

φ(x0, T ) = φ2(j(φ1(x0, t)), T − t), (9.8)

where t = t(x0) is the time of flight to reach the discontinuity boundary. Note that

t(x0) = tref + t(φ1(x0, tref)), (9.9)

165



Chapter 9. Paper 3

Figure 9.2: Deriving the zero-time discontinuity mapping D(x) for transversal
boundary crossings. D takes a point x in the neighbourhood of xin, to the boundary
by evolving for a time t(x) under the flow associated with f1 (green), applies the
jump mapping j (orange) and corrects for zero time by evolving for −t(x) under the
flow associated with f2 (red).

where t(φ1(x0, tref)) is possibly negative. Using this we can write

φ(x0, T ) = φ2(D(φ1(x0, tref)), T − tref), (9.10)

where the ZDM

D(x) = φ2(j(φ1(x, t(x))),−t(x)), (9.11)

which is shown in Figure 9.2, takes a point in a neighbourhood of xin and maps it to

a point in a neighbourhood of xout by moving backwards and forwards by the same

amount of time along the trajectories given by φ1 and φ2 and applying the jump

map j.

The Jacobian of D, evaluated at xin, is given by

Dx(xin) = jx(xin) +
(fout − jx(xin)fin)hx(xin)

hx(xin)fin
, (9.12)

where fin = f1(xin) and fout = f2(xout). Using this we can construct the overall

Jacobian of a flow that crosses the discontinuity boundary at xin as

φx(xref
0 , T ) = φ2,x(xout, T − tref)Dx(xin)φ1,x(xref

0 , tref). (9.13)
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In the case where h and j are explicitly time-dependent (9.12) becomes

Dx(xin) = jx(xin, tref) +
(fout − (jx(xin, tref)fin + jt(xin, tref)))hx(xin, tref)

ht(xin, tref) + hx(xin, tref)fin
. (9.14)

In this article we will restrict our attention to the case where the jump mapping

on the boundary is the identity mapping, i.e. the case where j(x) = x. Given this

restriction (9.14) becomes

Dx(xin) = I +
(fout − fin)hx(xin, tref)

ht(xin, tref) + hx(xin, tref)fin
, (9.15)

where I is the identity matrix.

We note that, in the case of a continuous piecewise smooth system, fout = fin and

so (9.15) reduces to Dx(xin) = I. In other words, the presence of the discontinuity

boundary has no first order/linear effects and the overall Jacobian is given simply by

φx(xref
0 , T ) = φ2,x(xout, T − tref)φ1,x(xref

0 , tref). (9.16)

9.2.2 Noisy Boundaries

We are interested in deriving the saltation matrix for piecewise-smooth systems where

the position of the discontinuity boundaries D vary randomly in time. The vector

fields on either side of the discontinuity boundary remain entirely deterministic, and

we once again require that they are locally smoothly extendible beyond the boundary.

As in the deterministic case (cf. (9.5)), we define the discontinuity boundary D as

the zeros of a function h. In particular, for a noisy boundary the function h must

have a stochastic component. For a stochastically oscillating boundary we let h take

the form

h(x, t) = ĥ(x)− p̂(t)− P (t). (9.17)

The functions ĥ and p̂ are deterministic and P is a stochastic process with small
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amplitude. We further require that P is a mean reverting stochastic process that is

at least once differentiable, has mean 0 and does not depend on x. The stochastic

process P represents random fluctuations in the position of the boundary and its first

derivative defines the stochastic component of the boundary’s velocity. Requiring

the process to be mean-reverting with mean 0 ensures that the boundary will not

have any long-term drift in its position. The analysis that follows in this paper

is suitable for any stochastic process P that meets these requirements. In Section

9.3 we present an example of one such process which is then used in the numerical

examples considered in Section 9.4.

Now, since the position of the boundary fluctuates randomly according to the

stochastic process P (t) with small amplitude, the time of flight tref from the starting

point xref
0 of a reference trajectory to the boundary is a random variable (cf. (9.6)).

Furthermore, since the vector fields on either side of the discontinuity boundary

and the jump map are deterministic the distribution of the saltation matrix can

be entirely determined by knowledge of the distribution of tref and the stochastic

process P (t).

Let t̂ref be the time of flight from xref
0 to the boundary in the absence of noise, i.e.

ĥ(φ1(xref
0 , t̂ref))− p̂(t̂ref) = 0. (9.18)

Given that P (t) represents small amplitude mean-reverting noise with mean 0, we

have that the true time of flight to the boundary tref ≈ t̂ref. Since P (t) is assumed to

be at least once differentiable, for t ≈ t̂ref, we can expand about t̂ref to find that

h(φ1(xref
0 , t), t) = ĥ(φ1(xref

0 , t))− p̂(t)− P (t)

≈
[
ĥ(φ1(xref

0 , t̂ref))− p̂(t̂ref)
]
− P (t̂ref)

+

[
ĥx(φ1(xref

0 , t̂ref))f1(φ1(xref
0 , t̂ref))−

(
dp̂

dt
+
dP

dt

)
(t̂ref)

]
(t− t̂ref)

= ∆tref

[
ĥx(x̂in)f̂in − (v̂ + V ) (t̂ref)

]
− P (t̂ref), (9.19)
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where

x̂in = φ1(xref
0 , t̂ref), ∆tref = tref − t̂ref, f̂in = f1(x̂in), v̂(t) =

dp̂

dt
, V (t) =

dP

dt
.

(9.20)

Equation (9.19) implies that ∆tref is given to first order by

∆tref ≈
P (t̂ref)

ĥx(x̂in)f̂in − v̂(t̂ref)− V (t̂ref|P (t̂ref))
, (9.21)

where V (t|P (t)) is the random component of the velocity of the boundary conditional

on its position at time t. The random variable tref is now given by

tref = t̂ref + ∆tref, (9.22)

where t̂ref is a constant. Note that this approximation for the distribution of ∆tref

will break down if

ĥx(x̂in)f̂in − v̂(t̂ref) ≈ V (t̂ref|P (t̂ref)). (9.23)

This means that the approximation breaks down if the normal velocity to the

boundary in the absence of random fluctuations is similar in magnitude to the

velocity of the random fluctuations causing near-zero velocity crossings. In other

words, if the trajectory grazes the discontinuity boundary.

9.2.3 Derivation of the Noisy Saltation Matrix

In this section we derive the ZDM for a system with a stochastically varying boundary.

In order to deal with the fact that the boundary varies stochastically in time we will

extend the state space and vector field to

x̃ = (x,∆tref, t)
T and f̃ = (f , 0, 1)T , (9.24)
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respectively. We can now think of the realisation of the deterministic trajectory in

the stochastic system as

φ̃(x̂ref
0 , T ) = φ̃((xref

0 , 0, 0)T , T ) = (φ(xref
0 , T ), 0, T )T , (9.25)

where x̂ref
0 = (xref

0 , 0, 0)T . Our approach will be to linearise about this realisation of

the deterministic trajectory in the stochastic system. We denote the values associated

with the deterministic ZDM as

x̂in = φ̃1(x̂ref
0 , t̂ref), f̂in = f̃1(x̂in), x̂out = x̂in, f̂out = f̃2(x̂out). (9.26)

For simplicity, we will now drop the tildes and refer to x and f when considering

the extended state space, where there is no ambiguity. Following this, we are thus

studying the stochastic ZDM (SZDM)

φ(x0, T ) = φ2(φ1(x0, t), T − t), (9.27)

where the random variable t = t(x0) is the time of flight from x0 to the boundary.

We have that

t(x0) = tref + t(φ1(x0, tref)) = t̂ref + ∆tref + t(φ1(x0, tref)), (9.28)

and so we can write (9.27) as

φ(x0, T ) = φ2(φ2(φ2(φ1(φ1(φ1(x0, t̂ref),∆tref), t(φ1(x0, tref))),

−t(φ1(x0, tref))),−∆tref), T − t̂ref). (9.29)

This gives that

φ(x0, T ) = φ2(D̃∗(φ1(x0, t̂ref)), T − t̂ref), (9.30)
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where

D̃∗(x) = φ2(φ2(φ1(φ1(x,∆tref), t(φ1(x,∆tref))),−∆tref),−t(φ1(x,∆tref))). (9.31)

Setting

t∗(x) = t(φ1(x,∆tref)) + ∆tref, (9.32)

we rewrite (9.31) as

D̃∗(x) = φ2(φ1(x, t∗(x)),−t∗(x)). (9.33)

Differentiating D̃∗ with respect to x we find

D̃∗x(x) = φ2,x(φ1(x, t∗(x)),−t∗(x))Iφ1,x(x, t∗(x))

+ [φ2,x(φ1(x, t∗(x)),−t∗(x))Iφ1,t(x, t
∗(x))− φ2,t(φ1(x, t∗(x)),−t∗(x))] t∗x(x).

(9.34)

At x = x̂in, t∗(x) = t∗(x̂in) = 0 we find

D̃∗x(x̂in) = I + (f̂in − f̂out)t
∗
x(x̂in). (9.35)

It now remains to find an expression for t∗x(x̂in). By definition, t = t∗(x) is a solution

to the equation

h(φ1(x, t)) = 0. (9.36)

Now, differentiating h with respect to t and evaluating at (x, t) = (x̂in, t
∗(x̂in)) =

(x̂in, 0), we obtain

hx(φ1(x̂in, 0))φ1,t(x̂in, 0) = hx(x̂in)f̂in. (9.37)

By the implicit function theorem it follows that t∗(x) is a C1 function in a neighbour-

hood of x̂in such that

t∗x(x̂in) = − hx(x̂in)

hx(x̂in)f̂in
. (9.38)
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Projecting back onto the state space (x,∆tref) (9.38) becomes

t∗x(x̂in) = − hx(x̂in)

hx(x̂in)f̂in − v̂(t̂ref)− V (t̂ref|P (t̂ref) = 0)

=

(
− ĥx(x̂in)

ĥx(x̂in)f̂in − v̂(t̂ref)− V (t̂ref|P (t̂ref) = 0)
, 1

)
(9.39)

since the second component of t∗x(x̂in) is

∂t∗(x)

∂∆tref
|x=x̂in = 1, (9.40)

by definition. Projecting from the state space given in (9.24) to the state space

(x,∆tref) we can now write

D̃∗x(x̂in) = I +
(f̂out − f̂in)hx(x̂in)

hx(x̂in)f̂in − v̂(t̂ref)− V (t̂ref|P (t̂ref) = 0)
=

D∗x(x̂in) f̂in − f̂out

0 1

 ,

(9.41)

where

D∗x(x̂in) = I +
(f̂out − f̂in)ĥx(x̂in)

ĥx(x̂in)f̂in − v̂(t̂ref)− V (t̂ref|P (t̂ref) = 0)
, (9.42)

and find that

φ̃x(x̂ref
0 , T ) = φ̃2,x(x̂out, T − t̂ref)D̃∗x(x̂in)φ̃1,x(x̂in, t̂ref). (9.43)

Here the Jacobians φ̃1,x(x, t) and φ̃2,x(x, t) of the flows φ̃1 and φ̃2 are given by

φ̃i,x =

φi,x 0

0 1

 , i = 1, 2, (9.44)

where φi,x can be found as the solutions of the initial-value problems

Φ̇(x, t) = fx(φi(x, t))Φ(x, t), Φ(x, 0) = I, i = 1, 2. (9.45)
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The Jacobians φi,x are entirely smooth and deterministic and the effects of both

nonsmoothness and noise are contained within D̃∗x(x̂in). The distribution of deviations

of a trajectory with an initial condition x0 ≈ xref
0 , in a small neighbourhood of the

reference trajectory based at xref
0 in the original state space, is now given to first

order by

φ̃(x̃0, T )− φ̃(x̂ref
0 , T ) ≈ φ̃x(x̂ref

0 , T )(x̃0 − x̂ref
0 ), (9.46)

where x̃0 = (x0,∆tref)
T and ∆tref is the distribution given by (9.21), before projecting

back. As a result, in the original state space we find that

φ(x0, T )−φ(x̂ref
0 , T ) ≈ φx(x̂ref

0 , T )(x0−x̂ref
0 )+φ2,x(x̂out, T−t̂ref)(f̂in−f̂out)∆tref, (9.47)

where

φx(x̂ref
0 , T ) = φ2,x(x̂out, T − t̂ref)D∗x(x̂in)φ1,x(x̂ref

0 , t̂ref). (9.48)

Note that in the case of a continuous piecewise-smooth system, as in the deterministic

case, this approach indicates that there are no linear effects of a stochastically varying

boundary. In continuous systems f̂out = f̂in and so (9.47) reduces to

φ(x0, T )−φ(x̂ref
0 , T ) ≈ φx(x̂ref

0 , T )(x0−x̂ref
0 ) = φ2,x(x̂out, T−t̂ref)φ1,x(x̂ref

0 , t̂ref)(x0−x̂ref
0 ).

(9.49)

To consider the effects of noisy boundaries in continuous systems we must thus

extend our approach to higher orders. However, such analysis lies outside the scope

of this article, but is investigated by the authors in [30].

9.2.4 Poincaré Map

Although the methods described in the previous sections are very useful in determining

the characteristics of a given reference trajectory to lowest order, it will sometimes

be useful to use the approach of a Poincaré map. In particular this method is

extremely useful when analysing periodic solutions as it allows us to treat periodic
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solutions as fixed points of discrete maps. We first introduce a Poincaré section P , a

codimension-one surface given by

P = {x : gP(x) = 0}, (9.50)

where gP : Rn → R is at least C1 and a periodic solution intersects P transversally

at some point xP ∈ P. We then define the Poincaré map MP for points in the

neighbourhood of xP such that MP maps a point on P to the subsequent intersection

of the corresponding trajectory with P, provided it exists. Since it is generally

impossible to find a closed form for MP we again rely on linearisation, approximating

the evolution of deviations by

MP(x)−MP(xP) ≈MP,x(xP)(x− xP). (9.51)

To compute MP,x(xP) we define tP(x) as the time of flight from a point x on P to

its trajectory’s next intersection with P , which gives that

MP(x) = φ(x, tP(x)). (9.52)

Let tP(xP) = T be the period of the periodic solution. Provided

gP,x(xP)φt(xP , T ) 6= 0 (9.53)

the implicit function theorem gives that tP is differentiable function in a neighbour-

hood of xP with derivative

tP,x(xP) = −gP,x(xP)φx(xP , T )

gP,x(xP)φt(xP , T )
. (9.54)
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a)

b)

Figure 9.3: Schematic showing the iterative construction of M(x) in the absence
of noise (a) and in the presence of noise (b). Here A× indicates multiplication on
the left by the matrix A.

Differentiating (9.52), using the chain rule and evaluating at xP gives

MP,x(xP) = φx(xP , T ) + φt(xP , T )tP,x(xP)

=

(
I− φt(xP , T )gP,x(xP)

gP,x(xP)φt(xP , T )

)
φx(xP , T ), (9.55)

where

PP = I− φt(xP , T )gP,x(xP)

gP,x(xP)φt(xP , T )
(9.56)

is a projection matrix.
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9.2.5 Summary

Assume we want to define a map M that describes the distribution about a periodic

trajectory that crosses N noisy boundaries with switches so that

xk+1 = M(xk), k = 0, 1, . . . (9.57)

This can be done if we let the map M be defined as

M(x) = φN+1,xKN(x), (9.58)

where

Kn(x) = D∗n,xφn,xKn−1(x) +
(
f̂ in
n − f̂out

n

)
∆tn, n ≥ 1,

K0(x) = x. (9.59)

In (9.59) D∗n,x is the random saltation matrix associated with the nth switch, given by

(9.42), φn,x is the Jacobian associated with the nth smooth portion of the reference

trajectory and f̂ in
n and f̂out

n are respectively the values of the incoming and outgoing

vector fields of the reference trajectory at the nth crossing. Note that, when ∆ti = 0,

for all i, the map M simplifies to the standard mapping for deterministic trajectories

with N boundary crossings as described in [13, 16]. A schematic showing the iterative

process of constructing the map M is given in Figure 9.3.

The map M gives a first-order approximation of the evolution of the distribution

about a trajectory that crosses N noisy discontinuity boundaries and so will only

give useful results in the case where f̂ in
n 6= f̂out

n , otherwise f̂ in
n − f̂out

n = 0 and D∗n,x

reduces to the identity matrix. For the mapping M to have a valid construction we

must have that the stochastic processes Pn(t) describing the stochastic components

of the discontinuity boundaries
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1. are at least once differentiable,

2. are of small amplitude,

3. are mean reverting,

4. have mean 0.

Furthermore, we require all crossings to be transversal and our approximation assumes

that the addition of noise does not change the number of times a boundary is crossed

by a trajectory.

9.3 Introducing Noise

9.3.1 A Zero-Mean Mean-Reverting Process

In this section we will derive an example of a stochastic process P (t) that meets

our differentiablilty and mean reversion requirements to be used in the numerical

examples considered in Section 9.4. In particular, we will consider the mean-reverting

Gaussian process P (t), with long term mean 0, given by

V (t) =
dP

dt
= −cP + Σξ(t), P (0) = P0, (9.60)

where ξ(t) is the Ornstein-Uhlenbeck Îto Process [31] given by

dξ(t) = −θξ(t)dt+ σdWt, ξ(0) = ξ0. (9.61)

This gives that

ξ(t) = e−θtξ0 + σ

∫ t

0

eθ(s−t)dWs, (9.62)

ξ(t) ∼ N

(
e−θtξ0,

σ2(1− e−2θt)

2θ

)
= N(µξ(t), σ

2
ξ (t)), (9.63)
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while

P (t) =

 µP (t) + σΣ
c−θ

∫ t
0
eθ(s−t) − ec(s−t)dWs if c 6= θ,

µP (t) + σΣ
∫ t

0
eθ(s−t)(t− s)dWs if c = θ,

(9.64)

P (t) ∼ N
(
µP (t), σ2

P (t)
)
, (9.65)

where

µP (t) =

 e−ctP0 + (e−θt − e−ct) Σξ0
c−θ if c 6= θ,

e−ct(P0 + Σtξ0) if c = θ,
(9.66)

and

σ2
P (t) =


(
σΣ
c−θ

)2
[

1−e−2θt

2θ
+ 1−e−2ct

2c
− 2(1−e−(θ+c)t)

θ+c

]
if c 6= θ,

(σΣ)2
[

1
4θ3
− e−2θt

(
t2

2θ
+ t

2θ2
+ 1

4θ3

)]
if c = θ.

(9.67)

Finally

V (t) =

 µV (t) + σΣ
θ−c

∫ t
0
θeθ(s−t) − cec(s−t)dWs if c 6= θ,

µV (t) + σΣ
∫ t

0
θeθ(s−t)(s− t+ 1

θ
)dWs if c = θ,

(9.68)

V (t) ∼ N
(
µV (t), σ2

V (t)
)
, (9.69)

where

µV (t) = Σµξ(t)− cµP (t), (9.70)

and

σ2
V (t) =


(
σΣ
θ−c

)2
[
θ2
(

1−e−2θt

2θ

)
+ c2

(
1−e−2ct

2c

)
− 2θc

(
1−e−(θ+c)t

θ+c

)]
if c 6= θ,

(σΣ)2
(

1
4θ
− e−2θt

(
t2θ
2
− t

2
+ 1

4θ

))
if c = θ.

(9.71)

The joint distribution of P (t) and V (t) is a bivariate Gaussian distribution with

178



Chapter 9. Paper 3

Figure 9.4: Sample time series for P (t), the corresponding velocity process is shown
in Figure 9.5.

Figure 9.5: Sample time series for V (t), the corresponding position process is shown
in Figure 9.4.

mean µPV (t) = (µP (t), µv(t))
T and covariance matrix ΣPV given by

ΣPV =

 σ2
P (t) Cov(P (t)V (t))

Cov(P (t)V (t)) σ2
V (t)

 =

 σ2
P (t) σPV (t)

σPV (t) σ2
V (t)

 , (9.72)

where

σPV (t) =


−cσ2

P (t) +
(σΣ)2

(
c− θ − (c+ θ)e−2θt + 2θe−(c+θ)t

)
2θ(c2 − θ2)

if c 6= θ,

−θσ2
P (t) +

(σΣ)2

2θ

(
1− e−2θt

2θ
− te−2θt

)
if c = θ.

(9.73)

The stochastic position process P (t) derived in this section has several useful proper-

ties. First, since the process is mean reverting with long-term mean 0, applying the

process P to a discontinuity boundary in a piecewise-smooth system will not cause

the position of the boundary to drift over time. We also note that the position process
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Figure 9.6: Sample joint Distribution of P (t) and V (t).

has a well defined corresponding velocity process V (t), allowing us to construct both

the random saltation matrix D∗(x̂in) and the first-order estimate of the random

variable ∆tref associated with a given boundary crossing. Finally, provided the time

t between consecutive boundary crossings is large compared to the frequency of the

stochastic oscillations, i.e. assuming e−ct ≈ e−θt ≈ 0, the position and velocity of the

boundary at a crossing can be well estimated as independent of the position and

velocity at the previous crossing. This is very useful when using this approach to

analyse the effect of noise on periodic orbits, see Section 9.4 for examples. Sample

time series for P (t) and V (t) are shown in Figures 9.4 and 9.5, respectively.

9.3.2 The Distribution of ∆tref

From (9.21) in Section 9.2.2, we see that the approximate distribution f∆ of ∆tref is

given by the ratio of the two components of a bivariate Gaussian distribution with

non-zero correlation such as the one shown in Figure 9.6. Following the results of

Cedilnik et al. [32] we find that, when P0 = ξ0 = 0, the distribution of ∆tref is given

by

f∆(δ) =
σV σP

√
1− ρ2

[
e−α/2 +

√
2πβξ(β)e(β2−α)/2

]
π(σ2

V δ
2 + 2σPV δ + σ2

P )
, (9.74)
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evaluated at t̂ref, where

ρ =
σPV
σPσV

, (9.75)

α =

(
µV ′

σV

)2(
1

1− ρ2

)
, (9.76)

β =
ρ
µV ′δ
σV

+
µV ′σP
σ2
V√

1− ρ2

√
δ2 − 2ρσP

σV
δ +

(
σP
σV

)2
, (9.77)

ξ(β) =
1

2
erf
(
β√
2

)
(9.78)

and

µV ′ = ĥ(xin)f̂in − v̂(t̂ref). (9.79)

9.4 Examples

In this section we present some illustrative examples, comparing our linearisation

approach to the results of numerical simulation of the sample systems. In all cases our

numerical simulations use the analytic solution to the simple piecewise-smooth ODEs

considered, an Euler-Maruyama scheme with fixed timestep [33] for the integration

of the stochastic process P (t) local to the boundary and linear interpolation to find

the boundary-crossing time lying between two consecutive timesteps.

First, in Section 9.4.1 show how the linearisation given in (9.47) performs in a

two-dimensional piecewise-smooth system where the vector fields on either side of

the discontinuity boundary are nonlinear. Next, in Section 9.4.2 we look at a simple

two-dimensional piecewise-linear system, showing how our method can accurately

predict basin of attraction escapes close to bifurcation. Finally, in Section 9.4.3

we consider the Chua circuit, a real-world example in three dimensions. In this

example we focus on the effect of noise on periodic attractors in the Chua circuit.

In particular, we use the methods described in Section 9.2.5 to estimate the noise
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Figure 9.7: The image of the perimeter of the circle of radius 0.01 about x̂ref
0 (solid

black) after time T , compared to the linear approximation given by (9.88) (dashed
magenta). The image x̂ref

T of x̂ref
0 is indicated by the black dot.

amplitude required for trajectories to be pushed out of periodic behaviour that is

stable in the corresponding deterministic system and to merge coexisting periodic

attractors.

9.4.1 A Two Region Piecewise Smooth System

As an initial example we will consider the piecewise-smooth system in the plane

given by

ẋ =

 f1(x) = (1, cos(x))T , x ∈ S−,

f2(x) = (y2,−1)T , x ∈ S+,
(9.80)

where x = (x, y)T is the state space variable and f1 and f2 are the vector fields in S−

and S+, respectively. The two regions

S− = {x : x < 0}, S+ = {x : x ≥ 0} (9.81)

are separated by the discontinuity boundary

D̂ = {x : ĥ(x) = 0}, (9.82)
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where ĥ(x) = x. Let us now take the trajectory with starting point x̂ref
0 = (−1, 2)T as

our reference trajectory. This trajectory crosses the discontinuity boundary D̂ after

time t̂ref = 1 at x̂in = (0, 2 + sin(1))T = (0, ŷin)T . The incoming vector field is given

by f̂in = f1(x̂in) = (1, 1)T and the outgoing vector field is given by f̂out = f2(x̂in) =

((ŷin)2,−1)T . We will consider this trajectory after time T = t̂ref + ŷin = 1 + ŷin and

note that

x̂ref
T = φ(x̂ref

0 , T ) = φ2(φ1(x̂ref
0 , 1), ŷin) =

(
ŷ3

in

3
, 0

)T
, (9.83)

where f̂end = f2(x̂
ref
T ) = (0,−1)T . Our choice of T > t̂ref here is arbitrary, and we

have chosen T = t̂ref + ŷin for clean calculations. Using (9.15), we can now construct

the deterministic saltation matrix associated with this crossing as

Dx(x̂in) = I +
(fout − fin)ĥx

ĥxfin
=

 ŷ2
in 0

−2 1

 , (9.84)

where ĥx = (1 0). From (9.4) we find that

φ1,x(x̂ref
0 , 1) =

 1 0

1− cos(1) 1

 (9.85)

and

φ2,x(x̂in, ŷin) =

1 ŷ2
in

0 1

 , (9.86)

giving

φx(x̂ref
0 , T ) = φ2,x(x̂in, ŷin)Dx(x̂in)φ1,x(x̂ref

0 , 1) =

 − cos(1)ŷ2
in ŷ2

in

−(cos(1) + 1) 1

 . (9.87)

In a deterministic system, we can now estimate the position a trajectory with starting

point x̂0 = x̂ref
0 + ε, |ε|≪ 1, in a small neighbourhood of x̂ref

0 , after time T by

φ(x̂0, T ) ≈ x̂ref
T + φx(x̂ref

0 , T )ε. (9.88)
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a) b)

Figure 9.8: The distribution of the image of 1,000 linearly spaced points on the
perimeter of the circle of radius 0.01 about x̂ref

0 after time T , given by a) numerical
simulation of the full nonlinear stochastic system using an Euler-Maruyama Scheme
with fixed timestep dt = 5× 10−7, and b) the approximation (9.90). Here θ = 20,
c = 45, σ = 0.5 and Σ = 1.4. This gives that the long term standard deviation of P
and V are σ∗P ≈ 2.046× 10−3 and σ∗V ≈ 6.139× 10−2, respectively while the normal
velocity to the discontinuity boundary in the deterministic case is ĥxf̂in = 1.

An example of this can be seen in Figure 9.7.

Suppose now that the boundary D̂ given in (9.82) is replaced by the stochastically

varying boundary D given by

D = {x : h(x, t) = 0}, (9.89)

where h(x, t) = x − P (t) and P (t) is the stochastic process given in Section 9.3.1.

Referring to Section 9.2.3, we find that in this new noisy system

φ(x̂0, T ) ≈ x̂ref
T + φ∗x(x̂ref

0 , T )ε+ (f̂in − f̂out)∆tref, (9.90)

where ∆tref is the random component of the time of flight to D for the reference
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trajectory, and

φ∗x(x̂ref
0 , T ) = φ2,x(x̂in, ŷin)D∗x(x̂in)φ1,x(x̂ref

0 , 1)

=
φ2,x(x̂in, ŷin)

1− V ∗

ŷ2
in − V ∗ 0

−2 1− V ∗

φ1,x(x̂ref
0 , 1), (9.91)

where V ∗ = V (t̂ref|P (t̂ref)) is the random velocity of the boundary at t̂ref. In Figure

9.8 we compare this estimate to simulation of the entire system. In both cases we

consider a sample of 1000 trajectories for each initial condition. We clearly see

that the approximation gives a good estimate of the distribution produced by the

full simulation of the system. In particular, we have calculated the generalised

2-dimensional Kolmogorov-Smirnov test (K-S test) statistic, derived by Fasano and

Franceschini [34], on the two samples to be DKS ≈ 0.016793 using the Matlab®

routine kstest2d.m [35]. As with all forms of linearisation, the estimate becomes

less accurate as the perturbations away from the reference trajectory increase. In

other words, our method breaks down if either the initial neighbourhood of the

reference trajectory or the amplitude of the noise becomes too large.

9.4.2 A Limit Cycle in a Piecewise-Linear System

In this section we will consider the effects of boundary noise on a periodic attractor.

Consider the piecewise-linear system in the plane given by

ẋ =

 f1(x) = ALx + uL, x ∈ S−,

f2(x) = ARx + uR, x ∈ S+,
(9.92)

where x = (x, y)T is the state space variable and f1 and f2 are the vector fields in S−

and S+, respectively. The two regions

S− = {x : x < 0}, S+ = {x : x ≥ 0} (9.93)
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are separated by the discontinuity boundary

D̂ = {x : ĥ(x) = 0}, (9.94)

where ĥ(x) = x. We let

AL =

 2γ −1

γ2 + 1 0

 , uL =

 0

γ2 + 1

 (9.95)

and

AR =

T −1

D 0

 , uR =

0

a

 . (9.96)

It has been shown by Freire et al. [36] that when a > 0 and T < 0, a stable limit

cycle bifurcates as γ increases through 0 in a focus-center-limit cycle bifurcation.

This limit cycle exists provided γ is sufficiently small.

In particular, when D < 0 this system has a repellor spiral equilibrium in the

left-half plane at xeqL = (−1,−2γ)T and a saddle in the right half plane at xeqR =

(−a/D,−Ta/D)T . In this case the stable limit cycle surrounds the repellor spiral

in the left-half plane and is bounded by the stable and unstable manifolds of the

saddle in the right-half plane. In fact the stable manifold of the saddle at xeqR

gives the boundary of the basin of attraction of the stable limit cycle, as shown for

T = D = −1, a = 1 and γ = 7 × 10−2 in Figure 9.9. For some γc > 0 this stable

limit cycle is destroyed in a homoclinic bifurcation.

Now, let φL and φR be the solutions to (9.92) in S− and S+, respectively. Using

the methods described in Section 9.2.1, we can calculate the monodromy matrix, M,

associated with the periodic solution x̄(t) with period τ , when it exists. Taking an

initial condition xref
0 ∈ S−, we find

M = φL,x(x̂2, τ − t̂2 − t̂1)D2,x(x̂2)φR,x(x̂1, t̂2)D1,x(x̂1)φL,x(xref
0 , t̂1), (9.97)
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Figure 9.9: Stable limit cycle shown in green (on S−) and purple (on S+) for the
system given by (9.92)-(9.96) with T = D = −1, a = 1 and γ = 7× 10−2. The stable
and unstable manifolds of the saddle are shown in blue and red respectively and the
basin of attraction of the limit cycle is shaded grey.

where φL(xref
0 , t̂1) = x̂1 = (0, y1)T , φR(x̂1, t̂2) = x̂2 = (0, y2)T and ĥ(x̂1) = ĥ(x̂2) = 0.

The saltation matrices are given by

D1,x =

 1 0

γ2+1−a
y1

1

 and D2,x =

 1 0

a−(γ2+1)
y2

1

 , (9.98)

and the fundamental solution matrices are given by

φL,x(t) = eγt

cos(t) + γ sin(t) − sin(t)

(1 + γ2) sin(t) cos(t)− γ sin(t)

 (9.99)

and

φR,x(t) =
1√
∆

λ1e
λ1t − λ2e

λ2t eλ2t − eλ1t

D(eλ1t − eλ2t) λ1e
λ2t − λ2e

λ1t

 , (9.100)

where ∆ = T 2 − 4D and λ1,2 = 1
2
(T ±

√
∆).

The eigenvalues of the monodromy matrix M are known as the characteristic multi-

pliers or Floquet multipliers ρi of the periodic orbit. The multiplier associated with

perturbations along the periodic solution is always unity, which we will label ρ1. The

value of the remaining multipliers, or multiplier in this case since the system under
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a) b)

Figure 9.10: a) The characteristic multiplier ρ2 and b) the period of the limit cycle
τ in the system given by (9.92)-(9.96) with T = D = −1 and a = 1 shown in yellow.
The dashed red line indicates the value of γc, the value of γ for which the stable
limit cycle is destroyed in a homoclinic connection. The purple line in b) indicates
tR the time spent by the orbit in S+ each period.

consideration is 2-dimensional, determines the local stability of the periodic orbit. In

particular, if the remaining multipliers have magnitude less than unity the periodic

orbit under consideration is stable.

Alternatively, choosing a Poincaré section P defined by gP(x) = 0 and containing

xref
0 , one can examine the eigenvalues of the matrix

MP,x(xref
0 ) =

(
I − f ref

0 gP,x(xP)

gP,x(xP)f ref
0

)
M, (9.101)

where f ref
0 = F(xref

0 ). The matrix MP,x(xref
0 ) has a zero eigenvalue ν1 corresponding

to ρ1, and the periodic solution is stable if the other eigenvalue ν2 has magnitude

less than 1. For example, choosing xref
0 = (xref

0 , yref
0 )T ∈ S− such that f ref

0 = f1(xref
0 ) =

ALxref
0 + uL = (0 f)T , for f ∈ R, i.e. such that 2γxref

0 = yref
0 and

gP(x) = gP((x, y)) = y − yref
0 , (9.102)

we find that

PP :=

(
I − f ref

0 gP,x(xP)

gP,x(xP)f ref
0

)
=

1 0

0 0

 . (9.103)
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For simplicity, without loss of generality, when considering the stable limit cycle of

system (9.92) we will always use the initial condition xref
0 = (xref

0 , yref
0 )T ∈ S−, such

that 2γxref
0 = yref

0 and the associated Poincaré section given by (9.102).

In Figure 9.10a) we plot the value of the characteristic multiplier ρ2 for 0 < γ < γc.

We see that ρ2 decreases from 1 as γ increases, indicating that the periodic orbit is

stable for all values of γ in this range. Figure 9.10b) shows how the period of the

periodic orbit evolves as we increase γ. When γ = 0 the equilibrium in the left-half

plane xeqL , is a center. As γ increases through zero the stable periodic orbit is born

in a focus-center-limit cycle bifurcation from the most external periodic orbit of the

center. The center in question is tangent to the discontinuity surface at the origin

which has period τ = 2π. As γ increases towards γc the portion of the periodic orbit

in the right half-plane S+ approaches the stable and unstable manifolds of the saddle

xeqR and the period τ approaches infinity.

We are interested in studying the system (9.92)-(9.96) when there is uncertainty

associated with the position of the discontinuity surface. In other words, we consider

the system (9.92)-(9.96) when the boundary D̂ given in (9.94) is replaced by the

stochastically varying boundary D given by

D = {x : h(x, t) = 0}, (9.104)

where h(x, t) = x− P (t) and P (t) is the stochastic process given in Section 9.3.1.

In particular, let us consider the effect of noise on the family of stable periodic

orbits born in the focus-center-focus bifurcation described above. Using the methods

described in Section 9.2.2, we can calculate the random monodromy matrix, M̃∗,

associated with the deterministic periodic solution x̄(t) with period τ when it exists.

First, we extend our state space to include the random variables ∆t1 and ∆t2

associated with the differences in the time of crossing of the boundary associated

with the two crossings each period. Now, we once again take an initial condition
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Figure 9.11: This figure shows the distribution of ∆t1. The blue histogram is
calculated by numerical simulations of the full system, the red histogram is calculated
from a random sample of the distribution given in (9.107) and the curve is the
analytic form of the distribution given in (9.74). Here T = D = −1, a = 1, γ = 0.05,
c = θ = 20, σ = 0.2, Σ = 0.1 and the sample size N = 50, 000.

xref
0 ∈ S− and find

M̃∗ = φ̃L,x(x̂2, τ − t̂2 − t̂1)D̃∗2,x(x̂2)φ̃R,x(x̂1, t̂2)D̃∗1,x(x̂1)φ̃L,x(x̂ref
0 , t̂1). (9.105)

Using this, we find that orbits starting at x0 in the neighbourhood of x̂ref
0 will have

deviations given by

φL,x(τ − t̂2 − t̂1)D∗2,x(x̂2)φR,x(t̂2)D∗1,x(x̂1)φL,x(̂t1)(x0 − x̂ref
0 )

+φL,x(τ − t̂2 − t̂1)D∗2,x(x̂2)φR,x(t̂2)(0, γ2 + 1− a)T∆t1

+φL,x(τ − t̂2 − t̂1)(0, a− (γ2 + 1))T∆t2 (9.106)

after one orbit. We can also consider the associated Poincaré mapping on the

surface P given by (9.102), premultiplying (9.106) by the matrix PP to project the

deviations onto P . This allows for easier geometric interpretation of the distribution

of deviations about the deterministic periodic orbit.

Referring to (9.21), we can approximate the random variables ∆t1 and ∆t2 to first
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Figure 9.12: This figure shows the sample path of the position process P over one
period of the stable limit cycle of the deterministic piecewise linear system. Here
T = D = −1, a = 1, γ = 0.05, c = θ = 20, σ = 0.2, Σ = 0.1. The red dashed lines
indicate the deterministic crossing times t̂1 and t̂2.

order by

∆ti = − P (t̂i)

ŷi + V (t̂i|P (t̂i))
for i = 1, 2. (9.107)

When the noise amplitude is not too large these give very good approximations to

the actual distributions. For example, it can be seen in Figure 9.11 that this is a

good approximation to the actual distribution of ∆t1 in the case where T = D = −1,

a = 1, γ = 0.05, c = θ = 20, σ = 0.2, and Σ = 0.1. In Figure 9.12 we plot a sample

path of P , the x-coordinate of the boundary given these parameter values. We note

that for the value of c = θ chosen, e−ctm ≈ 0, where tm is the minimum time between

boundary crossings in the deterministic system. This means that during linearisation

we can treat boundary positions at consecutive crossings as independent. We can

see this visually by observing the large number of full oscillations of P between

subsequent crossing times in Figure 9.12.

In Figure 9.13 we plot the distribution of trajectories with initial condition xref
0 ,

after one deterministic period τ . In Figure 9.13a) we show the results of numerical

simulation of 100,000 individual trajectories and in Figure 9.13b) we show the linear

approximation given in (9.106). We again use an Euler-Maruyama scheme with a
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a) b)

Figure 9.13: The distribution of the end points of 100,000 trajectories with starting
point xref

0 , after one deterministic period τ , given by a) numerical simulation using
an Euler-Maruyama scheme with fixed timestep dt = 10−6 and b) approximated
using (9.106). Here T = D = −1, a = 1, γ = 0.05, c = θ = 20, σ = 0.2 and Σ = 0.1.
This gives that the long term standard deviation of P and V are σ∗P ≈ 1.118× 10−4

and σ∗V ≈ 2.236× 10−3, respectively.

fixed timestep for numerical simulation of the stochastic process P (t) local to the

boundary and the analytic solution to the linear ODEs. We see good agreement

between the numerical simulations and the approximations. We find that the 2-

dimensional Kolmogorov-Smirnov test statistic calculated on the two samples is

DKS ≈ 0.032279.

In Figure 9.14 we plot the distribution of the associated Poincaré mapping on the

surface P given by (9.102) in order to more easily compare our approximation with

the numerical simulations. It is clear to see that there is good agreement between the

two distributions which are centred around the deterministic value xref
0 . In Figure

9.15 we plot the distribution after 100 periods and once again observe good agreement

between the two distributions. We see that both the linearised distribution and the

distribution in the full system appear to converge to invariant distributions. We note

that in both Figure 9.14 and Figure 9.15 the linear approximation fails to capture

some of the skewness displayed by the true distribution.

In Figure 9.16 we plot the proportion of trajectories with initial conditions x0 =

xSM + (ε, 0)T on the Poincaré section given by (9.102), which escape the basin of
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Figure 9.14: The distribution of the x-coordinates of 100,000 trajectories with
starting point xref

0 , on their first return to the Poincaré section P , given by numerical
simulation using an Euler-Maruyama scheme with fixed timestep dt = 10−6 in red and
approximated using (9.106) in blue. Here T = D = −1, a = 1, γ = 0.05, c = θ = 20,
σ = 0.2 and Σ = 0.1. The value of xref

0 is highlighted by the red dashed line. This
gives that the long term standard deviation of P and V are σ∗P ≈ 1.118× 10−4 and
σ∗V ≈ 2.236× 10−3, respectively.

Figure 9.15: The distribution of the x-coordinates of 100,000 trajectories with
starting point xref

0 , on their 100th return to the Poincaré section P , given by numerical
simulation using an Euler-Maruyama scheme with fixed timestep dt = 2× 10−6 in
red and approximated using (9.106) in blue. Here T = D = −1, a = 1, γ = 0.05,
c = θ = 20, σ = 0.2 and Σ = 0.1. The value of xref

0 is highlighted by the red
dashed line. This gives that the long term standard deviation of P and V are
σ∗P ≈ 1.118× 10−4 and σ∗V ≈ 2.236× 10−3, respectively.
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Figure 9.16: The proportion of trajectories with initial conditions x0 = xSM+(ε, 0)T

about the deterministic stable manifold of xeqR escaping the basin of attraction of the
stable limit cycle, given by numerical simulation using an Euler-Maruyama scheme
with fixed timestep dt = 2 × 10−6 in dashed red, and approximated using (9.106)
and linearising about the deterministic limit cycle in blue. Here T = D = −1,
a = 1, γ ≈ 0.086038, c = θ = 20, σ = 0.4 and Σ = 0.2. This gives that the long
term standard deviation of P and V are σ∗P ≈ 2.236× 10−4 and σ∗V ≈ 4.472× 10−3,
respectively.

attraction of the stable limit cycle during their first return to the Poincaré section.

Here xSM is the intersection of the deterministic stable manifold of the saddle located

in S+ and the Poincaré section at (xSM , y
ref
0 )T . This stable manifold represents the

boundary of the basin of attraction of the limit cycle in the deterministic system and

so it is interesting to understand how the introduction of noise affects trajectories in

its vicinity. In particular we consider the case when γ is close to γc the value of γ for

which the deterministic periodic orbit is destroyed in a homoclinic bifurcation. The

proportions are calculated by numerical simulation of 50,000 individual trajectories

and approximated using (9.106).

As we would expect, trajectories located significantly outside the deterministic basin

of attraction (ε < 0) never enter it, while those located significantly inside (ε > 0)

never escape. On the other hand, trajectories with initial conditions close to the

boundary of the deterministic basin have the potential to display the opposite

behaviour to that which is observed in the deterministic system. We again see
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Figure 9.17: The distribution of the x-coordinates of the trajectories with starting
point x0 such that xSM − x0 = 10−6, on their first return to the Poincaré section P ,
provided they have remained inside the deterministic basin of attraction. We plot
the distribution given by numerical simulation using an Euler-Maruyama scheme
with fixed timestep 2× dt = 10−6 in red and the distribution approximated using
(9.106) in blue. Here T = D = −1, a = 1, γ ≈ 0.086038, c = θ = 20, σ = 0.4 and
Σ = 0.2. The value of xref

0 is highlighted by the red dashed line.

good agreement between numerical simulations and our linear approximations about

the deterministic periodic orbit, meaning that our approximation can give us good

predictions of behaviour in this region. The approximation of the distribution of

those trajectories which are inside the deterministic basin of attraction upon their

first return to P is also well approximated by our linearisation.

For example, choosing an initial condition just outside the deterministic basin, in

Figure 9.17 we show the distribution of the trajectories that have not escaped,

as given by both numerical simulation and linearisation. In this case numerical

simulations predicted that 74.79 per cent of trajectories would escape the basin

while linearisation predicted 74.42 per cent. Furthermore, since the characteristic

multiplier of the deterministic periodic orbit tends to 0 as γ approaches γc the strong

levels of contraction experienced by deviations away from the periodic orbit result in

a tight distribution centred about the deterministic periodic orbit after one period.

This implies that any escapes will take place before the first return to the Poincaré

surface.
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9.4.3 The Chua Circuit

To show how we can use the methods derived to predict the effects of boundary noise

on attractors in a real-world system close to bifurcation points, we will now consider

an example from electronics. Electronic systems are a rich source of both piecewise-

smooth [14, 16] and noisy dynamical behaviour [17, 37]. In particular, electronic

systems are of interest as they can contain noisy switches and comparators or

switching thresholds subject to uncertain time delays. It is important to understand

how noise of this type can affect the behaviour of electronic systems.

Here, as a simple example, we will consider the classical example of the Chua

circuit. The Chua circuit a nonlinear circuit that was created with the aim of being

the simplest autonomous circuit capable of generating chaos [38, 39]. It was the

first physical system for which the presence of chaos was shown experimentally,

numerically and mathematically [40]. The circuit, shown in Figure 9.18, contains

four linear elements and one nonlinear resistor known as a Chua diode. It can be

easily and cheaply constructed using standard electronic components [41]. The Chua

circuit can be described by the system of ordinary differential equations

dV1

dt
=

1

C1

(G(V2 − V1)− f(V1)),

dV2

dt
=

1

C2

(G(V1 − V2) + I3),

dI3

dt
= − 1

L
(V2 +R0I3), (9.108)

where V1, V2 and I3 are the voltages and current shown in the circuit diagram in

Figure 9.18 and

G =
1

R
. (9.109)

The function

f(V1) = GbV1 +
1

2
(Ga −Gb)(|V1 + E| − |V1 − E|), (9.110)

196



Chapter 9. Paper 3

Figure 9.18: Circuit diagram of the Chua circuit. The circuit consists of four linear
elements (a linear inductor L with internal resistance R0, a linear resistor R and two
capacitors C1 and C2) and a nonlinear resistor NR, called the Chua diode.

Figure 9.19: Typical V -I characteristic of the Chua diode.

gives the piecewise linear voltage-current characteristic of the Chua diode NR with

inner slope Ga and outer slope Gb, as shown in Figure 9.19.

Here we are only interested in the qualitative behaviour of the circuit. We rescale

(9.108) in order to eliminate one of the parameters and obtain the dimensionless

system

dx

dt′
= α(y − x− g(x)),

dy

dt′
= x− y + z,

dz

dt′
= −(βy + γz), (9.111)

where

g(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|). (9.112)
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The dimensionless variables and parameters are defined as

x := V1/E, y := V2/E, z := I3(R/E), (9.113)

α := C2/C1, β :=
R2C2

L
, γ :=

RR0C2

L
, m0 := RGa, m1 := RGb, (9.114)

and the dimensionless time is

t′ :=
t

RC2

. (9.115)

We let D− and D+ denote the two discontinuity boundaries given by x = −1 and

x = 1, respectively. We will denote the regions given by x < −1, |x| ≤ 1 and x > 1,

as S−, S0 and S+, respectively. The system (9.111) has up to three equilibria, namely

x0
eq = (0, 0, 0)T ,

x−eq =
m0 −m1

γm1 + βm1 + β
(γ + β, γ,−β)T ,

x+
eq = −x−eq. (9.116)

Here x0
eq always exists, while x−eq and x+

eq only exist provided x−eq ∈ S− and x+
eq ∈ S+.

Despite its simplicity the Chua circuit displays a huge variety of complex behaviours.

The circuit is one of the most well-studied nonsmooth dynamical systems, and Chua

himself estimated that, just ten years after the circuit had been introduced, more

than two hundred papers analysing its dynamics had been published [42]. In these

studies a wide range of both periodic and nonperiodic attractors have been found. For

example, in [43] and [44] Chua reports on both the period-doubling and intermittency

routes to chaos and presents two galleries of strange attractors. For a large gallery

of attractors in various shapes and forms that have been found in the Chua circuit

see [45].

In this section we will consider how noise on the system’s two discontinuity boundaries

D− and D+ affects the Chua circuit, comparing our first-order approximations to

numerical simulations obtained using an Euler-Maruyama scheme with a fixed
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a) b)

Figure 9.20: Five coexisting attractors in the Chua circuit with α = 8.4, β = 12,
γ = −0.005, m0 = −1.2 andm1 = 0.05. a) in 3-dimensional phase space, b) projected
onto the x− y plane.

timestep and the analytic solutions of the system ODEs. In particular, we will

investigate the effect on some interesting dynamical behaviours reported by Stankevich

et al. [46], where the authors describe the phenomenon of hidden attractors in the

Chua circuit. An attractor is called a hidden attractor if its basin of attraction does

not intersect with the neighbourhood of an equilibrium point, otherwise it is called a

self-excited attractor [47].

9.4.3.1 Escaping Periodic Attractors

First we will consider the case where α = 8.4, β = 12, γ = −0.005, m0 = −1.2

and m1 ∈ (0.02, 0.14765). For these parameter values the system (9.111) has five

coexisting attractors as shown in Figure 9.20. These attractors include the equilibrium

points x−eq and x−eq given in (9.116). The system also has three periodic attractors.

There are two small symmetric period-1 periodic orbits, C− and C+ that crossD− and

D+ twice, respectively. The final attractor is a large period-1 orbit C∞, which crosses

both D− and D+ twice. The three periodic attractors, C−, C+ and C∞, are hidden

attractors as if we choose initial conditions in the vicinity of any equilibrium point

(stable or unstable), we will reach one of the stable equilibrium points. The smaller

symmetric periodic attractors C− and C+ are born in a saddle-node bifurcation as
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Figure 9.21: The basins of attraction of five coexisting attractors in the Chua
circuit with α = 8.4, β = 12, γ = −0.005, m0 = −1.2 and m1 = 0.05 on the x = −1
discontinuity boundary.

the parameter m1 decreases through m1 ≈ 0.14765.

The basins of attraction have a complicated intermingled structure. We are most

interested in the structure of these basins on the discontinuity boundaries D− and

D+. In Figure 9.21 we plot the basins of attraction of all five attractors on the

discontinuity boundary D− in the neighbourhood of C−’s two intersections with the

boundary. The basin of the large periodic attractor C∞ is indicated in green, the

basins of the symmetric periodic attractors C− and C+ are shown in red and blue,

respectively, while the basins of the two stable equilibria x−eq and x+
eq are indicated

by magenta and cyan, respectively. We see that the basins of x−eq, x+
eq, C− and

C+ consist of bands that are spiralled together, and their boundaries have fractal

structures. The basin of the large periodic attractor C∞ surrounds the other basins.

The attractors themselves are shown in Figure 9.20 and are coloured by the same

code as the basins in Figure 9.21.

As we have discussed in Section 9.2.3, the inclusion of noise on the boundary causes

no linear effect on a continuous-piecewise-linear system such as the Chua circuit.

Consequently, the first order approximation derived in Section 9.2.3 is insufficient in

this case. However the inclusion of noise on either of the boundaries certainly has an
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Figure 9.22: PDF Histogram of x co-ordinates of 10,000 trajectories with initial
conditions xref

0 = (xref
0 , yref

0 , zref
0 )T ∈ C−, such that xref

0 ∈ S− and ẋ = 0, after one
period in a system with a noisy boundary given by numerical simulation using an
Euler-Maruyama scheme with fixed timestep dt = 10−6. Here the values of the
deterministic parameters are α = 8.4, β = 12, γ = −0.005, m0 = −1.2 and m1 =
0.145 while the values of the parameters for the stochastic process are σ = Σ = 0.4
and c = θ = 50. The dashed line indicates the value of xref

0 . This gives that the long
term standard deviation of P and V are σ∗P ≈ 2.262× 10−4 and σ∗V ≈ 1.131× 10−2,
respectively.

effect on the Chua circuit as shown in Figure 9.22. We will return to this issue in

Section 9.4.3.2.

Let us first consider a discontinuous model of the Chua circuit. We replace the

continuous-piecewise-linear function given in (9.112) with the discontinuous piecewise

linear function

g(x) =


m1x+m1 −m0 if x < −1,

(m0 − ε)x if |x| ≤ 1,

m1x+m0 −m1 if x > 1,

(9.117)

where ε is the level of discontinuity. For small values of ε the hidden attractors C−

and C+ persist and can be found by numerical continuation. These attractors are

destroyed in saddle-node bifurcations if the magnitude of ε grows too large. For

example, in the case where m1 = 0.145 they exist when −0.06211 < ε < 0.00205 as

shown in Figure 9.23.
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a) b)

Figure 9.23: Bifurcation diagrams showing the saddle bifurcations of C− as the
magnitude of ε grows. In a) we plot the x-coordinate of the intersection of C− with
the Poincaré section given by {x ∈ S− : ẋ = 0} as ε varies (solid) alongside the
corresponding x-coordinate of the coeexisting unstable periodic orbit (dashed). In b)
we plot the eigenvalues of the Jacobian of C− Here α = 8.4, β = 12, γ = −0.005,
m0 = −1.2 and m1 = 0.145.

a) b)

Figure 9.24: The distribution of the (x, y)-co-ordinates of 5,000 trajectories with
initial conditions xref

0 = (xref
0 , yref

0 , zref
0 ) ∈ C− such that xref

0 ∈ S− and ẋ = 0, after
20 periods in a system with a noisy boundary, on the Poincaré section {(x, y, z) :
z = zref

0 }. Given by a) Numerical simulation of the whole system using an Euler-
Maruyama scheme with fixed timestep dt = 10−7 and b) first-order approximation.
Here the values of the deterministic parameters are α = 8.4, β = 12, γ = −0.005,
m0 = −1.2, m1 = 0.145 and ε = −0.0434079 while the values of the parameters for
the stochastic process are σ = Σ = 0.4 and c = θ = 50. This gives that the long
term standard deviation of P and V are σ∗P ≈ 2.262× 10−4 and σ∗V ≈ 1.131× 10−2,
respectively.
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In Figure 9.24 we compare the distribution of the (x, y)-co-ordinates of 5,000 tra-

jectories starting in the deterministic periodic orbit C− at (xref
0 , yref

0 , zref
0 )T on their

twentieth return to the Poincaré section given by z = zref
0 in the discontinuous system

(ε ≈ −0.0434) with our first-order approximation (9.47). We see that there our

approximation shows good agreement with the results given by simulation of the

full system. Concretely, we find that the Kolmogorov-Smirnov statistic given by the

two-dimensional K-S test on the two samples shown in Figure 9.24 is DKS ≈ 0.037356.

This approximation will continue to give us accurate results provided the size of the

noise does not become too large relative to the size of the discontinuity.

We will now consider the effect of noise on the periodic attractors C− and C+. In

particular, we will focus on the potential for noise to effectively destroy an attractor.

We consider a trajectory with an initial condition on the deterministic periodic

attractor C− (as the system is symmetric it is sufficient to consider just one of the

attractors).

We note that in order for noise to push such a trajectory out of periodic behaviour it

must first push the trajectory out of the orbit’s basin of attraction. This can only

happen after a boundary crossing, as this is when errors are introduced into the system.

If a trajectory remains within the attractor’s basin immediately after a boundary

crossing it will remain there until the next crossing as the trajectory’s evolution

between crossings is entirely deterministic. As a result, in order to understand the

probability of a trajectory escaping periodic behaviour, we can simply consider the

distribution of trajectories immediately after crossing the noisy boundary projected

onto the deterministic boundary. In particular, we analyse how this distribution

interacts with the deterministic system’s basins of attraction. In order to have

escaping trajectories the distribution must cross the closest boundary of C−’s basin.

The closest boundary in this case is given by the stable manifold of C−u , where C−u is

the corresponding unstable periodic orbit.

In order to estimate whether noise will push orbits out of periodic behaviour we will
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a) b)

Figure 9.25: a) Steady state distribution of orbit errors on the discontinuity
boundary D− for trajectories with initial condition on the periodic orbit C−. b)
Convergence of the standard deviation in the z-direction, σz, to its steady state value
for the distribution shown in a).

consider the linearised distribution of trajectories projected onto the deterministic

discontinuity boundary D−, immediately after crossing the noisy boundary. There

are two such crossings each period, corresponding to the two deterministic crossings,

at x̂1 and x̂2. These distributions are given by maps, which can be easily calculated

by referring to (9.57)-(9.59) in Section 9.2.5. Since the eigenvalues of the stochastic

maps have expected magnitude less than unity (corresponding to the eigenvalues

of the periodic orbit’s deterministic Poincaré map) and small variance the maps

converge to steady-state invariant distributions as shown in Figure 9.25.

These distributions linearly approximate the corresponding distributions in the

full system. We will also linearly approximate the closest boundary of the basin

of attraction by taking the eigenvector of the deterministic Poincaré map of C−u

corresponding to the eigenvalue with magnitude less than unity. In other words, we

take the stable manifolds of the fixed points of the linearised Poincaré maps Pi : D− →

D− defined in neighbourhoods of x̂i for i = 1, 2. As a further simplification, instead of

the linearised distributions obtained from the map, we will consider the corresponding

invariant ellipses. These are the ellipses centred on the mean of the distributions

(the (y, z)-coordinates of x̂i) with major and minor axes given by the eigenvalues
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and eigenvectors of the covariance matrix of the invariant distribution. The major

and minor radii of the ellipses are given by RγIwI and RγIIwII , respectively where

γI is the largest eigenvalue with corresponding eigenvector wI . Here R represents

the number of standard deviations of the invariant distribution contained within the

ellipse.

Figures 9.26 and 9.27 show how we can use the invariant linearised distributions

found, along with knowledge of the deterministic system, to estimate the effect of

noise on periodic dynamics close to bifurcation. In particular we consider the case

where ε = −0.0618516. In Figure 9.26 we see that when Σ = σ = 0.5875 the closest

basin boundary is approximately tangent to the 7-standard deviation ellipse about

x̂1, while the 7-standard deviation ellipse about x̂2 is entirely contained within the

basin of attraction of C−. If our linear prediction is accurate this would indicate that

a given trajectory has a very low probability of escaping periodic behaviour each

time it interacts with the noisy boundary. Indeed we observe that in this case the

noise amplitude is not sufficiently high to push any of the 3000 sample trajectories

out of periodic behaviour over 200 simulated periods in the full system. Furthermore,

the distribution from the full system after 200 periods corresponds very well to the

linearised prediction of the invariant distribution.

On the other hand in Figure 9.27 we see that when Σ = σ = 0.7 the closest basin

boundary is approximately tangent to the 5-standard deviation ellipse about x̂1 while

the 7-standard deviation ellipse about x̂2 extends outside the basin of attraction

of C−. This indicates that there is potential for trajectories to escape the basin

of attraction of C− and hence be pushed out of periodic behaviour during each

interaction with the noisy boundary. This is particularly true when crossing the

boundary close to x̂1. The simulation of the full system confirms this prediction.

A small, but significant, number of the sample of 3000 trajectories simulated are

pushed out of the basin of attraction of C− over 200 simulated periods in the full

system. The distribution of the trajectories remaining in the basin attraction after 200
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a) b)

Figure 9.26: Invariant ellipses with R = 5 and R = 7 corresponding to the invariant
distributions associated with the two intersections a) x̂1 and b) x̂2 of C− with D−.
The linearised basin boundaries are indicated by the black line, the intersections of C−

and C−u with the boundary are indicated by black circles. The distribution of points
plotted corresponds to the intersection of 3000 trajectories with initial conditions on
the deterministic periodic orbit with D− on their 100th to 200th returns projected
onto the deterministic boundary. Here the values of the deterministic parameters
are α = 8.4, β = 12, γ = −0.005, m0 = −1.2, m1 = 0.145 and ε = −0.0618516
while the values of the parameters for the stochastic process are Σ = σ = 0.5875
and c = θ = 50. This gives that the long term standard deviation of P and V are
σ∗P ≈ 4.881× 10−4 and σ∗V ≈ 2.441× 10−2, respectively. The fixed timestep for the
Euler-Maruyama scheme is dt = 2× 10−6.
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a) b)

Figure 9.27: Invariant ellipses with R = 5 and R = 7 corresponding to the invariant
distributions associated with the two intersections a) x̂1 and b) x̂2 of C− with the
deterministic boundary at x = −1. The linearised basin boundaries are indicated by
the black line, the intersections of C− and C−u with the boundary are indicated by
black circles. The distribution of points plotted corresponds to the intersection of
3000 trajectories with initial conditions on the deterministic periodic orbit with D−
on their 100th to 200th returns projected onto the deterministic boundary simulated
using an Euler-Maruyama scheme with fixed timestep dt = 2 × 10−6. Here the
values of the deterministic parameters are α = 8.4, β = 12, γ = −0.005, m0 = −1.2,
m1 = 0.145 and ε = −0.0618516 while the values of the parameters for the stochastic
process are Σ = σ = 0.7 and c = θ = 50. This gives that the long term standard
deviation of P and V are σ∗P ≈ 6.930× 10−4 and σ∗V ≈ 3.464× 10−2, respectively.

periods is also skewed towards the basin boundary when compared to the linearised

distribution.

Suppose now that we consider a system where the noise amplitude on D− is Σ =

σ = 0.5875 and the noise amplitude on D+ is Σ = σ = 0.7. By symmetry we find

that in this system the periodic orbit C− (which crosses D−) would remain robust

while the periodic orbit C+ (which crosses D+) would allow trajectories to escape.

In general, we note that it requires a high-noise amplitude to push trajectories out of

periodic behaviour, even close to its destruction in a saddle-bifurcation. Examining

the periodic orbit further we find that this is a result of the structure of the invariant

manifolds associated with it. The eigenvector of the periodic orbit’s monodromy

matrix associated with the eigenvalue that approaches unity as we approach the

saddle bifurcation points almost along the periodic orbit. The eigenvalue associated
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with the other eigenvector takes a value close to zero, as shown in Figure 9.23. This

means that trajectories undergo very strong contraction towards the periodic orbit

except along the direction which is almost along the periodic orbit, even close to the

bifurcation.

9.4.3.2 The Continuous Case

Let us now return to the continuous case. Since a first-order approximation is

insufficient here, with D∗x(xin) collapsing to the identity matrix and f̂in = f̂out, we

will instead consider a pseudo-second order approximation replacing equation (9.47)

with

φ(x0, T )− φ(x̂ref
0 , T ) ≈ φx(x̂ref

0 , T )(x0 − x̂ref
0 )

+ φ2,x(x̂out, T − t̂ref)
(

(f̂in − f̂out)∆tref + (ĝin − ĝout)∆t
2
ref

)
,

(9.118)

where

ĝin = ḟ1(x̂in), and ĝout = ḟ2(x̂out), (9.119)

are the incoming and outgoing second derivatives of x with respect to time evaluated

at the deterministic boundary crossing point x̂in.

This approximation is a natural extension of our method for continuous systems. In

the first-order approximation we introduce an error (f̂in− f̂out)∆tref each time we cross

a stochastically varying boundary. We note that this is simply a first order Taylor

expansion of φ2(φ1(x̂in,∆tref),−∆tref) about ∆tref = 0, while our pseudo-second

order approximation simply replaces this with the second order Taylor expansion.

This approach leads to good approximations in the case of the Chua circuit. For

example, Figure 9.28 approximates the distribution of the positions of the trajectories

simulated in Figure 9.22 using (9.118). We clearly see good agreement between the

simulation of the full system and our approximation.
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Figure 9.28: Approximation of the distribution of the positions of the trajectories
simulated in Figure 9.22 using (9.118).

Indeed, our first-order approximation begins to break down as ε approaches 0, i.e. as

our system approaches a continuous system. In this case, using the second-order

approximation results in significant improvements. For example, in Figure 9.29a)

we compare our first order approximation to simulation of the full system, where

ε = −6.21 × 10−5, and see that our approximation in this case is pretty poor. In

Figure 9.29b) we compare the same data to our second order approximation and

observe that there is now very good agreement. The importance of the second-order

terms decreases as the level of discontinuity of the system’s vector field increases.

For example in Figure 9.30 we compare the first and second order approximations

when ε = −5.589 × 10−4. The authors consider second order approximations and

the case of continuous piecewise-smooth systems in more detail along with other

generalisations in [30].

9.4.3.3 Merging Periodic Attractors

We will now consider the case where α = 8.4, β = 12, γ = −0.005, m0 = 0.121

and m1 ∈ (−1.13,−1.0929). In this case the system (9.111) has three coexisting

attractors, x0
eq, the equilibrium at the origin and two symmetric period-1 limit cycles

C1 and C1 which cross both D− and D+ twice. These attractors are shown in
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a) b)

Figure 9.29: The distribution of x co-ordinates of 10,000 trajectories with initial
conditions xref

0 = (xref
0 , yref

0 , zref
0 )T ∈ C−, such that xref

0 ∈ S− and ẋ = 0, after
one period in a system with a noisy boundary in blue compared to a) first-order
approximation and b) second order approximation overlayed in red. Here the values
of the deterministic parameters are α = 8.4, β = 12, γ = −0.005, m0 = −1.2,
m1 = 0.145 and ε = −6.21 × 10−5, while the values of the parameters for the
stochastic process are σ = Σ = 0.4 and c = θ = 50. This gives that the long
term standard deviation of P and V are σ∗P ≈ 2.262× 10−4 and σ∗V ≈ 1.131× 10−2,
respectively. The numerically simulated distribution in blue used an Euler-Maruyama
scheme with fixed timestep dt = 10−6.

Figure 9.31, where C1 and C1 and marked in red and blue, respectively, while x0
eq is

indicated by the black dot. Unlike the first example in Section 9.4.3.1, in this case

both periodic attractors are self-excited with the equilibria at x−eq and x+
eq located on

the boundary of their basins [46]. The symmetric periodic attractors are born in a

pitchfork bifurcation at m1 ≈ −1.0929, where a single period-1 attractor is split into

two period-1 attractors and an unstable period-1 orbit.

The intersection of the basins of attraction of all three coexisting attractors with

the discontinuity boundary D− are shown in Figure 9.32, for these parameter values.

The area of phase space for which trajectories diverge is coloured cyan, while the

basins of attraction of the two periodic attractors C1, C2 and the equilibrium x−eq

are coloured by the same code as used in Figure 9.31. We once again see that the

basins are intertwined and have a complex structure.

As with the case of C− and C+ in Section 9.4.3.1 the periodic attractors C1 and
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a) b)

Figure 9.30: The distribution of x co-ordinates of 10,000 trajectories with initial
conditions xref

0 = (xref
0 , yref

0 , zref
0 )T ∈ C−, such that xref

0 ∈ S− and ẋ = 0, after
one period in a system with a noisy boundary in blue compared to a) first-order
approximation and b) second order approximation overlayed in red. Here the values
of the deterministic parameters are α = 8.4, β = 12, γ = −0.005, m0 = −1.2,
m1 = 0.145 and ε = −5.589 × 10−4, while the values of the parameters for the
stochastic process are σ = Σ = 0.4 and c = θ = 50. This gives that the long
term standard deviation of P and V are σ∗P ≈ 2.262× 10−4 and σ∗V ≈ 1.131× 10−2,
respectively. The numerically simulated distribution in blue used an Euler-Maruyama
scheme with fixed timestep dt = 10−6.

a) b)

Figure 9.31: Three coexisting attractors in the Chua circuit with α = 8.4, β = 12,
γ = −0.005, m0 = 0.121 and m1 = −1.1. a) in 3-dimensional phase space, b)
projected onto the x− y plane.
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Figure 9.32: The basins of attraction of three coexisting attractors in the Chua
circuit with α = 8.4, β = 12, γ = −0.005, m0 = 0.121 and m1 = −1.1 on the x = −1
discontinuity boundary.

C2 persist in the discontinuous Chua system provided the magnitude of ε is not

too large and can be found by numerical continuation. In Figure 9.33 we plot the

eigenvalues of the Jacobian C1 along with the x-coordinate of the intersection of C1

with the Poincaré section given by P = {(x, y, z) : x < −1, ẋ = 0}. These attractors

merge in pitchfork bifurcations if the magnitude of ε becomes too large. For example,

when m1 = −1.1, C1 and C2 persist as separate attractors for ε ∈ (−0.2098, 1.847),

as shown in Figure 9.33.

Again we consider the effects of boundary noise on the system’s periodic attractors.

First we will use the linearisation method to predict whether noise will cause the

two periodic attractors C1 and C2 to merge close to the pitchfork bifurcation

at ε ≈ −0.2098. In other words we will try to predict when the distribution of

trajectories starting in the deterministic C1 orbit will overlap significantly with the

corresponding distribution about C2. In this case we assume that the noise processes

P−(t) and P+(t) on D− and D+, respectively, have the same characteristic parameter

values c = θ = 50 and σ = Σ = 0.95. As a result the system is entirely symmetric

and we can consider the distribution of trajectories starting in C1 as a mirror of the

distribution of trajectories starting in C2.
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a) b)

c)

Figure 9.33: Bifurcation diagram showing the pitchfork bifurcations of C1 and as
C2 the magnitude of ε grows. We plot a) the eigenvalues of the Jacobians of C1,2,
b) the y-coordinate of one of the intersections of C1 and C2 with D+ and c) the
(y, z)-coordinates of one of the intersections of C1 and C2 with D− as ε varies. Here
α = 8.4, β = 12, γ = −0.005, m0 = 0.121 and m1 = −1.1.
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a) b)

Figure 9.34: Invariant ellipses corresponding to the invariant linearised distributions
associated with the intersections x̂1

4, and x̂2
2, of C1 and C2 with D−, respectively. The

distribution of points plotted corresponds to the intersection of 1000 trajectories with
initial conditions on the deterministic periodic orbit with D− on their 1000th return
projected onto the deterministic boundary simulated using an Euler-Maruyama
scheme with fixed timestep dt = 10−6. The stochastic parameters are c = θ = 50
and σ = Σ = 0.95. This gives that the long term standard deviation of P and
V are σ∗P ≈ 1.276 × 10−3 and σ∗V ≈ 6.38 × 10−2, respectively. The deterministic
parameters are α = 8.4, β = 12, γ = −0.005, m0 = 0.121, m1 = −1.1. In a) we take
ε ≈ −0.20595 and plot ellipses for R = 5 and R = 7. In b) we take ε ≈ −0.20800
and plot ellipses for R = 5.

In Figure 9.34a) we consider the case where ε ≈ −0.20595. We find that, as in the

previous example, the linearised distributions about the four boundary crossing points

of the two periodic orbits on the boundary converge to invariant distributions. We

take the standard deviation ellipses associated with these distributions and consider

how they interact. We find that for ε ≈ −0.20595 the ellipses will first intersect when

we consider approximately R = 7 standard deviations. This indicates that there is

vanishingly small probability that the distribution of trajectories starting in C1 will

overlap with the distribution of trajectories starting in C2. Simulation of the full

system validates this fact. We find that there is no overlap between the distributions

of 1000 orbits starting in each of the periodic orbits after 1000 periods.

In Figure 9.34b) we consider the case where ε ≈ −0.20800. In this case we find

that the ellipses have a significant intersection when we consider R = 5 standard
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deviations. This indicates that there is significant probability that the distribution of

trajectories starting in C1 will overlap with the distribution of trajectories starting

in C2. Simulation of the full system once again confirms this. We find that there

is a significant overlap between the distributions of 1000 orbits starting in each of

the periodic orbits after 1000 periods resulting in the effective merging of the two

periodic attractors.

9.5 Summary and Discussion

We have shown that it is possible to generalise techniques for the linearisation of

discontinuous piecewise-smooth systems to systems in which the position of the

discontinuity boundary varies according to a differentiable stochastic process P (t).

In Section 9.2 we generalised the concept of a saltation matrix to account for the

presence of noise on the boundary. We showed that this can be done by extending the

original state space variable x, with corresponding vector field f , to the state space

variable (x, t,∆tref)
T , with corresponding vector field (f , 1, 0)T , before projecting our

results back to the original space. Here ∆tref is the random variable corresponding

to the difference in the time of intersection of the reference trajectory with the

discontinuity boundary in the stochastic system compared to the deterministic

system.

Section 9.3 introduced P (t), a stochastic process suitable to describe the stochastic

component of the position of a discontinuity boundary. This stochastic process

has many desirable characteristics including differentiability giving it a well defined

velocity, a long-term mean of zero meaning the boundary will not tend to drift, and

approximately zero covariance over longer timescales.

Section 9.4 gave some examples of how linearisation can be used to investigate the

effects of boundary noise on discontinuous piecewise smooth systems. We showed that

the derived method is suitable for the analysis of discontinuous nonlinear systems in

215



Chapter 9. Paper 3

Section 9.4.1 and in Section 9.4.2 we used linearisation to predict basin of attraction

escapes in a 2-dimensional piecewise-linear system. Finally, Section 9.4.3 investigated

the effects of boundary noise on a 3-dimensional discontinuous piecewise-linear model

of the Chua circuit. In particular we used linearisation to predict the effects of noise

on both hidden and self-excited periodic attractors in regimes where the system is

multistable.

This paper also noted some of the weaknesses of the derived method. In particular

we have discussed how the method is not applicable to continuous systems with

higher-order discontinuities. The generalisation of the derived mapping to continuous

systems, where a higher-order approximation is required, and hybrid systems, where

the map on the boundary is not the identity (potentially imposing further conditions

on the properties of P (t)), is the focus of ongoing investigation by the authors [30].

This work also considers non-transversal interactions with stochastic discontinuity

boundaries and boundaries with stochastic components that depend on the system’s

state variables, cases which have not been investigated in the current work.
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Abstract. For stability and bifurcation analysis involving recurrent

behaviour such as periodic orbits, it is important to be able to quantify

how nearby trajectories behave by means of a local mapping. In smooth

systems these mappings can be computed using the system’s variational

equations. For piecewise-smooth or hybrid systems the same technique

cannot be used without some corrections. This is due to the fact that

nearby trajectories can be topologically distinct because they can undergo

different sequences of events associated with the system’s discontinuity

boundaries. To account for this, one can derive zero-time discontinuity
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mappings associated with boundary interactions. In this paper we derive

zero-time discontinuity mappings for piecewise-smooth vector fields and

hybrid dynamical systems in which the position of the discontinuity

boundary has a stochastic component. In particular, we consider systems

with stochastically oscillating boundaries and systems with stochastic

imperfections on the discontinuity boundary.

10.1 Introduction

In many cases, modelling of real-world systems in engineering and science naturally

gives rise to piecewise-smooth or hybrid dynamical systems. These systems are

characterised by having various kinds of discontinuities or switching events. For

example, the study of mechanical systems with impacts or friction [1, 2, 3, 4, 5, 6],

switching in electrical circuits [7, 8] and relay control systems [9, 10] all naturally

lead to such nonsmooth systems. Piecewise-smooth models have also been used to

model cellular mitosis [11], climate systems [12], migration [13], ocean convection

[14], thermohaline circulation [15] and economic or sociological systems involving

decision thresholds [16, 17].

The dynamical systems resulting from these models exhibit all of the behaviour of

smooth systems. For example we find invariant sets such as equilibria, periodic orbits

and chaotic sets and these sets can undergo smooth bifurcations. However, several

unique phenomena also occur in nonsmooth systems including types of bifurcations

referred to as discontinuity-induced bifurcations (DIBs). Examples include grazing

bifurcations, border-collision/boundary-equilibrium bifurcations, sliding bifurcations,

sticking bifurcations and others [18, 19, 20, 21, 22]. These bifurcations are often

caused by the fact that nearby trajectories can undergo different sequences of events

by either crossing or not crossing discontinuity boundaries at different times and so
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are topologically distinct.

In order to analyse stability and bifurcations in piecewise-smooth and hybrid systems

we need to be able to establish the fate of topologically distinct trajectories in the

neighbourhood of a reference trajectory. We then quantify this information in a local

mapping defined in the neighbourhood such as a fixed-time mapping or Poincaré

mapping. In smooth systems these mappings can be constructed using variational

equations. For piecewise-smooth or hybrid systems the variational equations are

locally ill-posed, and so require special techniques when compared to smooth systems

[19, 23].

Discontinuity mappings (DMs) are the key tools that enable us to construct local

mappings for trajectories in piecewise-smooth or hybrid dynamical systems, which

in turn allow us to study DIBs involving periodic orbits and other invariant sets

that are more complex than fixed points [3, 22, 24]. Discontinuity mappings are

maps defined locally near the point where a reference trajectory intersects with a

discontinuity boundary, encapsulating the effect of switching flows and any other

discontinuities associated with the boundary intersection. For piecewise-smooth

or hybrid systems, fixed-time mappings associated with trajectories that interact

with one or more discontinuity boundaries can be obtained by composing fixed-time

mappings for the smooth portions of the flow with the DMs associated with each

interaction. The corresponding Poincaré mapping can then be found by appending

a final local projection onto the associated Poincaré section. In this paper we will

focus on zero-time discontinuity mappings (ZDMs), that, as their name suggests,

take place in zero time.

In real-world systems a level of noise and uncertainty is ubiquitous. As a result it

is necessary to study piecewise-smooth systems, such as those described above, in

the presence of noise. The study of how noise affects piecewise-smooth systems is a

relatively new field. In-depth studies have been carried out into the effects of noise

on grazing bifurcations in impacting systems [25, 26] and on periodic orbits with
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sliding [27]. In this paper we will study the effects noisy discontinuity boundaries

have on the dynamics of piecewise-smooth systems. We will consider two types of

boundary noise, noisy oscillations about the boundary’s deterministic position and

small noisy imperfections on the deterministic boundary’s surface. In particular, we

will look to construct stochastic zero-time discontinuity mappings (SZDMs) for such

systems. These mappings can then be used in a variety of ways. For example they

could be used to analyse the effects of boundary noise on bifurcations of invariant

sets such as periodic orbits in hybrid and piecewise-smooth systems or to efficiently

simulate such systems numerically.

Previously the authors have constructed SZDMs for the particular case of discontinu-

ous piecewise-smooth systems (Filippov systems) with transversal boundary crossings

and a stochastically oscillating boundary [28]. That paper showed how SZDMs can

be effectively used to estimate and analyse the effects of noise on the dynamics of

discontinuous systems. In particular, it showed as an example how SZDMs can

be used to predict how noise can affect the periodic attractors of a discontinuous

variant of the Chua circuit. This paper will extend the results of that work to a more

general class of nonsmooth systems. We will derive SZDMs for transversal crossings

in hybrid systems and systems with higher-order discontinuities, cases not considered

in [28]. We will also consider non-transversal crossings in a grazing hybrid system.

In all cases we will consider two types of noise, stochastic oscillations and stochastic

surface imperfections, only the former was considered in [28].

The remainder of this paper is organised as follows. Section 10.2 describes determin-

istic hybrid and piecewise-smooth systems and the use of ZDMs in that context. In

Section 10.3 we present a method of constructing temporal stochastic processes suit-

able to describe the stochastic component of the position of a discontinuity boundary.

We also describe how we can use these processes to construct a spatial stochastic

processes on Rn suitable to describe the stochastic component of rugged boundaries,

where the small-scale structure is uncertain. In Section 10.4 we describe linearisation
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techniques for stochastic hybrid systems with transversal discontinuity-boundary

interactions. In Section 10.5 we consider transversal crossings in continuous piecewise-

smooth vector fields with higher-order discontinuities and stochastic boundaries as

the errors introduced by noise in this case can not be captured by linearisation.

Finally, in Section 10.6 we construct SZDMs for a sample hybrid system undergoing

grazing, in particular we consider an impact oscillator with many degrees of freedom.

We then present some illustrative examples in Section 10.7 and the paper concludes

in Section 10.8 with a discussion on possible further generalisations.

10.2 Deterministic Piecewise-smooth and Hybrid Dy-

namical Systems

In this paper we will describe smooth dynamical systems as initial-value problems

(IVPs) given by

ẋ = f(x), x(0) = x0, (10.1)

where x ∈ Rn is the state, ẋ ∈ Rn is the time derivative of the state and f , which is

Ck (k ≥ 1), is the corresponding vector field. We also define the flow function φ(x, t),

which is Ck in its arguments, as the collection of trajectories given by f , such that

the unique solution to (10.1) can be written as

x(t) = φ(x0, t). (10.2)

We will further define piecewise-smooth dynamical systems as IVPs given by

ẋ = fi(x), x ∈ Si

x(0) = x0, (10.3)

where ∪iSi = Rn and each Si, with corresponding Ck vector field fi, has a nonempty
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Figure 10.1: Schematic of a reference trajectory intersecting a discontinuity bound-
ary transversally in a hybrid system.

interior. The indices i range over some finite indexing set and the intersection

Σij = Si ∩ Sj is either the empty set or an (n− 1)-dimensional manifold that is the

boundary between Si and Sj. A hybrid system is a generalisation of a piecewise-

smooth dynamical system where a non-identity mapping jij is applied on the boundary

Σij. In other words, a hybrid system is a dynamical system defined by the IVP

ẋ = fi(x), x ∈ Si,

x(0) = x0, (10.4)

plus the set of jump maps

x→ jij(x), x ∈ Σij. (10.5)

10.2.1 Transversal Crossings

Suppose now that we wish to calculate the local mapping of a trajectory that interacts

with at least one of the system discontinuity boundaries Σij. This will require us

to define a DM associated with each boundary interaction local to the point of

intersection of the trajectory with the boundary. In this paper we will restrict our

attention to trajectories that cross at codimension-1 points. In other words, we
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Figure 10.2: Deriving the zero-time discontinuity mapping D(x) for transversal
boundary crossings. D takes a point x in the neighbourhood of xin, to the boundary
by evolving for a time t(x) under the flow associated with f1 (blue), applies the jump
mapping j (orange) and corrects for zero time by evolving for −t(x) under the flow
associated with f2 (red).

will ignore cases where two or more discontinuity boundaries intersect. Given this

restriction, when constructing the DM locally, we can consider a piecewise-smooth or

hybrid system with two regions separated by a single discontinuity boundary such as

the one shown in Figure 10.1. Appropriately relabelling fi, fj, Si,Sj and Σij locally,

we consider the system defined by the IVP

ẋ =

 f1(x) x ∈ S−,

f2(x) x ∈ S+,
x(0) = x0,

x → j(x), x ∈ Σ. (10.6)

We let the discontinuity boundary

Σ = {x : h(x, t) = 0} (10.7)

be defined by the zeros of a Ck real valued function h, where k ≥ 1, that separates

the state space into the two regions

S− = {x : h(x, t) < 0} and S+ = {x : h(x, t) > 0}. (10.8)
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Here, we assume the reference trajectory, with initial point xref
0 , crosses the disconti-

nuity boundary transversally at time tref, i.e.

h(φ1(xref
0 , tref)) = 0, and hx(φ1(xref

0 , tref))f(φ1(xref
0 , tref)) 6= 0, (10.9)

where φ1 is the flow function prior to reaching Σ with corresponding vector field f1.

After the discontinuity the flow function is given by φ2 with corresponding vector

field f2, and so after a time T > tref the trajectory reaches the point

xref
T = φ2(j(φ1(xref

0 , tref)), T − tref). (10.10)

We further assume that the vector fields f1 and f2 and their corresponding flows are

smoothly extendible in a neighbourhood of xin and xout, respectively. Since we are

interested in a representation of the flow of the overall system for trajectories with

initial conditions x0 ≈ xref
0 and total time T we study the mapping

φ(x0, T ) = φ2(j(φ1(x0, t)), T − t), (10.11)

where t = t(x0) is the time of flight to reach the discontinuity boundary. Note that

t(x0) = tref + t(φ1(x0, tref)), (10.12)

where t(φ1(x0, tref)) is possibly negative. Since t(x0) 6= tref a trajectory starting at

x0 is topologically distinct from the reference trajectory. In order to account for this

we want to construct a ZDM D(x) for x in a neighbourhood of xin such that

φ(x0, T ) = φ2(D(φ1(x0, tref)), T − tref). (10.13)

Referring to (10.12), we find that the appropriate D(x) is given by

D(x) = φ2(j(φ1(x, t(x))),−t(x)). (10.14)
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The map D takes a point in a neighbourhood of xin and maps it to a point in a

neighbourhood of xout by moving backwards and forwards by the same amount of

time along the trajectories given by φ1 and φ2 and applying the jump map j as

shown in Figure 10.2. This setup will be used in Sections 10.4 and 10.5 where we

will construct stochastic ZDMs (or SZDMs) D̃(x) for hybrid and piecewise-smooth

systems with stochastic boundaries in this manner.

10.2.2 Grazing Interactions

In Section 10.6 we will consider an example of an SZDM for a non-transversal grazing

boundary interaction, see Figure 10.3. We assume the reference trajectory, with

initial point xref
0 , grazes the discontinuity boundary Σ at the point x∗ at time t1, i.e.

h(φ(xref
0 , tref)) = h(x∗) = 0 and hx(x∗)f(x∗) = 0. (10.15)

After a time T = t1 + t2 the trajectory reaches the point

xref
T = φ(j(φ(xref

0 , t1)), t2) = φ(φ(xref
0 , t1), t2), (10.16)

where j(x∗) = x∗ is the identity mapping for grazing points.

Here we will give a brief overview of how the ZDM associated with such a grazing

trajectory can be constructed in the deterministic case. We consider a hybrid system

such that all dynamics take place in S+ ∪Σ with the smooth evolution of the system

governed by

ẋ = f(x), x ∈ S+, (10.17)

which is smoothly extendible into S−. Points on Σ are grouped into incoming

trajectories where hx(x)f(x) < 0, grazing trajectories where hx(x)f(x) = 0 and

outgoing trajectories where hx(x)f(x) > 0. The jump map j : Σ→ Σ maps points

on incoming trajectories to points on outgoing trajectories and is the identity for
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Figure 10.3: Schematic of a reference trajectory (orange) which grazes the discon-
tinuity boundary Σ at x∗ and two nearby trajectories, one which does not impact Σ
(red) and one which impacts Σ at low normal velocity (green).

grazing trajectories.

Consider a grazing reference trajectory such as the one shown in Figure 10.3. Taking

points x0 in a neighbourhood of xref
0 and evolving for time T = t1 + t2 we note that

trajectories will either intersect Σ in a neighbourhood of x∗ at a time close to t1 or

not intersect Σ at all. We want to construct a ZDM D(x) defined in a neighbourhood

of x∗ such that the local mapping from a neighbourhood of xref
0 to a neighbourhood

of xref
T is given by

φ(D(φ(x, t1)), t2). (10.18)

In the case of trajectories that do not intersect the boundary and grazing points D

is trivially the identity. In the case of intersecting trajectories we construct D in the

manner shown in Figure 10.4. For intersecting points x0 in a neighbourhood of xref
0 ,

x = φ(x0, t1) is in a neighbourhood of x∗. We let tc(x) be the (possibly negative)

time of flight from x to Σ. Then the appropriate ZDM takes intersecting points x in

a neighbourhood of x∗ to the boundary at x1 = φ(x, tc(x), then the jump map is

applied, sending x1 to x2 = j(x1), finally it corrects to zero time by sending x2 to
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Figure 10.4: Deriving the zero-time discontinuity mapping D(x) for a grazing
trajectory. D takes a point x, on an impacting trajectory in the neighbourhood of
x∗, to the point x1 on the boundary by flowing for a time tc(x), applies the jump
mapping j to arrive at x2 and finally corrects for zero time by flowing for a time
−tc(x) to arrive at D(x).

x3 = φ(x2,−tc(x)). In other words D(x) is given by

D(x) = φ(j(φ(x, tc(x))),−tc(x)). (10.19)

This method of constructing a ZDM for a grazing trajectory will form the basis

of our construction of SZDMs for grazing trajectories interacting with stochastic

discontinuity boundaries in Section 10.6.

10.3 Stochastic Processes

In this section we will introduce a method for constructing stochastic processes

P (t) that may be suitable to describe the noisy component of the position of a

stochastically oscillating boundary. We will describe deterministic discontinuity

boundaries Σ in state space by the zeros of a real valued function h = h(x), and
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stochastically oscillating boundaries Σ̃ by the zeros of h̃ = h̃(x, t) = h(x)− P (t), i.e.

Σ = {x : h(x) = 0} and Σ̃ = {x : h̃(x, t) = 0}, (10.20)

respectively. In general, we will require the constructed position process P (t) to be

mean reverting with zero mean and to be at least once differentiable. Depending on

the SZDM we are constructing we may also require higher-order differentiability.

The processes we construct will be Gaussian and constructed iteratively. They can

be thought of as generalised Ornstein-Uhlenbeck processes. An Ornstein-Uhlenbeck

Îto process [29] is a process given by

dξ(t) = −θξ(t)dt+ σdWt, ξ(0) = ξ0, (10.21)

where θ, σ ∈ R are positive parameters. This gives that

ξ(t) = e−θtξ0 + σ

∫ t

0

eθ(s−t)dWs

∼ N

(
e−θtξ0,

σ2(1− e−2θt)

2θ

)
∼ N

(
µξ(t), σ

2
ξ (t)
)
. (10.22)

Ornstein-Unhlenbeck processes have an inherent timescale, making them a good

choice for modeling noise in real-world systems, especially noise in mechanical systems

such as noise arising from vibrations external to the system under study [30]. All of

the examples considered in Section 10.7 will use the processes derived here, however

the results hold for any processes that satisfy the necessary mean reversion and

differentiability requirements.

Using the Ornstein-Uhlenbeck process (10.21) as our base process P0(t) = ξ(t) we

construct an n-time differentiable mean-reverting position process Pn(t) as

dPn
dt

(t) = −θnPn(t) + σnPn−1(t), n ≥ 1. (10.23)
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We denote the corresponding velocity and acceleration processes as Vn = dPn/dt

and An = d2Pn/dt
2, respectively. We note that Vn exists for n ≥ 1 and An exists

for n ≥ 2. For simplicity in the examples presented here we will choose θi = θ and

σi = σ for all i = 1, 2, . . . , n. The distributions of Pn, Vn and An are Gaussian and

their associated means, variances and covariances are given in Appendix 10.A.

In this paper we will also consider rugged boundaries, i.e. boundaries with a stochastic

small-scale structure defined by a stochastic process on χ(x) on Rn. In this case the

stochastic boundary Σ̃ is given by

Σ̃ = {x : h̃(x) = 0}, (10.24)

where h̃(x) = h(x) − χ(x). We note that the Gaussian processes derived in this

section may also be used to define distributions χi(xi) on the state space component

xi for i = 1, 2, . . . , n rather than on time t. We can then construct a distribution

χ(x) on Rn as

χ(x) =
n∑
i=1

χi(xi). (10.25)

10.4 Hybrid Systems

10.4.1 Stochastically Oscillating Boundaries

In this section we derive the SZDM for a hybrid system with a stochastically varying

boundary given by

Σ̃ = {x : h̃(x, t) = 0} (10.26)

where

h̃(x, t) = h(x, t)− P (t). (10.27)

Leading on from the discussion in Section 10.2.1, we consider a trajectory starting

at a point xref
0 that intersects the deterministic boundary Σ after time t = tref,
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i.e. h(φ1(x
ref
0 , tref), tref) = 0. Our approach is based on the method derived for

discontinuous piecewise-smooth systems by the authors in [28]. In order to deal with

the fact that the boundary oscillates stochastically we will extend the state space,

vector field and jump map to

x̄ = (x,∆tref, t)
T , f̄ = (f , 0, 1)T and j̄ = (j,∆tref, t)

T , (10.28)

respectively. Here ∆tref = t̃ref − tref is the difference between the time of flight of

the reference trajectory to the border in the stochastic system and the deterministic

system.

The time-dependent perturbation P (t) is a small amplitude mean-reverting stochastic

process with mean 0, and for example one could consider the position processes

introduced in Section 10.3. As a result, the true time of flight to the boundary

t̃ref ≈ tref, where tref is the time of flight in the deterministic system. For t ≈ tref and

expanding about tref we find that

h̃(φ1(xref
0 , t), t) = h(φ1(xref

0 , t), t)− P (t)

= h(φ1(xref
0 , tref), tref)− P (tref)

+
(
hx(φ1(xref

0 , tref), tref)f1(φ1(xref
0 , tref))

+ht(φ1(xref
0 , tref), tref)− V (tref)

)
(t− tref) +O((t− tref)2)

≈ (t− tref) (hx(xin, tref)fin + ht(xin, tref)− V (tref))− P (tref),

(10.29)

where xin = φ1(x
ref
0 , tref) and fin = f1(xin) and V (t) = dP/dt is the stochastic

component of the discontinuity boundary’s velocity. Equation (10.29) implies that

∆tref is given to first order by

∆tref =
P (tref)

hx(xin, tref)fin + ht(xin, tref)− V (tref|P (tref))
. (10.30)
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We will also denote xout = j(xin) and fout = f2(xout). We can now think of the

realisation of the deterministic trajectory in the stochastic system as

φ̄(x̂ref
0 , T ) = φ̄((xref

0 , 0, 0)T , T ) = (φ(xref
0 , T ), 0, T )T , (10.31)

where x̂ref
0 = (xref

0 , 0, 0)T . Our approach will be to linearise about this realisation of

the deterministic trajectory in the stochastic system. We denote the values associated

with the deterministic ZDM as

x̂in = φ̄1(x̂ref
0 , tref), f̂in = f̄1(x̂in), x̂out = j̄(x̂in), f̂out = f̄2(x̂out). (10.32)

For simplicity, we will drop the bars and refer to x and f when considering the

extended state space, where there is no ambiguity. Following this, we are thus

studying the SZDM

φ(x0, T ) = φ2(j(φ1(x0, t)), T − t), (10.33)

where the random variable t = t(x0) is the time of flight from x0 to the boundary.

We have that

t(x0) = t̃ref + t(φ1(x0, tref)) = tref + ∆tref + t(φ1(x0, t̃ref)), (10.34)

and so we can write (10.33) as

φ(x0, T ) = φ2(φ2(φ2(j(φ1(φ1(φ1(x0, tref),∆tref), t(φ1(x0, t̃ref)))),

−t(φ1(x0, t̃ref))),−∆tref), T − tref). (10.35)

This gives that

φ(x0, T ) = φ2(D̃(φ1(x0, tref)), T − tref), (10.36)
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where

D̃(x) = φ2(φ2(j(φ1(φ1(x,∆tref), t(φ1(x,∆tref))),−∆tref)),−t(φ1(x,∆tref))).

(10.37)

Setting

t̃(x) = t(φ1(x,∆tref)) + ∆tref, (10.38)

we rewrite (10.37) as

D̃(x) = φ2(j(φ1(x, t̃(x))),−t̃(x)). (10.39)

Differentiating D̃ with respect to x we find

D̃x(x) = φ2,x(φ1(x, t̃(x)),−t̃(x))jx(φ1,x(x, t̃(x)))φ1,x(x, t̃(x))

+
[
φ2,x(φ1(x, t̃(x)),−t̃(x))jx(φ1,x(x, t̃(x)))φ1,t(x, t̃(x))

−φ2,t(φ1(x, t̃(x)),−t̃(x))
]
t̃x(x). (10.40)

Specifically, at x = x̂in, t̃(x) = t̃(x̂in) = 0 we find

D̃x(x̂in) = jx(x̂in) + (jx(x̂in)f̂in − f̂out)t̃x(x̂in). (10.41)

It now remains to find an expression for t̃x(x̂in). By definition, t = t̃(x) is a solution

to the equation

h̃(φ1(x, t)) = 0. (10.42)

Now, differentiating h̃ with respect to t and evaluating at (x, t) = (x̂in, t
∗(x̂in)) =

(x̂in, 0), we obtain

h̃x(φ1(x̂in, 0)))φ1,t(x̂in, 0)) = h̃x(x̂in)f̂in. (10.43)

By the implicit function theorem it follows that t̃(x) is a C1 function in a neighbour-
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hood of x̂in such that

t̃x(x̂in) = − h̃x(x̂in)

h̃x(x̂in)f̂in
. (10.44)

Projecting back onto the state space (x,∆tref) (10.44) becomes

t̃x(x̂in) = − h̃x(x̂in, tref)

hx(x̂in, tref)f̂in + ĥt(xin, tref)− V (tref|P (tref) = 0)

=

(
− hx(xin, tref)

hx(xin, tref)f̂in + ht(xin, tref)− V (tref|P (tref) = 0)
, 1

)
(10.45)

since the second component of t̃x(x̂in) is

∂t̃(x)

∂∆tref
|x=x̂in = 1 (10.46)

by definition. In (10.45) V (t|P (t) = p) is the stochastic velocity of the boundary at

time t given its stochastic position. Projecting from the state space given in (10.28)

to the state space (x,∆tref) we can now write

D̃x(x̂in) = jx(x̂in, tref) +
(f̂out − jx(x̂in, tref)f̂in − jt(x̂in, tref))h̃x(x̂in, tref)

h̃x(x̂in, tref)f̂in + ht(x̂in, tref)− V (tref|P (tref) = 0)

=

D̃x(xin) jx(xin, tref)fin + jt(xin, tref))− fout

0 1

 , (10.47)

where

D̃x(xin) = jx(xin, tref) +
(fout − jx(xin, tref)fin − jt(xin, tref))hx(xin, tref)

hx(xin, tref)fin + ht(xin, tref)− V (tref|P (tref) = 0)
, (10.48)

and find that

φ̄x(x̂ref
0 , T ) = φ̄2,x(x̂out, T − tref)D̃x(x̂in)φ̄1,x(x̂ref

0 , tref). (10.49)
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Here the Jacobians φ̄1,x(x, t) and φ̄2,x(x, t) of the flows φ̄1 and φ̄2 are given by

φ̄i,x =

φi,x 0

0 1

 , i = 1, 2, (10.50)

where φi,x can be found as the solutions of the initial-value problems

Φ̇(x, t)) = fx(φi(x, t))Φ(x, t), Φ(x, 0) = I, i = 1, 2. (10.51)

The Jacobians φi,x are entirely smooth and deterministic and the effects of both

nonsmoothness and noise are contained within D̃x(x̂in). The distribution of deviations

of a trajectory with an initial condition x0 ≈ xref
0 , in a small neighbourhood of the

reference trajectory based at xref
0 in the original state space, is now given to first

order by

φ̄(x̄0, T )− φ̄(x̂ref
0 , T ) ≈ φ̄x(x̂ref

0 , T )(x̄0 − x̂ref
0 ), (10.52)

where x̄0 = (x0,∆tref)
T and ∆tref is the distribution given by (10.30), before projecting

back. As a result, in the original state space we find that

φ(x0, T )− φ(xref
0 , T ) ≈ φx(xref

0 , T )(x0 − xref
0 ) + φ2,x(xout, T − tref)N (xin, tref)∆tref,

(10.53)

where

φx(xref
0 , T ) = φ2,x(xout, T − tref)D̃x(xin)φ1,x(xref

0 , tref) (10.54)

and

N (xin, tref) = jx(xin, tref)fin + jt(xin, tref)− fout. (10.55)

Furthermore, if the jump map j itself is a stochastic mapping j = j̃ then we must

consider the error introduced by j̃ so that (10.53) becomes

φ(x0, T )− φ(xref
0 , T ) ≈ φx(xref

0 , T )(x0 − xref
0 ) + φ2,x(xout, T − tref)N (xin, tref)∆tref

+ φ2,x(xout, T − tref)J (xin, tref), (10.56)
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where

J (xin, tref) = j̃(xin|P (tref) = 0)− j(xin). (10.57)

As an example, in Section 10.7.1 we consider an impacting system where the jump

map j = j̃ depends on the stochastic velocity associated with the discontinuity

boundary V (t) = dP/dt. We also note that the inclusion of the j̃t term in the

expression for N in this case may impose further conditions on the differentiability of

P . If j̃ depends on V (t) = dP/dt (as is the case in the example presented in Section

10.7.1) we must then be able to calculate A(t) = d2P/dt2 and so on.

10.4.2 Rugged Boundaries

In this section we will consider hybrid systems with rugged discontinuity boundaries,

whose small-scale structure is uncertain. In particular we will consider systems with

stochastic discontinuity boundaries described by the zeros of a real-valued function

h̃(x, t) of the form

h̃(x, t) = h(x, t)− χ(x), (10.58)

where h(x, t) is a deterministic function describing the large-scale structure of the

boundary and χ(x) is a random process that describes the height of imperfections

on the boundary depending on their state-space coordinates.

We consider once again a trajectory starting at a point xref
0 that intersects the deter-

ministic boundary Σ transversally after time t = tref, so that h(φ1(xref
0 , tref), tref) = 0.

As in the case of a stochastically oscillating boundary analysed in Section 10.4.1

we linearly approximate the difference between the true hitting time for a given

reference trajectory and the deterministic hitting time in the absence of stochastic

fluctuations.

Given that χ(x) represents small amplitude noise with mean 0, we have that the

true time of flight to the boundary t̃ref ≈ tref, where tref is the time of flight in the

241



Chapter 10. Paper 4

deterministic system. For t ≈ tref, and expanding about tref, we find that

h̃(φ1(xref
0 , t), t) = h(φ1(xref

0 , t), t)− χ(φ1(xref
0 , t))

≈ h(φ1(xref
0 , tref), tref)− χ(φ1(xref

0 , tref))

+
(
hx(φ1(xref

0 , tref), tref)f1(φ1(xref
0 , tref)) + ht(φ1(xref

0 , tref), tref)

−χx(φ1(xref
0 , tref))f1(φ1(xref

0 , tref))
)

(t− tref)

= (t− tref) (hx(xin, tref)fin + ht(xin, tref)− χx(xin)fin)− χ(xin),

(10.59)

where xin = φ1(x
ref
0 , tref) and fin = f1(xin). Equation (10.59) implies that ∆tref =

t̃ref − tref is given to first order by

∆tref ≈
χ(xin)

hx(xin, tref)fin + ht(xin, tref)− χx(xin)fin
. (10.60)

As we did in Section 10.4.1, we now extend the state space, vector field and jump

map to

x̄ = (x,∆tref, t)
T , f̄ = (f , 0, 1)T and j̄ = (j,∆tref, t)

T , (10.61)

respectively, and perform the same analysis as before, namely, linearising about the

realisation of the deterministic trajectory in the stochastic system. Once again we

find that

φ(x0, T )− φ(xref
0 , T ) ≈ φx(xref

0 , T )(x0 − xref
0 ) + φ2,x(xout, T − tref)N (xin, tref)∆tref,

(10.62)

where

φx(xref
0 , T ) = φ2,x(xout, T − tref)D̃x(xin)φ1,x(xref

0 , tref) (10.63)

and

N (xin, tref) = jx(xin, tref)fin + jt(xin, tref))− fout, (10.64)
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in the original state space. In this case D̃x(xin) is given by

D̃x(xin) = jx(xin, tref)

+
(fout − jx(xin, tref)fin − jt(xin, tref)))(hx(xin, tref)− χx(xin|χ(xin) = 0))

hx(xin, tref)fin + ht(xin, tref)− χx(xin|χ(xin) = 0)fin
.

(10.65)

Once again, if the jump map j itself is a stochastic mapping j = j̃ then we must

consider the error introduced by j̃ so that (10.62) becomes

φ(x0, T )− φ(xref
0 , T ) ≈ φx(xref

0 , T )(x0 − xref
0 ) + φ2,x(xout, T − tref)N (xin, tref)∆tref

+ φ2,x(xout, T − tref)J (xin, tref), (10.66)

where

J (xin, tref) = j̃(xin|χ(xin) = 0)− j(xin). (10.67)

Here the inclusion of the j̃x term in the expression for N may impose further

conditions on the differentiability of χ.

We note that in piecewise-smooth systems that are continuous across the boundary,

i.e. systems where f1 = f2 on Σ and j is the identity mapping, Dx(xin) collapses to

the identity matrix and N = J = 0 for both stochastically oscillating and rugged

boundaries. This gives that, to first order

φ(x0, T )− φ(xref
0 , T ) ≈ φ2,x(xout, T − tref)φ1,x(xref

0 , tref)(x0 − xref
0 ), (10.68)

which is the same result that we would obtain for the deterministic system. In other

words, we find that in piecewise-smooth continuous systems the inclusion of noise

on the boundary has no linear effect. In Section 10.5 we will construct higher order

approximations for such sytems.
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10.5 Systems with Higher-Order Discontinuities

In this section we will construct SZDMs for piecewise-smooth vector fields with

higher-order continuity following the work of Nordmark for deterministic systems

[24]. Throughout thise section we will use the notation h.o.t. for higher-order

remainder terms in our derivations of both the deterministic and stochastic ZDMs.

For more detail regarding the exact form of these remainder terms refer to [24].

Consider a piecewise-smooth vector field defined by

f(x) =

 f1(x), h(x) ≥ 0,

f2(x), h(x) < 0,
(10.69)

that is Cn−1, with n ≥ 1, in a neighbourhood of the crossing point x∗, where h(x) is

a real-valued analytic function. The discontinuity boundary Σ is therefore defined

by the zeros of the function h, i.e.

Σ = {x : h(x) = 0}. (10.70)

We assume that there is no real or virtual equilibrium in the neighbourhood of x∗,

so fi(x) 6= 0 for i = 1, 2 and x ≈ x∗. We further assume that the boundary crossing

is transversal, i.e. hx(x∗)f1(x
∗) = v < 0. Note, here a virtual equilibrium refers to

an equilibrium point x∗i,v of ẋ = fi such that x∗i,v ∈ Sj and i 6= j. A real equilibrium

refers to an equilibrium point x∗i,r of ẋ = fi such that x∗i,r ∈ Si.

Due to Cn−1 continuity all derivatives of order k ≤ n− 1 of f2 − f1 must vanish on

the discontinuity boundary Σ. For now, taking h = h(x) to be one of the coordinates

of x we can expand f2 − f1 about h = 0 so that

f2 − f1 =
∞∑
k=0

hk

k!

∂k

∂hk
(f2 − f1)|h=0
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=
∞∑
k=n

hk

k!

∂k

∂hk
(f2 − f1)|h=0

= hn
∞∑
j=0

hj

(j + n)!

∂j+n

∂hj+n
(f2 − f1)|h=0

= hng. (10.71)

This gives that

f2(x) = f1(x) + g(x)h(x)n, (10.72)

where g(x) is analytic in a neighbourhood of the crossing point x∗.

By the flow box theorem we can make a coordinate transformation y = µ(x) with

inverse x = γ(y), where y is partitioned as

y =

z

τ

 (10.73)

such that the vector field f1(x) is transformed into the vector field

F1(y) =
∂µ

∂x
(γ(y))f1(γ(y)) =

0

1

 (10.74)

in a neighbourhood of x∗. The labelling z of individual flow lines is arbitrary as is

the surface on each line where τ = 0. To simplify calculations we will choose the

transformation such that the crossing point is transformed to the origin and the

discontinuity boundary is given by τ = 0 so that

µ(x∗) = 0 and µ(Σ) = {y : τ = 0}. (10.75)

From (10.71)-(10.72) we now have that

F2(y) = F1(y) +G(y)H(y)n, (10.76)

245



Chapter 10. Paper 4

where

G(y) =
∂µ

∂x
(γ(y))g(γ(y)) and H(y) = h(γ(x)). (10.77)

Since the initial flow under the vector field F1 crosses the discontinuity boundary

transversally near y = 0 we define the deterministic discontinuity mapping to be

D(y) = φ2(φ1(y, t(y)),−t(y)), (10.78)

where t(y) is the time of flight to the boundary under φ1. The corresponding

stochastic mapping is given by

D̃(y) = φ2(φ1(y, t̃(y)),−t̃(y)), (10.79)

where t̃(y) is the stochastic time of flight to the boundary along flow one. We note

that from (10.74) we can easily write

φ1(y, t) =

 z

τ + t

 . (10.80)

With (10.76) in mind, close to y = 0, we will try to approximate φ2(y, t) with

φ̂2(y, t) = φ1(y, t) +G(0)

∫ τ+t

τ

(vρ)ndρ, (10.81)

where (vρ)n is chosen since we must have that H(y) ≈ vτ . Now

∂φ̂2

∂t
(y, t) =

∂φ1

∂t
(y, t) +G(0)

∂

∂t

[∫ τ+t

τ

(vρ)ndρ

]
= F1 +G(0)[v(τ + t)]n

=

0

1

+G(0)[v(τ + t)]n, (10.82)

246



Chapter 10. Paper 4

while

F2(φ̂2(y, t)) = F1(φ̂2(y, t)) +G(φ̂2(y, t))[H(φ̂2(y, t))]n

=

0

1

+G(φ̂2(y, t))[H(φ̂2(y, t))]n

=

0

1

+G(0)[v(τ + t)]n + h.o.t. (10.83)

By Lemma 2 in [24] we now have that

φ2(y, t) = φ̂2(y, t) + h.o.t. (10.84)

Both the deterministic and the stochastic discontinuity mappings D and D̃ are of

the form φ2(φ1(y, t),−t), where t = t(y) and t = t̃(y), respectively. We find that

φ2(φ1(y, t),−t) = φ1(φ1(y, t),−t) +G(0)

∫ τ+t−t

τ+t

(vρ)ndρ+ h.o.t

= y +G(0)

∫ τ

τ+t

(vρ)ndρ+ h.o.t. (10.85)

In the deterministic case

t(y) = −τ ≈ −H(y)

v
, (10.86)

which gives that the ZDM D(y) can be written as

D(y) = y +G(0)

∫ H(y)
v

0

(vρ)ndρ+ h.o.t

= y +G(0)

∫ 1

0

(v
H(y)

v
s)n

H(y)

v
ds+ h.o.t

= y +G(0)
H(y)n+1

v

∫ 1

0

snds+ h.o.t

= y +
G(0)H(y)n+1

(n+ 1)v
+ h.o.t

= y +

(
G(0)

(n+ 1)v
+ h.o.t

)
H(y)n+1
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= y + E(y)H(y)n+1. (10.87)

It remains to transform back to the original coordinates. In the deterministic case

we find that the ZDM in the original coordinate system d(x) is given by

d(x) = γ(D(µ(x)))

= γ(µ(x) + E(µ(x))H(µ(x))n+1). (10.88)

Expanding γ(y) about y = µ(x) we find that (10.88) becomes

d(x) = γ(µ(x)) +
∂γ

∂x
(µ(x))E(µ(x))H(µ(x))n+1 + h.o.t

= x +
∂γ

∂x
(µ(x))E(µ(x))h(x)n+1 + h.o.t. (10.89)

Further expanding ∂γ
∂x
µ(x)Ẽ(µ(x)) about x = x∗ we find that (10.89) becomes

d(x) = x +

(
∂γ

∂x
(µ(x∗))E(µ(x∗)) +O(x− x∗)

)
h(x)n+1

= x +

(
∂γ

∂x
(0)E(0) +O(x− x∗)

)
h(x)n+1

= x +

(
∂γ

∂x
(0)

G(0)

(n+ 1)v
+O(x− x∗)

)
h(x)n+1

= x +

(
g(x∗)

(n+ 1)v
+O(x− x∗)

)
h(x)n+1

= x + e(x)h(x)n+1. (10.90)

Notice that in the stochastic case we must estimate the stochastic time of flight to

the boundary t̃(y).
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10.5.1 Stochastically Oscillating Boundaries

In the case of a stochastically oscillating boundary Σ̃ given by the zeros of h̃(x, t) =

h(x)− P (t) we note that

H̃(y) = h(γ(y))− P = H(y)− P ≈ vτ − P. (10.91)

Now, t̃(y) is given by H̃(φ1(y, t̃(y))) = 0 and thus

t̃(y) ≈ P −H(y)

v − V
, (10.92)

where V = d/dt(P ). We now find that

D̃(y) = y +G(0)

∫ H(y)
v

Pv−H(y)V
v(v−V )

(vρ)ndρ+ h.o.t

= y +G(0)

∫ H(y)
v

0

(vρ)ndρ+G(0)

∫ 0

Pv−H(y)V
v(v−V )

(vρ)ndρ+ h.o.t

= y +G(0)

∫ H(y)
v

0

(vρ)ndρ−G(0)

∫ Pv−H(y)V
v(v−V )

0

(vρ)ndρ+ h.o.t

= y +
G(0)

v

(
(H(y))n+1 −

(
Pv −H(y)V

v − V

)n+1
)∫ 1

0

snds+ h.o.t

= y +
G(0)

(n+ 1)v

(
(H(y))n+1 −

(
Pv −H(y)V

v − V

)n+1
)

+ h.o.t

= y +

(
G(0)

(n+ 1)v
+ h.o.t

)(
H(y)n+1 −

(
Pv −H(y)V

v − V

)n+1
)

= y + Ẽ(y)

(
H(y)n+1 −

(
Pv −H(y)V

v − V

)n+1
)
. (10.93)

Transforming back to the original co-ordinates in this case we find that

d̃(x) = γ(D̃(µ(x)))
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= γ(µ(x) + Ẽ(µ(x))

(
H(µ(x))n+1 −

(
Pv −H(µ(x))V

v − V

)n+1
)

= γ(µ(x)) +
∂γ

∂x
(µ(x))Ẽ(µ(x))

(
h(x)n+1 −

(
Pv − h(x)V

v − V

)n+1
)

+ h.o.t

= x +

(
∂γ

∂x
(µ(x∗))Ẽ(µ(x∗)) +O(x− x∗)

)(
h(x)n+1 −

(
Pv − h(x)V

v − V

)n+1
)

= x +

(
∂γ

∂x
(0)Ẽ(0) +O(x− x∗)

)(
h(x)n+1 −

(
Pv − h(x)V

v − V

)n+1
)

= x +

(
∂γ

∂x
(0)

G(0)

(n+ 1)v
+O(x− x∗)

)(
h(x)n+1 −

(
Pv − h(x)V

v − V

)n+1
)

= x +

(
g(x∗)

(n+ 1)v
+O(x− x∗)

)(
h(x)n+1 −

(
Pv − h(x)V

v − V

)n+1
)

= x + ẽ(x)

(
h(x)n+1 −

(
Pv − h(x)V

v − V

)n+1
)
. (10.94)

10.5.2 Rugged Boundaries

In the case of a rugged boundary Σ̃ given by the zeros of h̃(x) = h(x) − χ(x) we

note that

H̃(y) = h(γ(y))−χ(γ(y)) = H(y)−χ(γ(y)) ≈ vτ −χ(γ(y)) = vτ −χ(x). (10.95)

Now t̃(y) is given by H̃(φ1(y, t̃(y))) = 0 and thus

t̃(y) ≈ χ(γ(y))−H(y)

v − χx(γ(y))γx(y)F1(y)
=

χ(x)−H(y)

v − χx(x)f1(x)
. (10.96)

Following the same approach as in the case of stochastic oscillations (10.93), we find

that

D̃(y) = y +
G(0)

(n+ 1)v

(
(H(y))n+1 −

(
χ(x)v −H(y)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

+ h.o.t
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= y +

(
G(0)

(n+ 1)v
+ h.o.t

)(
H(y)n+1 −

(
χ(x)v −H(y)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

= y + Ẽ(y)

(
H(y)n+1 −

(
χ(x)v −H(y)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)
. (10.97)

Transforming back to the original co-ordinates in this case we find that

d̃(x) = γ(D̃(µ(x)))

= γ(µ(x) + Ẽ(µ(x))

(
H(µ(x))n+1 −

(
χ(x)v −H(µ(x))χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

= γ(µ(x)) +
∂γ

∂x
(µ(x))Ẽ(µ(x))

×

(
h(x)n+1 −

(
χ(x)v − h(x)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

+ h.o.t

= x +

(
∂γ

∂x
(µ(x∗))Ẽ(µ(x∗)) +O(x− x∗)

)
×

(
h(x)n+1 −

(
χ(x)v − h(x)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

= x +

(
∂γ

∂x
(0)Ẽ(0) +O(x− x∗)

)
×

(
h(x)n+1 −

(
χ(x)v − h(x)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

= x +

(
∂γ

∂x
(0)

G(0)

(n+ 1)v
+O(x− x∗)

)
×

(
h(x)n+1 −

(
χ(x)v − h(x)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

= x +

(
g(x∗)

(n+ 1)v
+O(x− x∗)

)
×

(
h(x)n+1 −

(
χ(x)v − h(x)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)

= x + ẽ(x)

(
h(x)n+1 −

(
χ(x)v − h(x)χx(x)f1(x)

v − χx(x)f1(x)

)n+1
)
. (10.98)
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10.6 Grazing

The results of Section 10.4 and Section 10.5 apply only to systems with transversal

boundary interactions. In this section we will consider an example of a system

where the reference trajectory grazes the boundary in the deterministic system,

i.e. hx(x)f(x) = 0 at the boundary intersection. We will follow the method of

constructing grazing ZDMs described in Section 10.2.2. In particular, we consider the

impact oscillator with many degrees of freedom studied by Fredriksson and Nordmark

[31] in the deterministic setting, and generalise their method of constructing a ZDM

to the stochastic case.

SZDMs associated with grazing interactions with stochastic boundaries have been

considered previously by Simpson and Kuske [26]. In their work Simpson and Kuske

considered a three-dimensional piecewise-smooth system with Ornstein-Uhlenbeck

noise (10.21) on the boundary and used the simplifying assumption that the stochastic

process remains constant while the trajectory is close to the grazing point. Our

work differs in the fact that we consider a hybrid system in n-dimensions and drop

the assumption of the stochastic process remaining constant while the trajectory

is close to the grazing point. We will, however, assume that a trajectory cannot

have multiple interactions with the discontinuity boundary in quick succession as it

passes near a single deterministic grazing point. In addition [26] showed that noise

in the impacting dynamics rather than the position of the boundary corresponds to

parametric noise in the discontinuity mapping. The same authors along with Hogan

have also shown that additive white noise in the piecewise-smooth flow corresponds

to additive white noise in the square root map [25]. The effects of additive noise

on multistability in the one-dimensional square root map were investigated by the

authors of the current work in some depth in [32, 33].

First, as motivation we will outline the method for constructing the deterministic
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ZDM. Let the smooth evolution in the system be governed by

ẋ = f(x), (10.99)

with formal solution φ(x, t). We assume throughout that x = (u,v)T is partitioned

into a set of generalised coordinates u and velocities v. We let the impacting

boundary Σ be defined by the zeros of the function h = h(x), i.e.

Σ = {x : h(x) = 0}. (10.100)

Non-impacting dynamics take place in the region where h(x) > 0. We then define

Π(x, t) to be the function

Π(x, t) = h(φ(x, t)), (10.101)

which can be seen as the distance a trajectory starting at x is from the discontinuity

boundary Σ as a function of time t. On Σ we then define a function v(x) as

v(x) =
∂Π

∂t
(x, 0), x ∈ Σ, (10.102)

to distinguish between incoming and outgoing trajectories. This allows us to divide

Σ into 3 sets

Σ− = {x ∈ Σ : v(x) < 0}, (10.103)

Σ0 = {x ∈ Σ : v(x) = 0}, (10.104)

Σ+ = {x ∈ Σ : v(x) > 0}. (10.105)

Consider now a grazing trajectory starting at O1 that impacts at O∗ ∈ Σ after time

t1 such that v(O∗) = 0, i.e. O∗ ∈ Σ0 and a(O∗) = Ag > 0, where

a(x) =
∂2Π

∂t2
(x, 0), x ∈ Σ. (10.106)
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We then consider an impact mapping

j : Σ− → Σ+ (10.107)

and note that points in a neighbourhood of the grazing trajectory starting at O1

either impact at low velocity or do not impact. In particular, we will consider impact

maps that are of the form

j(x) = x + ∆x ≈ x− v(x)ξ, (10.108)

where ξ = (0, ξv)
T is zero in the position coordinates and given by ξv in the velocity

coordinates.

From here on we will assume that local coordinates have been introduced to make

the grazing point O∗ correspond to x∗ = 0. Taking a point x in the neighbourhood

x∗ it is clear that Π will have a local minimum for some small time τ = τ(x). We

then introduce the function ψ by

ψ(x) = Π(x, τ(x)). (10.109)

In the deterministic system we now have that impacting points are given by ψ(x) ≤ 0.

For such impacting points x we can now find the time of flight tc(x) from x to the

boundary by expanding Π(x, t) about t = τ(x), which gives

tc(x) ≈ τ(x)−
√
−ψ(x)2/Ag. (10.110)

We also find that

v = Πt(x, tc(x)) ≈ (tc(x)− τ(x))Ag ≈ −
√
−ψ(x)2Ag (10.111)
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and so

∆x ≈
√
−ψ(x)2Agξ. (10.112)

Approximating φ(x, tc) and φ(x,−tc) by linearising about x∗ we find the grazing

ZDM is given by

D(x) = φ(j(φ(x, tc(x))),−tc(x)) ≈ x +
√
−ψ(x)2Agξ. (10.113)

In what follows, in Sections 10.6.1 and 10.6.2 we will extend this method to systems

where the position and structure of the boundary, respectively, have a stochastic

component.

10.6.1 Stochastic Oscillations

In this section we will apply stochastic oscillations to the boundary by considering

the noisy boundary

Σ̃ = {x : h̃(x, t) = 0}, (10.114)

where

h̃(x, t) = h(x)− P (t). (10.115)

We can then consider the function

Π̃(x, t) = h(φ(x, t))− P (t), (10.116)

which describes the distance to the noisy boundary as a function of time and initial

condition. In this case we will consider stochastic impact maps that are of the form

j̃(x, t) = x + ∆̃x ≈ x− ṽ(x)ξ, (10.117)

We will now consider a trajectory with initial condition x0 in a neighbourhood of

O1. After time t1 it will be at some point x = φ(x0, t1) in a neighbourhood of the
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deterministic grazing point O∗. We want to find the stochastic time of flight from x

to the boundary t̃c by expanding Π̃(x, t) about τ(x), so that

Π̃(x, t) = Π̃(x, τ(x)) + (t− τ(x))
∂Π̃

∂t
(x, τ(x)) +

(t− τ(x))2

2

∂2Π̃

∂t2
(x, τ(x)) + . . .

= ψ(x)− P (κ(x)) + (t− τ(x))(−V (κ(x)))

+
(t− τ(x))2

2
(Ag − A(κ(x))) + . . . , (10.118)

where κ(x) = t1 + τ(x), V = dP/dt and A = dV/dt. Setting Π̃(x, t̃c) = 0 we find

that

ψ(x)− P − (t̃c − τ(x))V +
(t̃c − τ(x))2

2
(Ag − A) ≈ 0, (10.119)

where the stochastic variables associated with the boundary P, V and A are evaluated

at time κ(x) = t1 + τ(x) when Π reaches its minimum. This gives that t̃c can be

approximated as

t̃c = τ(x) +
V

Ag − A
−

√(
−ψ(x) + P + V τ(x) +

V 2

2(Ag − A)

)
2

Ag − A
, (10.120)

where we have taken the minus sign of the two possible solutions of (10.119) in order

to find the first intersection with the boundary.

From (10.118) we find that

ṽ(x) =
∂Π̃

∂t
(x, t̃c) ≈ −V + (t̃c − τ(x))(Ag − A)

=

√(
−ψ(x) + P + V τ(x) +

V 2

2(Ag − A)

)
2(Ag − A).

(10.121)

We then have that

∆̃x ≈

√(
−ψ(x) + P + V τ(x) +

V 2

2(Ag − A)

)
2(Ag − A)ξ, (10.122)
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and so, approximating φ(x, t) by linearising about the grazing point, the SZDM D̃ is

given by

D̃(x) = φ(̃j(φ(x, t̃c(x))),−t̃c(x))

≈ x +

√(
−ψ(x) + P + V τ(x) +

V 2

2(Ag − A)

)
2(Ag − A)ξ,(10.123)

if

− ψ(x) + P + V τ(x) +
V 2

2(Ag − A)
≥ 0 (10.124)

and the identity mapping otherwise. In practice we do not evaluate ψ or τ directly.

Instead we estimate them by linearisation. We find that ψ(x) ≈ ηx, where

η =
∂h

∂x
(x∗), (10.125)

and by linearising Πt(x, t) about t = 0 we also find that

τ(x) ≈ − Πt(x, 0)

Πtt(x, 0)
. (10.126)

Next we let

L = φx(x∗, T ) (10.127)

be the Jacobian of the grazing periodic orbit that grazes at x∗. Then we can

investigate the stability of the grazing orbit by examining the mapping

xi+1 =


√

Υ(xi)2(Ag − Ai)Lξ, if Υ(xi) ≥ 0,

Lxi, otherwise,
(10.128)

where

Υ(xi) = −ηxi + Pi − Vi
Πt(xi, 0)

Πtt(xi, 0)
+

V 2
i

2(Ag − Ai)
(10.129)

and Pi ,Vi, Ai are respectively the stochastic position, velocity and acceleration of

the boundary evaluated at the end of each period of length T/iterate i.
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10.6.2 Rugged Boundaries

Next we will consider a rugged boundary Σ̃ with stochastic imperfections such that

Σ̃ = {x : h̃(x) = 0}, (10.130)

where

h̃(x) = h(x)− χ(x). (10.131)

In the case of an impact oscillator these imperfections could be caused by instan-

taneous damage/wear caused by repeated impacts. Following the derivation in the

case of a stochastically oscillating boundary in Section 10.6.1 we find that the SZDM

D̃ is given by

D̃(x) = φ(̃j(φ(x, t̃c(x))),−t̃c(x)) ≈ x + ∆̃x, (10.132)

where

∆̃x =

√(
−ψ(x) + χ+ χxfτ(x) +

(χxf)2

2(Ag − (χxf)xf)

)
2(Ag − (χxf)xf)ξ (10.133)

and χ, χx, (χxf)x, f are all evaluated at φ(x, τ(x)) if

− ψ(x) + χ+ χxfτ(x) +
(χxf)2

2(Ag − (χxf)xf)
≥ 0 (10.134)

and the identity mapping otherwise. Linearising we find that ψ(x) ≈ ηx where

η =
∂h

∂x
(x∗). (10.135)

Also, by linearising Πt(x, t) about t = 0 we find that

τ(x) ≈ − Πt(x, 0)

Πtt(x, 0)
(10.136)
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and so we can approximate φ(x, τ(x)) by

φ(x, τ(x)) ≈ φ

(
x,− Πt(x, 0)

Πtt(x, 0)

)
≈ x−f(x)

Πt(x, 0)

Πtt(x, 0)
+

g(x)

2

(
Πt(x, 0)

Πtt(x, 0)

)2

. (10.137)

Once again, letting

L = φx(x∗, T ) (10.138)

be the Jacobian of the grazing periodic orbit that grazes at x∗ we can investigate

the stability of the grazing orbit by examining the mapping

xi+1 =


√

Θ(xi)2(Ag − (χixf
i)xf i)Lξ, if Θ(xi) ≥ 0,

Lxi, otherwise,
(10.139)

where

Θ(xi) = −ηxi + χi + χixf
i Πt(xi, 0)

Πtt(xi, 0)
+

(χixf
i)2

2(Ag − (χixf
i)xf i)

, (10.140)

χi is the appropriate random imperfection evaluated at the end of each period

T/iterate i and

f i = f

(
xi − f(xi)

Πt(xi, 0)

Πtt(x, 0)
+

g(xi)

2

(
Πt(xi, 0)

Πtt(xi, 0)

)2
)

(10.141)

is the appropriate vector field where g = ḟ .

10.7 Numerical Examples

In this section we present some simple numerical examples to illustrate the use

of the SZDMs derived in Sections 10.4-10.5. In all cases we use the generalised

Ornstein-Uhlenbeck processes derived in Section 10.3 to describe the noise in the

system. For the sake of brevity we will consider stochastically oscillating boundaries

rather than rugged boundaries in most examples although the results in both cases
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are similar.

10.7.1 Hybrid Systems with Stochastically Oscillating Bound-

aries

Here we analyse an example of a transversal boundary intersection in a hybrid

system using the SZDMs derived in Section 10.4. In particular we consider a simple

one-dimensional impact type hybrid system that describes a ball bouncing on an

oscillating surface

x = (u, v)T , ẋ = f = (v, g)T (10.142)

where u is the height of the ball, v is its velocity and g < 0 is acceleration due to

gravity. The deterministic discontinuity boundary in this system is an oscillating

surface with frequency ω and amplitude γ. In other words the stochastic boundary

Σ̃ is given by the zeros of the function

h̃(x, t) = u− γ sin(ωt)− P (t). (10.143)

The jump map j̃ does not change the height of the ball u but it reverses and attenuates

the ball’s normal velocity to the floor by a factor 0 ≤ r ≤ 1 such that

j̃(x) = (u,−rv + (r + 1) (γω cos(ωt) + V (t)))T , (10.144)

where V (t) = dP/dt. In this case we will need P to be at least twice differentiable due

to the presence of V (t) in the expression of j̃. As a result we will take P (t) = Pn(t)

with n = 2 as given in Section 10.3 for our numerical examples. In this case we have

j̃x =

1 0

0 −r

 , j̃t =

 0

(r + 1) [−γω2 sin(ωt) + A(t)]

 , (10.145)
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where A(t) = d2P/dt2 is the stochastic acceleration of the floor. We also find that

hx = (1, 0), ht = −γω cos(ωt) (10.146)

and

φ(x, t) =

u+ vt+ 1
2
gt2

v + gt

 , φx(x, t) =

1 t

0 1

 . (10.147)

Referring to Section 10.4 we find that

D̃x(xin) =


vout − γω cos(ωtref)− V (tref|P = 0)

vin − γω cos(ωtref)− V (tref|P = 0)
0

(r + 1)(g + γω2 sin(ωtref)− A(tref|P = 0))

vin − γω cos(ωtref)− V (tref|P = 0)
−r

 , (10.148)

N (xin, tref) =

 vin − vout

(r + 1) (A(tref|P = 0)− γω2 sin(ωtref)− g)

 , (10.149)

where vin and vout are the incoming and outgoing velocities, respectively, and

J (xin, tref) =

 0

(r + 1)V (tref|P = 0)

 . (10.150)

In the absence of noise this system has a large family of periodic orbits of period

T = 2nπ
ω
, where n ∈ N, which interact exactly once with the discontinuity boundary

each period [34]. These can be identified with their outgoing velocities from the

boundary

vout = −πng
ω

(10.151)

and the velocity of the floor at impact

γω cos(ωt′) =
πng

ω

(
r − 1

r + 1

)
. (10.152)
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Figure 10.5: The dynamics of a bouncing ball in a stable periodic orbit with period
2nπ
ω

with one impact per period for n = 1, 2, 3. The height of the oscillating floor
about u = 0 is shown in grey and the periodic orbits are shown in colour with lighter
colour corresponding to higher n. Here g = −9.8, γ = 1 and ω = 3.

Figure 10.6: The dynamics of a bouncing ball in a stable periodic orbit with period
6nπ
ω

with three impacts per period for n = 1, 2, 3. The height of the oscillating floor
about u = 0 is shown in grey and the periodic orbits are shown in colour with lighter
colour corresponding to higher n. Here g = −9.8, γ = 1 and ω = 3.
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In other words, the initial conditions for these periodic orbits are given by

x0 = xout =

γ
√

1−
(
πng
γω2

r−1
r+1

)2

−πng
ω

 (10.153)

and the periodic orbits exist provided∣∣∣∣πngγω2

(
r − 1

r + 1

)∣∣∣∣ < 1. (10.154)

In the deterministic case the eigenvalues λ1,2 of

Dx(xin)φx(xout, T ) =

−r 0

η −r

1 T

0 1

 =

−r −rT

η ηT − r

 , (10.155)

where

η =
(r + 1)2(g + γω2 sin(ωtref))

2vin
=

(r + 1)2(g + ω2uin)

2vin
, (10.156)

determine the stability of the periodic orbit. These eigenvalues are less than 1 in

magnitude and therefore the periodic orbit is stable provided

− γω2 sin(γt′) > 2g
r2 + 1

(r + 1)2
, (10.157)

where γω2 sin(γt′) is the acceleration of the floor at impact, or equivalently if

uin < −2g
r2 + 1

ω2(r + 1)2
. (10.158)

The eigenvalues λ1,2 are complex with magnitude |λ1,2| = r if

− γω2 sin(γt′) ∈

(
g, g

[
r − 1

r + 1

]2
)

(10.159)
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a) b)

Figure 10.7: a) The magnitude of the eigenvalues of the periodic orbits (n = 1, 2, 3)
shown in Figure 10.5 as ω increases. Here lighter colours correspond to higher n. b)
Representative figure of the positions of the eigenvalues of the periodic orbit in the
complex plane for n = 1 coloured according to ω. Here g = −9.8 and γ = 1.

or equivalently if

uin ∈

(
− g

ω2

[
r − 1

r + 1

]2

,− g

ω2

)
(10.160)

and real elsewhere. In particular, it is possible for this system to have multiple

coexisting periodic attractors. For example, when g = −9.8, γ = 1 and ω = 3 the

periodic orbits with period 2nπ
ω

that impact once per period exist and are stable for

n = 1, 2, 3, 4 and four associated periodic attractors with period 6nπ
ω

that impact

three times per period are also present. As an example, the dynamics of a bouncing

balls in period 2nπ
ω

and period 6nπ
ω

orbits are plotted in Figures 10.5 and 10.6 for

n = 1, 2, 3, respectively.

The basins of attraction of the system’s periodic attractors for these parameter

values are plotted in (vout, τ)-space in Figure 10.8, where τ is the time of impact

mod 2π
ω
. We note that the basins have a complicated intermingled structure that

indicates that this system and its attractors have the potential to be highly sensitive

to the addition of noise to the motion of the oscillating floor. As a result it would be

interesting to study the effects of boundary noise on these periodic attractors. An

in-depth study is beyond the scope of this paper, here we will simply demonstrate

the use of the SZDM derived in Section 10.4.
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Figure 10.8: The basins of attraction of the bouncing ball system (10.143)-(10.144)
in (vout, τ)-space when g = −9.8, γ = 1 and ω = 3. Pink circles indicate orbits with
one impact per period, grey xs indicate orbits with three impacts per period. Areas
coloured black are absorbed by attractors outside the plotted region.
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Figure 10.9: Histograms of the probability density function (pdf) of the maximum
height attained by the bouncing ball between its 50th and 51st impacts given by a)
full simulation of the system b) linear approximation. Here g = −9.8, γ = 1, ω = 3,
n = 1 r = 0.8, θ = 50, and σ = 2. A sample of size N = 5000 was used in both
cases with initial conditions given by (10.153). The Kolmogorv-Smirnov test statistic
measure of the distance between the two distributions is DKS = 0.0228.
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We do this by comparing the full system and the linearised system about the periodic

orbit of period T = 2π/ω given by (10.153). In particular we will present results for

the case where the deterministic parameters are given by γ = 1, ω = 3, and r = 0.8,

while the stochastic parameters are given by θ = 50 and σ = 0.2. First, taking an

initial condition away from the discontinuity boundary and on the periodic attractor,

we simulate the full system numerically. We consider a sample size of N = 5000 and

use an Euler-Maruyama scheme [35] with a fixed timestep of 10−7 for the stochastic

component of the boundary. We then consider the distribution of u on the Poincaré

section given by u̇ = v = 0 between the ball’s 50th and 51st bounces, in other words

the maximum height attained by the ball on this interval. We then compare this

with the distribution given by the linearisation (10.56) projected onto the same

Poincaré section. We find that the linearisation gives a good approximation to the

full system and plot the results in Figure 10.9. In particular, as a measure of the

difference between the two distributions, we have calculated the Kolmogorv-Smirnov

test statistic to be DKS = 0.0228 using Matlab®’s inbuilt kstest2 function.

10.7.2 Hybrid Systems with Rugged Boundaries

We will now briefly present a 2-dimensional version of the bouncing ball example

considered in Section 10.7.1. We will also replace the stochastically oscillating

boundary with a sinusoidally oscillating discontinuity boundary that is rugged with

stochastic imperfections. Non-impacting dynamics of the ball in 2-dimensional space

are given by

x = (u1, v1, u2, v2)T , ẋ = f = (v1, g, v2, 0)T , (10.161)

where (u1, v1)
T , (u2, v2)

T are the position and velocity of the ball in the vertical

and horizontal directions, respectively, and g is acceleration due to gravity. The

oscillating boundary with stochastic imperfections in the horizontal or u2 direction
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Σ̃ is given by the zeros of the function

h̃(x, t) = u1 − γ sin(ωt)− χ(u2). (10.162)

The jump map j does not change the position of the ball (u1, u2)
T , but it reverses

and attenuates the ball’s normal velocity to the floor by a factor 0 ≤ r ≤ 1 such that

j(x) = x−
(

r + 1

1 + χ′(u2)2

)
(v1 − γω cos(ωt)− χ′(u2)v2)


0

1

0

−χ′(u2)

 . (10.163)

In the deterministic system, choosing the initial velocity in the horizontal direction v2

to be zero, the behaviour of this system reduces to the one-dimensional deterministic

system studied in Section 10.7.1. As an example we will consider the effect of

stochastic boundary imperfections χ(u2) on the behaviour of the deterministic

periodic orbit with initial conditions given by (10.153) in the vertical direction

(u1, v1)T , and (0, 0)T in the horizontal direction (u2, v2)T . In this case we find that

φ(x, t) =


u1 + v1t+ 1

2
gt2

v1 + gt

u2 + v2t

v2t

 , φx(x, t) =


1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1

 , (10.164)

D̃x(xin) = [Dij], i, j ∈ {1, 2, 3, 4}, (10.165)

D11 =
vout

1 − ζ
vin

1 − ζ
, D12 = D14 = D31 = D32 = D34 = 0,

D12 =
(vout

1 − vin
1 )χ′

vin
1 − ζ

, D21 =
(r + 1)(g + ω2uin

1 )

(1 + (χ′)2)(vin
1 − ζ)

, D22 =
−r + (χ′)2

1 + (χ′)2
,
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D23 =
(r + 1)χ′

1 + (χ′)2

(
2χ′′

1 + (χ′)2
+
g + ω2uin

1

vin
1 − ζ

)
, D24 = D42 =

(r + 1)χ′

1 + (χ′)2
,

D33 = 1, D41 = −(r + 1)(g + ω2uin
1 )χ′

(1 + (χ′)2)(vin
1 − ζ)

, D44 = −(r + 1)(χ′)2

1 + (χ′)2
,

D43 =
r + 1

1 + (χ′)2

(
(1− (χ′)2)χ′′

1 + (χ′)2
+

(g + ω2uin
1 )(χ′)2

vin
1 − ζ

)
,(10.166)

N (xin, tref) =



vin
1 − vout

1

− r + 1

1 + (χ′)2

(
ω2uin

1 + g
)

0

(r + 1)χ′

1 + (χ′)2

(
ω2uin

1 + g
)


(10.167)

and

J (xin, tref) = χ′
(

r + 1

1 + (χ′)2

)(
vin

1 − ζ
)


0

χ′

0

1

 , (10.168)

where ζ = γω cos(ωtref), χ′ = χ′(0|χ = 0) and χ′′ = χ′′(0|χ = 0).

In Figure 10.10 we plot the distribution of maximum height achieved by the ball

umax
1 after a single bounce and its corresponding horizontal position u2 given by full

numerical simulation of the system and by the linearisation (10.66). Once again we

find that the linearisation gives a good approximation to the dynamics of the full

system. We have calculated the generalised 2-dimensional K-S test statistic, derived

by Fasano and Franceschini [36] and implemented using the Matlab® routine

kstest2d.m [37], to be DKS = 0.0171.

10.7.3 Continuous Systems

In this section we consider the example of the Chua circuit with stochastically oscil-

lating discontinuity boundaries using the SZDMs derived in Section 10.5. Previously

the authors have investigated the effects of boundary noise on periodic attractors in
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a) b)

Figure 10.10: Heatmaps of the distribution of the maximum height attained by
the bouncing ball and its corresponding horizontal position after one bounce on the
rugged surface given by a) full simulation of the system b) linear approximation.
Here g = −9.8, γ = 1, ω = 3, n = 1 r = 0.8, θ = 300, and σ = 2. A sample of size
N = 5000 was used in both cases with initial conditions on the periodic given by
(10.153) and (u2, v2)

T = (0, 0)T . The generalised 2-dimensional K-S test statistic
between the two sample distributions is DKS = 0.0171.

Figure 10.11: Circuit diagram of the Chua circuit. The circuit consists of four
linear elements (a linear inductor L with internal resistance R0, a linear resistor R
and two capacitors C1 and C2) and a nonlinear resistor NR, called the Chua diode.

a discontinuous variant the Chua circuit in some detail in [28].

The Chua circuit is a nonlinear circuit that was created with the aim of being

the simplest autonomous circuit capable of generating chaos [38, 39]. It was the

first physical system for which the presence of chaos was shown experimentally,

numerically and mathematically [40]. The circuit, shown in Figure 10.11, contains

four linear elements and one nonlinear resistor known as a Chua diode. It can be
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Figure 10.12: Typical voltage-current response of the Chua diode (NR in Figure
10.11). The voltage-current response is piecewise-linear and symmetric.

described by the nondimensionalised ODE system

dx

dt
= α(y − x− g(x)),

dy

dt
= x− y + z,

dz

dt
= −(βy + γz), (10.169)

where

g(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|) (10.170)

describes the piecewise-linear nature of the voltage-current response of the Chua

diode shown in Figure 10.12. We note that the vector field given by (10.169) -

(10.170) is C0 and so trajectories that cross the discontinuity boundaries can be

analysed using the ZDMs described in Section 10.5 first derived by Nordmark in [24].

We let Σ− and Σ+ denote the two discontinuity boundaries given by x = −1 and

x = 1, respectively. We will denote the regions given by x < −1, |x| ≤ 1 and x > 1,

as S−, S0 and S+ with corresponding vector fields f−, f0 and f+, respectively. The
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Figure 10.13: Five coexisting attractors when α = 8.4, β = 12, γ = −0.005,
m0 = −1.2 and m1 = 0.05 in the system (10.169) (left) and their corresponding
basins of attraction projected onto the boundary Σ− (right).

system (10.169)-(10.170) has up to three equilibrium points, namely

x0
eq = (0, 0, 0)T ,

x−eq =
m0 −m1

γm1 + βm1 + β
(γ + β, γ,−β)T ,

x+
eq = −x−eq. (10.171)

Of these equilibrium points x0
eq always exists, while x−eq and x+

eq only exist provided

x−eq ∈ S− and x+
eq ∈ S+.

When α = 8.4, β = 12, γ = −0.005, m0 = −1.2 and m1 ∈ (0.02, 0.14765) the

system (10.169)-(10.170) has five coexisting attractors as shown in Figure 10.13

[28, 41]. These attractors are the equilibrium points x−eq and x−eq given in (10.171)

and three periodic attractors. Two of the periodic attractors are small symmetric

period-1 periodic orbits, C− and C+ that cross Σ− and Σ+ twice, respectively. The

third periodic attractor is a large period-1 orbit C∞, that crosses both Σ− and Σ+

twice. The three periodic attractors, C−, C+ and C∞, are hidden attractors as if

we choose initial conditions in the vicinity of any equilibrium point of the system

(10.169)-(10.170) (stable or unstable), we will reach one of the stable equilibrium

points.
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a)

b)

Figure 10.14: Histograms of the distributions of x and y co-ordinates of trajectories
with initial conditions xref

0 = (xref
0 , yref

0 , zref
0 )T ∈ C−, such that xref

0 ∈ S− and ẋ = 0,
on their first return to the Poincaré section given by z = zref

0 . Here α = 8.4, β = 12,
γ = −0.005, m0 = −1.2, m1 = 0.145, σ = 1 and θ = 50. The results of full
numerical-simulation are shown in a) and the approximations obtained by using
the SZDM (10.94) in place of boundary interactions are shown in b). In both cases
the sample size used was N = 10000. The 2-dimensional generalised K-S statistic
between the two sample distributions is DKS = 0.0526.

The smaller symmetric periodic attractors C− and C+ are born in a saddle-node

bifurcation as the parameter m1 decreases through m1 ≈ 0.14765. We will focus

on the effects of stochastic oscillations applied to the system’s two discontinuity

boundaries on these two attractors, and how the methods derived in Section 10.5

can be used to estimate these effects. As the attractors are symmetric it suffices to

restrict our attention to C−. In [28] we have used similar methods to predict the

destruction of the corresponding periodic attractor in a discontinuous variant of the

Chua circuit.
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We describe the stochastically oscillating discontinuity boundaries Σ̃± in the noisy

system by the zeros of

h̃±(x, t) = x− (±1)− P±(t), (10.172)

respectively. In particular, in our numerical examples we will take P±(t) to be

once-differentiable stochastic processes P±(t) ∼ P1(t) as defined in Section 10.3. In

our examples we consider trajectories with initial conditions xref
0 = (xref

0 , yref
0 , zref

0 )T

on the deterministic periodic orbit C−, such that xref
0 ∈ S− and ẋ = 0. We compare

the distributions of the x and y coordinates of these trajectories on their first return

to the Poincaré section given by z = zref
0 given by full numerical simulation of the

system, using an Euler-Maruyama scheme with a fixed timestep of 7× 10−7 for the

stochastic component of the boundary, to the estimate given by using the SZDM

(10.94) in place of the two boundary crossings. We plot the results in Figure 10.14

and find that the SZDMs give a very good approximation to the full dynamics of

the system. The 2-dimensional generalised K-S statistic between the two sample

distributions calculated using kstest2d.m [37] is given by DKS = 0.0526.

We note that when x = x∗, as is the case in the first boundary intersection in the

example considered in this section, the estimate of the error introduced by noise on

the boundary ε̃ given by (10.94) corresponds exactly with the heuristic second-order

approximation proposed in [28]. In other words, we find that

ε̃ =
g(x∗)

2hx(x∗)f−(x∗)

(
h(x∗)2 −

(
P (tref)hx(x∗)f−(x∗)− h(x∗)V (tref)

hx(x∗)f−(x∗)− V (tref)

)2
)

= −g(x∗)(hx(x∗)f−(x∗))2

2hx(x∗)f−(x∗)

(
P (tref)

hx(x∗)f−(x∗)− V (tref)

)2

= − ∂

∂h
(f0 − f−)|x=x∗hx(x∗)f−(x∗)

1

2

(
P (tref)

hx(x∗)f−(x∗)− V (tref)

)2

=
∂

∂h
(f− − f0)|x=x∗

∂h(φ(x, t))

∂t
|(x,t)=(x∗,0)

∆t2ref
2

=
∂

∂t
(f− − f0)|x=x∗

∆t2ref
2

. (10.173)
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10.7.4 Grazing

Next we consider a classic example of a grazing nonsmooth system, a one-degree-of-

freedom impact oscillator as shown in Figure 10.15. We describe the motion of a

body in one spatial dimension by the position u(t) and velocity v(t) = u̇(t) of its

centre of mass. We then write x = (u, v)T . The non-impacting dynamics of the

system are given by

ü(t) + 2µu̇(t) + ku(t) = γ cos(ω(t+ τ)), (10.174)

where µ > 0 is the damping coefficient, k > 0 is the stiffness coefficient and

γ cos(ω(t+ τ)) represents the external periodic sinusoidal forcing of the system with

amplitude γ and initial phase τ . We will rewrite (10.174) as

u̇ = v,

v̇ = γ cos(ω(t+ τ))− ku− 2µv, (10.175)

and assume that the oscillator is free to move in the region where u > α for some

constant α. We thus have that there is a discontinuity boundary Σ in the system

given by the zeros of h(x) = u− α, which represents some rigid obstacle. When the

oscillator impacts the rigid obstacle we apply the impact mapping

j(x) = j((u, v)T ) = (u,−rv)T , (10.176)

where 0 < r < 1 is the coefficient of restitution that gives the energy lost during

impact.

Provided µ 6= 0, this system has a periodic attractor of period 2π
ω

in free-flight [42].
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Figure 10.15: A one-degree-of-freedom impact oscillator. The position of the
impacting surface is indicated by Σ and u(t)−α is the distance between the oscillator
and Σ.

This periodic orbit is given by

u(t) = ϑ cos(ω(t+ τ)) + β sin(ω(t+ τ)), (10.177)

where ϑ and β are the constants given by

ϑ =
γ(k − ω2)

(k − ω2)2 + (2µω)2
, β =

2γµω

(k − ω2)2 + (2µω)2
. (10.178)

Increasing α from −∞, this periodic orbit grazes the boundary when

α = αg = − γ√
(k − ω2)2 + (2µω)2

, (10.179)

as shown in Figure 10.16.

We will consider the effect of a stochastically oscillating boundary on trajectories in

the neighbourhood of the grazing periodic orbit (10.177) shown in Figure 10.16. In

the stochastic model we will describe the stochastically oscillating boundary Σ̃ by

the zeros of the function

h̃(x, t) = u− αg − P (t), (10.180)
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Figure 10.16: Grazing orbit in the system (10.175), with ω = 2.4, µ = 1, k = 1/2,
γ = 1, τ = 0 and α = αg = − γ√

(k−ω2)2+(2µω)2
. In both cases the position of the

discontinuity boundary Σ = {(u, v)T : u = αg} is indicated by the black line.

where P (t) is a twice differentiable stochastic process. In our numerical examples we

have chosen P (t) = P2(t) as defined in Section 10.3. The stochastic impact mapping

j̃ reverses the oscillator’s normal velocity to the boundary and attenuates it by a

factor of 0 < r < 1, such that

j̃(x, t) = j((u, v)T ) = (u,−rv + (r + 1)V (t))T , (10.181)

where V (t) = dP/dt is the stochastic velocity associated with the boundary at the

time of impact.

In particular, we will consider the distribution of u projected on to the Poincaré

section P = {(u, v) : u > 0, v = 0} after one passage close to the discontinuity

boundary, i.e. the distribution of the maximum amplitude achieved by the oscillator

after one potential low-velocity impact. We compare the results of full numerical

simulations to the estimate given by using the SZDM (10.123) in place of boundary

interactions. The numerical simulations use an Euler-Maruyama scheme with a fixed

timestep and assume a maximum of one low-velocity impact per passage close to the
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Figure 10.17: Pdf of the maximum amplitude attained by the impact oscillator given
by a), c), e), g), i) full simulation of the system and b), d), f), h), j) approximation
using the SZDM (10.123). Here ω = 2.4, µ = 1, k = 1/2, γ = 1 r = 0.8, θ = 50,
σ = 1, the sample size N = 10000 and initial conditions are given by (10.183). In
a), b) ε = 0, DKS = 0.0048, c), d) ε = 0.00005, DKS = 0.0159, e), f) ε = 0.0001,
DKS = 0.0120, g), h) ε = 0.0002, DKS = 0.0197 and i), j) ε = 0.0005, DKS = 0.0618.
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grazing point. Referring to the SZDM (10.123) in this case we have that

η = (1, 0), ξ = (0, r + 1)T , Ag = −ω2αg,

Πt(x, 0) = ηf(x), Πtt(x, 0) = (0, 1)f(x). (10.182)

For our examples we take a sample of N = 10000 trajectories with initial conditionsu(0)

v(0)

 =

ϑ cos(ωτ) + β sin(ωτ)− ε

βω cos(ωτ)− ϑω sin(ωτ)

 (10.183)

close the grazing periodic orbit of the deterministic system (10.177). We note that

the initial conditions (10.183) lie exactly on the periodic orbit when ε = 0. We

present results for a sample of values of ε in Figure 10.17. We focus on the cases

where ε ≥ 0 as when ε < 0 the majority of trajectories do not interact with the

grazing boundary at all, making the SZDM redundant. We see that in the cases

considered the SZDM gives an excellent approximation to the dynamics of the full

system, with the estimates growing slightly less accurate for larger ε, as one would

expect. We find that the K-S test statistic for the two sample distributions when

ε = 0 is DKS(0) = 0.0048, this grows as ε increases with DKS(0.0005) = 0.0618. Not

only does the SZDM accurately predict the distribution of impacting trajectories,

it also gives a good approximation of the proportion of trajectories which do not

impact with the boundary (in the left-most bar of Figure 10.17 a)-f)).

10.8 Summary and Discussion

This paper concerns the effects of boundary noise on discontinuity mappings in

piecewise-smooth vector fields and hybrid dynamical systems. In particular, we have

derived stochastic zero-time discontinuity mappings for systems with stochastically

oscillating boundaries and systems with boundaries with stochastic imperfections.
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In Section 10.3 we introduced a method for constructing generalised n-time differen-

tiable Ornstein-Uhlenbeck processes. These processes are mean-reverting with mean

zero and so are examples of processes that are suitable to describe both stochacstic

oscillations and stochastic imperfections applied to a deterministic boundary. In

general Ornstein-Uhlenbeck processes have an inherent timescale and are often used

to describe noise in real-world mechanical systems [30]. We later used these processes

to model the noise in the numerical examples presented in Section 10.7.

Section 10.4 generalised the results of [28] to hybrid systems with transversal boundary

crossings and further to the case of piecewise-smooth vector fields and hybrid systems

with rugged boundaries. We also discussed how the form of the jump map j on the

boundary may impose conditions on the form of the stochastic process that can be

used. In Section 10.6 we considered an example of a grazing trajectory in a hybrid

system describing an impact oscillator with many degrees of freedom. In both the

case of a stochastically oscillating boundary and a rugged boundary with small-scale

stochastic imperfections showed that the derived SZDM has a noise term under the

square-root and a noise term in the switching condition. These results are similar

to those of Simpson and Kuske [26] who considered grazing in a three-dimensional

piecewise-smooth system with Ornstein-Uhlenbeck noise on the boundary and the

simplifying assumption that the noise process is constant while the trajectory is close

to the grazing point.

Section 10.5 considered the case of transversal crossings in piecewise-smooth-continuous

vector fields with stochastically oscillating boundaries, generalising the work of Nord-

mark [24] to stochastic systems. Finally section 10.7 presented some numerical

examples, validating the results of Sections 10.4-10.5. In all cases we found that the

SZDMs derived in this paper provided good approximations to numerical simulations

of the full system.

It should be noted that the perturbations P (t) and χ(x), which describe the small

oscillations and small imperfections of the discontinuity boundaries in this paper,
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respectively, do not need to be stochastic processes in order for our analysis to

hold. As long as the perturbations considered are of small amplitude about the

original boundary, the discontinuity mappings derived in Sections 10.4-10.6 are

valid. However, in the case of a deterministic perturbation in most cases it may be

more simple to calculate the deterministic zero-time discontinuity mapping of the

true system, considering the perturbation as an intrinsic part of the discontinuity

boundary rather than treating it separately. It is for this reason that we believe that

these results are most useful when analysing systems with noisy boundaries.

In future it remains to generalise our results to systems that have stochastic disconti-

nuity boundaries which are both rugged, with small scale imperfections, and randomly

oscillating. We would also like to consider the effects of noise on codimension-2 or

higher crossings i.e. crossings at intersections of two or more discontinuity boundaries,

by constructing appropriate SZDMs.
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10.A Appendix: Generalised Ornstein-Uhlenbeck Pro-

cesses

In Section 10.3, using the Ornstein-Uhlenbeck process (10.21) as our base process

P0(t) = ξ(t) we constructed an n-time differentiable mean-reverting position processes

Pn(t) as
dPn
dt

(t) = −θPn(t) + σPn−1(t), n ≥ 1 (10.184)

and denoted the corresponding velocity and acceleration processes as Vn = dPn/dt

and An = d2Pn/dt
2, respectively. We then find that Pn is given by

Pn(t) = e−θt

(
n−1∑
i=0

(σt)i

i!
Pn−i(0) +

(σt)n

n!
ξ0

)
+
σn+1

n!

∫ t

0

eθ(s−t)(t− s)ndWs

= µPn(t) +
σn+1

n!

∫ t

0

eθ(s−t)(t− s)ndWs

∼ N(µPn(t), σ2
Pn(t)), (10.185)

where

σ2
Pn(t) =

(
σn+1

n!

)2 ∫ t

0

e2θ(s−t)(s− t)2nds

=

(
σn+1

n!

)2
(

2n!

(2θ)2n+1
− e−2θt

2θ

2n∑
i=0

2n!

(2n− i)!
t2n−i

(2θ)i

)
. (10.186)

We also find that the corresponding velocity and acceleration processes Vn and An

are given by

Vn(t) = −θµPn(t) + σµPn−1(t) + σn+1

∫ t

0

eθ(s−t)
(

(t− s)n−1

(n− 1)!
− θ (t− s)n

n!

)
dWs

= µVn(t) + σn+1

∫ t

0

eθ(s−t)
(

(t− s)n−1

(n− 1)!
− θ (t− s)n

n!

)
dWs

∼ N(µVn(t), σ2
Vn(t)), (10.187)
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where

σ2
Vn(t) = σ2(n+1)

∫ t

0

e2θ(s−t)
(

(t− s)n−1

(n− 1)!
− θ (t− s)n

n!

)2

ds

= θ2σ2
Pn(t) + σ2σ2

Pn−1
(t)

+2θσ
σ2n+1n

(n!)2

(
e−2θt

2θ

2n−1∑
i=0

(2n− 1)!

(2n− 1− i)!
t2n−1−i

(2θ)i
− (2n− 1)!

(2θ)2n

)
= θ2σ2

Pn(t) + σ2σ2
Pn−1

(t)− 2θσCov(Pn(t), Pn−1(t)) (10.188)

and

An(t) = θ2µPn(t)− 2θσµPn−1(t) + σ2µPn−2(t)

+σn+1

∫ t

0

eθ(s−t)(t− s)n−2

(
θ2 (s− t)2

n!
+ 2θ

s− t
(n− 1)!

+
1

(n− 2)!

)
dWs

∼ N(µAn(t), σ2
An(t)), (10.189)

where

σ2
An(t) = θ4σ2

Pn(t) +

(
4 + 2

n− 1

n

)
θ2σ2σ2

Pn−1
(t) + σ4σ2

Pn−2
(t)

−4θ3σCov(Pn(t), Pn−1(t))− 4θσ3Cov(Pn−1(t), Pn−2(t)).

(10.190)

We note that (10.188) implies that

Cov(Pn(t), Pn−1(t)) =
σ2n+1n

(n!)2

(
(2n− 1)!

(2θ)2n
− e−2θt

2θ

2n−1∑
i=0

(2n− 1)!

(2n− 1− i)!
t2n−1−i

(2θ)i

)
,

(10.191)

while (10.190) implies that

Cov(Pn(t), Pn−2(t)) =

(
n− 1

n

)
σ2
Pn−1

(t). (10.192)
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We can now calculate the covariances associated with the position process as

Cov(Pn(t), Vn(t)) = −θσ2
Pn(t) + σCov(Pn(t), Pn−1(t)),

Cov(Pn(t), An(t)) = θ2σ2
Pn(t) + σ2

(
n− 1

n

)
σ2
Pn−1

(t)

−2θσCov(Pn(t), Pn−1(t)),

Cov(Vn(t), An(t)) = 3θ2σCov(Pn(t), Pn−1(t)) + σ3Cov(Pn−1(t), Pn−2(t))

−(θ3σ2
Pn(t) +

(
2 +

n− 1

n

)
θσ2σ2

Pn−1
(t)). (10.193)
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