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Abstract

The spatial agglomeration of economic activities and the unequal
growth of urban centres are major topics of interest to both economists
and policymakers worldwide. We aim to model and analyse these
uneven spatial economic dynamics by setting up an agent-based sim-
ulation environment. Our approach is to build mathematical models
composed of multiple overlapping dynamic spatial networks across
space and time. We introduce our approach to modelling the evo-
lution and growth of spatial networks, both in terms of individual
node sizes and the addition of links and nodes to the network. Moti-
vated by official statistics related to the economy of Ireland we then
apply the ideas developed in an attempt to model spatial economic
dynamics in a small open economy.
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Chapter 1 1. A Brief Overview

1 A Brief Overview

This thesis introduces and develops dynamic network models with the ulti-
mate aim of presenting a novel approach to modelling spatial economic devel-
opment. Issues related to patterns of spatial economic development such as the
spatial agglomeration of economic activities and the unequal growth of urban
centres are of major interest to economists and policymakers all over the world.
Irish policymakers are certainly no exception. Concerned about the imbalances
caused by the concentration of Irish economic activity in the Greater Dublin
Area in 2002 the government of Ireland launched a National Spatial Strategy
which was designed to ensure “more balanced social, economic and physical de-
velopment between the regions” [32]. However, the strategy failed to remedy
the problems faced by the country and was scrapped in 2013. As a result these
imbalances remain a major issue of concern for Irish policymakers.

Before presenting any of our models, in this first chapter we provide a quick
overview of the contents of this thesis and introduce some of the basic history,
language and concepts associated with networks in a mathematical sense. In
Chapters 2 and 3 we introduce dynamic models of networks. In particular,
Chapter 3 focuses on the growth of individual nodes within a larger network
while Chapter 2 focuses on the growth of spatial networks in terms of adding
nodes and links over time. Finally, Chapter 4 presents some motivating statistics
regarding recent spatial economic development in Ireland and introduces an
approach to modelling spatial economic development in which our model is
composed of multiple dynamic, overlapping networks across space and time.

In Chapter 2 we introduce a set of algorithms for the growth of spatial
networks. These networks are ones which are embedded in space and in which
space plays a key role in their evolution. In that chapter we allow spatial
networks to grow by adding nodes and links over time according to the rules set
out by our algorithms. The spatial networks begin as a single isolated node and
the positions of any further nodes added to the network are not predetermined,
rather their position and the links between them are established over time as
the network grows and develops. This approach was inspired by a simple and
elegant model due to Kaiser and Hilgetag who were in turn initially motivated
by the evolution of biological networks [41].

In Chapter 3 we investigate growth of individual nodes in a network where
it is governed by a discrete time evolution operator known as a map. In defining
node growth we take inspiration from a particular map known as the logistic
map which was made famous by the theoretical physicist and mathematical
biologist Lord Robert May in his 1976 article Simple mathematical models with
very complicated dynamics [48]. The logistic map is often presented as the
quintessential example of how complex and even chaotic behaviour can arise
in simply defined systems. We analyse the long-term behaviour of node sizes
in a network evolving according to our map observing interesting and complex
behaviour. In particular we note both similarities and striking differences to the
behaviour observed in the case of the classic logistic map.

In our final chapter, Chapter 4, we turn our attention to spatial economic
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Chapter 1 2. Introducing Networks

development and in particular to the problem of uneven spatial economic dy-
namics. The spatial agglomeration of economic activities, unequal growth of
urban centres and unequal growth of industries are major topics of economic
interest. In this chapter we provide evidence for all three in the Irish context
since Ireland’s emergence from protectionism in the 1950s. We then introduce
some of the most prominent arguments put forward by economists to explain
many of the important features of spatial economic development. Finally we
introduce our new approach to modelling spatial economic dynamics. We ap-
ply the ideas developed in Chapters 3 and 2 alongside existing concepts from
economics to build models composed of dynamic spatial networks in which each
node represents an economic entity and each link a relationship.

2 Introducing Networks

Before continuing we will first provide a basic history of the birth of net-
work theory and introduce some of the mathematical language and notation
for describing networks. We will also present some examples of networks being
applied in a real-world setting.

2.1 The First Network

Motivated by the famous Königsberg bridge problem the Swiss mathemati-
cian Leohnard Euler first introduced the study of graphs or networks in 1736
[27]. The inhabitants of the old Prussian city of Königsberg, now Kaliningrad,
Russia, debated whether it was possible to go for a walk crossing each of the
seven bridges in the city over the river Pregel exactly once with the additional
requirement that the walk ends in the same place it began.

Figure 1.1: The famous bridges of Königsberg problem reproduced from [27].

Euler showed that there was no such path by using a simple, elegant ap-
proach. He reduced the map in Figure 1.1 to a series of lines, known as edges or
links, representing bridges, and circles, known as vertices or nodes, representing
portions of land, known as a graph or network. This network representation of
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Chapter 1 2. Introducing Networks

the problem is shown in Figure 1.21. Using this approach Euler showed that to
be able to perform a walk on a network starting and finishing on the same node
and using each link exactly once is only possible if every node is connected by an
even number of links. This condition was subsequently proved to be sufficient
in 1873 by the German mathematician Carl Hierholzer [35].

A

B

C

D

Figure 1.2: Network representation of the famous bridges of Königsberg problem.

2.2 Describing Networks

A networkN = (V,E) is defined as a set of vertices or nodes, V = {v1, v2, . . .},
connected by a set of edges or links, E = {(vi, vj), (vk, vl) . . .}. Networks can
be directed, i.e. have links that connect nodes only one way, or undirected, i.e.
have links that connect nodes both ways. In this thesis we focus on networks
that are undirected, have no self-links and have at most one link between each
pair of nodes in the network. A network diagram of an example of such a net-
work is shown in Figure 1.3. The network shown has eight nodes connected by
thirteen links. The node set of the network is given by

V = {v1, v2, . . . , v8} (1.1)

and the edge set is given by

E = {(v1, v2), (v1, v4), (v1, v6), (v2, v5), (v2, v6), (v3, v4), (v3, v7),

(v3, v8), (v4, v5), (v4, v6), (v4, v7), (v5, v6), (v6, v7)}. (1.2)

1

2

3
4

5

6

7
8

Node

Link

Figure 1.3: A small network composed of eight nodes and thirteen links.

1This network diagram and all other network diagrams in this thesis, unless otherwise
stated, were produced in Gephi [13].
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Another useful way a network can be described is by its adjacency matrix
A. We define this matrix in the following way

Aij =

{
n if there is are n links from node j to node i
0 if node j and node i are not connected

(1.3)

As a result of this definition an undirected network has a symmetric adjacency
matrix while a directed network has an asymmetric adjacency matrix. A net-
work with no self-links and at most one link between each pair of nodes has
zeros along the diagonal and either ones or zeros elsewhere. For example the
adjacency matrix of the network shown in Figure 1.3 is the matrix

A =



0 1 0 1 0 1 0 0
1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1
1 0 1 0 1 1 1 0
0 1 0 1 0 1 0 0
1 1 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0


. (1.4)

We can immediately see that this matrix is indeed symmetric, has entries equal
to zero all along its diagonal and all other entries are either zero or one.

One important characteristic of a node that can be easily computed from
the network’s adjacency matrix is its degree. The degree, ki, of a node, vi is
defined as the number of links it has and can be computed from the adjacency
matrix as follows:

ki =

n∑
j=1

Aij . (1.5)

Indeed we can compute a vector k = (k1, k2, . . . , kn)T of the degrees of every
node in the network through:

k = A


1
1
...
1

 . (1.6)

In our example we find that

k =



0 1 0 1 0 1 0 0
1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1
1 0 1 0 1 1 1 0
0 1 0 1 0 1 0 0
1 1 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0





1
1
1
1
1
1
1
1


=



3
3
3
5
3
5
3
1


, (1.7)

which can be easily verified from Figure 1.3.
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2.3 Examples of Real-World Networks

Networks are a very useful way of representing connections and interactions
between different parts of a system. Networks have been applied by scientists
in a wide variety of fields, including mathematics, computer science, physics,
biology, economics and social science, to many different problems. Representing
a system as a network allows researchers to apply the many tools previously
developed for networks to analyse the system and its properties. Here we will
present two interesting and well-known examples of networks. The first is a
simple social network with no spatial element and the second is a spatial trans-
portation network.

2.3.1 Social Network: The Erdős Collaboration Network

The prolific and influential Hungarian mathematician Paul Erdős (1913-
1996) authored over 1,500 mathematical articles in his lifetime, more than any
other mathematician in history. He worked on a broad range of topics includ-
ing number theory, set theory, analysis, probability theory and combinatorics
(including network or graph theory). A comprehensive list of Erdős’ publica-
tions in graph or network theory can be found on the European Mathematical
Information Service website [62]. One important contribution by Erdős to the
study of networks came during the 1950’s when in a series of eight papers he
and his fellow Hungarian Alfréd Rényi introduced the most basic of network
models, the random network. The Erdős-Rényi random network model N(n, p)
generates a network by taking n nodes and placing an edge between any two
nodes with the fixed independent probability p. One of the most important
questions addressed by Erdős and Rényi was finding the threshold probabilities
associated with the appearance of certain properties such as having a subgraph
with m nodes and l edges in a given network N(n, p).

Erdős was completely devoted to mathematics and lived a large portion of
his life as a mathematical pilgrim, a nomad with no home and no conventional
position, travelling to meet collaborators all over the world. Most of his articles
were co-written and he was famous for having many collaborators. According
to the last count by the Erdős Number Project [60] the number stands at 511.
Erdős even dreamed of collaborating with the great mathematicians of the past.
He is quoted as saying:

“My mother said, ‘Even you, Paul, can be in only one place at one
time.’ Maybe soon I will be relieved of this disadvantage. Maybe,
once I’ve left, I’ll be able to be in many places at the same time.
Maybe then I’ll be able to collaborate with Archimedes and Euclid”
[64].

Erdős’s phenomenal output and huge number of collaborators has given rise to
the notion of an Erdős number and according to the Erdős Number Project the
first published source about this idea was a 1969 article by Casper Goffman in
The American Mathematical Monthly, volume 76, page 791. One’s Erdős num-
ber describes one’s collaborative distance from Erdős based on co-authorship.
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Erdős is defined to have an Erdős number of zero. Anyone else’s Erdős number
is one greater than the lowest Erdős number of one’s coauthors. In other words,
any of Erdős’s direct coauthors are said to have an Erdős number of one. Any-
one other than Erdős himself who has collaborated on a paper with someone
with an Erdős number of one, but not with Erdős himself, has an Erdős number
of two, and so on. If there is no chain of coauthorships connecting someone with
Erdős, then that person’s Erdős number is said to be infinite.

Figure 1.4: Paul Erdős. [42]

Expanding this idea we may construct a collaboration network of all scientific
researchers where each node u represents a researcher and two nodes u and v are
connected by the link (u, v) if they have published at least one article together.
In such a network the Erdős number of the researcher represented by the node
u is is given by the minimum number of links between connected nodes one
must traverse starting from the node u to arrive at the node p representing Paul
Erdős. If no such path exists u does not have a finite Erdős number. Examining
the various properties of such networks can help us to understand the nature of
relationships between academics.

Figure 1.5 shows a subnetwork of this network containing all of those re-
searchers with an Erdős number of at most 1, i.e. Erdős himself and all of his
direct collaborators, using data available online from the Erdős Number Project
[60]. The white node at the centre of the network represents Erdős himself. All
other nodes in the network represent researchers with an Erdős number of one
and are given a size based on their degree. The colour of these nodes is based
on their modularity class, i.e. well connected groups of researchers within the
network as a whole.

One interesting feature of the topology of this network (and indeed of many
social networks) is the high level of clustering observed at 63.5 per cent, i.e.
the average fraction of pairs of a researcher’s collaborators who have also col-
laborated with one another, compared to the network’s low density of 1.6 per
cent, i.e. the fraction of all possible edges present in the network. This reflects
the presence of smaller local communities within the network in which a higher
than average number of people have collaborated with one another. This level
of clustering is particularly high due to the fact that all nodes in the network are
by definition connected to the node p representing Erdős. However, removing
this node from the network we still see a high level of clustering at 34.6 per cent
compared to the density of the network at 1.2 per cent.
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Erdos

Figure 1.5: The collaboration network of those with an Erdős number of at most 1
constructed using data from [60].
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2.3.2 Spatial Network: The US Airline Network

Systems in the real world which can be represented by networks very often
have nodes which are embedded in two or three dimensional space. Examples
include transportation and distribution networks, telecommunications networks,
neural networks and power grids. For networks such as these and many oth-
ers space is relevant and important as the topology of the network alone does
not contain all of the information associated with the system. One important
consequence of space on networks is that there is often a cost associated with
long edges, this in turn can have dramatic effects on the topological and spatial
structure of these networks.

Understanding how spatial constraints affect the structure of networks is
important in terms of understanding many real-world systems. Indeed it is an
important focus of this thesis. The models of network growth we introduce in
Chapter 2 model the growth of networks over time as they react to varying
spatial constraints. These networks are developed with the ultimate aim of cre-
ating a model of spatial economic development where the relationship between
space and the growth of an economic network are naturally of utmost impor-
tance in terms of both how spatial constraints influence growth and how spatial
considerations affect how our results should be interpreted.

Figures 1.6 and 1.7 show spatial network diagrams of the structure of the
airline route network in the United States of America (USA) constructed using
data from [63]. Each node in the spatial network represents an airport and
its spatial location is fixed at the location of that airport. Two airports are
connected by an link in the network if there is an airline route between them.
Analysing the topology of this network can help us to better understand how
the real-world airline network in the USA functions effectively.

It is clear that the spatial element of the network has had a large impact on
its structure. It can be seen in Figure 1.6 that the network has grown to have
a hub and spoke like topology with a few well connected hubs that have high
degree and a high centrality. (Here centrality can be thought of as a measure
of importance for nodes, we will return to look at the concept of centrality in
more detail in Chapter 3.) The other nodes, i.e. the spokes, have few, usually
short, edges and low centrality. These low degree nodes benefit from having
connections to hubs, shortening the total distance in terms of edges to other
nodes in the system. In other words the airline network is constructed in such
a way to reduce the number of connecting flights required for any one journey.
Small airports have connections with only a small number of airports (usually
nearby), however, it is possible in most cases to get a direct flight from any
airport to the nearest hub and continue your journey from there.

Figure 1.7 shows the network partitioned by modularity and reinforces this
point. Nodes are coloured by class and sized by their degree. Again we see that
the spatial element of the network has a significant impact, with the classes
roughly forming regional clusters. Small airports are generally grouped in a
community of airports with a major hub that they are connected to and these
major hubs serve to connect the various communities (modularity classes).

9



Chapter 1 2. Introducing Networks

-  Centrality  +

Figure 1.6: The US Airline Network with nodes sized by degree and coloured by
eigenvector centrality.

Figure 1.7: The US Airline Network with nodes sized by degree and coloured by
modularity class.
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Chapter 2
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Chapter 2 1. Introduction

1 Introduction

In this chapter we introduce a set of algorithms for generating spatial net-
works. Our ultimate aim is to model uneven spatial economic dynamics using
a series of overlapping spatial networks across space and time. The methods
introduced and examined in this chapter will form the basis of the economic
models introduced in Chapter 4.

Many models of network formation rely only on the network topology of the
network in question and have no spatial element. These models are useful for
many real-world networks in which spatial distances are not overly important or
entirely irrelevant such as the world wide web or citation networks. One example
of such a model is the famous “preferential attachment” model of Barabási and
Albert [6] in which new nodes are more likely to form links with nodes that have
a higher degree. This model produces an undirected network with a power-
law degree distribution. Power-law degree distributions have been observed
in many real-world networks including citation networks, the world wide web
and protein-protein interaction networks. The Barabási-Albert model has been
cited as an explanation for these observed distributions. It does so by adding
nodes one by one, forming links with the existing set of vertices with probability
proportional to the nodes’ current degree.

In other real-world networks, however, the spatial element cannot be over-
looked due to the prohibitive cost or time associated with travelling, communi-
cating or establishing connections over long distances. Space is relevant and the
network topology alone does not contain all of the information that is important
to the network. Transportation and distribution networks depend quite clearly
on distance due to fuel costs, time costs, construction costs etc. Power grids and
many communication networks also depend on distance. Regions in the brain
that are closer together have a higher probability of being connected due to the
material and energy costs associated with longer axons [17].

Spatial networks, therefore, are very important in current problems in many
fields ranging from urbanisation to biology and epidemiology. In our analysis we
first look at algorithms for the growth of a single spatial network, N = (V,E)
over time. These networks consists of a set of vertices or nodes, V , and a set of
edges or links, E, which connect them. Each node v ∈ V is given a fixed spatial
location. In one of the models we examine in this chapter individual nodes are
also given sizes which may evolve over time by a discrete process. Later we
examine a model for the growth of a pair of overlapping spatial networks.

The vast majority of spatial-growth algorithms that have been developed
and studied in the past predetermine the position of all nodes before adding
connections between these nodes based on the spatial distance between them or
choose the position of new nodes independent of the existing network and again
have only the connections rely on spatial distances [24, 71]. In reality, these
two methods of placing nodes are essentially equivalent. Another approach that
has been used is to draw together connected nodes using an a posteriori pulling
algorithm to create spatial clusters [61]. Our approach is different however. We
grow our spatial networks beginning with a single isolated node, the positions
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of any further nodes added to the network are not predetermined, rather their
position and the links between them are established over time as the network
develops. This approach is inspired by the work of Kaiser and Hilgetag [41]. Our
models are extensions of their original model which is both simple and elegant
and our simulations are run in Matlab [47]. Before introducing those models we
will first introduce some previously studied spatial network growth models.

1.1 Examples of Existing Models of Spatial Growth

One example of a previously studied spatial network growth model is an ex-
tension of the Barabási-Albert preferential attachment model [6] which expands
the original model by taking spatial distances into consideration during link
formation. In this model we begin with a small and complete spatial network
of m nodes and proceed to add nodes and links to the network as follows:

1. Add a new node vi at a random position with uniform distribution.

2. The new node vi forms links with m existing nodes with the probability
that one of the links connects vi to the existing node ve proportional to

P1 ∝ (ke)
σf(d(vi, ve)), (2.1)

where ke is the degree of ve, f is a decreasing function and d(vi, ve) is the
Euclidean distance between the two nodes. The values of P1(ve) are cal-
culated such that the probability measure is well defined and in particular∑
e P1(ve) = 1.

3. We repeat this process until the desired number of nodes M is reached.

Just like the case where distance is not considered as a factor in edge for-
mation, this model can generate networks with power-law degree distributions
which have been observed in many real-world networks. Yook et al. [71] showed
it was possible to recreate some of the standout features of the internet with
this model by choosing σ = 1 and f(d(vi, ve)) = d(vi, ve)

−1.
Another example of a spatial network growth model is the model of Gastner

and Newman [30]. This model was proposed for building optimal distribution
networks. The spatial distribution of the nodes in the network is set from the
outset. We then proceed as follows:

1. Each potential edge between a pair of nodes, vi and vj , in the network is
assigned an effective length

l̄(vi, vj) = (1− δ)l(vi, vj) + δ, (2.2)

where δ is a constant which allows us to adjust the balance between the
fixed and variable costs of forming an edge and l(vi, vj) is the shortest
Euclidean distance between the two nodes measured along the network’s
links.
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2. Links are then added to the network in order to minimize the sum∑
i<j

Aij l(vi, vj) + γ
∑
i<j

wij l̄(vi, vj), (2.3)

where A is the adjacency matrix of the network, γ > 0 is a constant and
wij > 0 is a weight which represents the traffic between vi and vj . This
minimization represents an attempt to minimize and balance the construc-
tion cost of the network, represented by

∑
i<j Aij l(vi, vj), and the cost for

users to travel across the network, represented by
∑
i<j wij l̄(vi, vj).

By adjusting the values of δ and γ in this model, and placing nodes in areas
of high population density, the authors were able to use this spatial growth
model to produce networks similar to both the highway and airline networks in
the United States of America.

1.2 Some Network Metrics

Before we continue, in order to analyse the networks produced by new growth
processes introduced and analysed in this chapter, we now introduce four im-
portant network metrics for a network N = (V,E). The first of these metrics
is particular to spatial networks and allows us to get a quick impression of the
spatial concentration of the nodes in the network.

Definition 1.2.1. The average node distance, AND, of a spatial network, N =
(V,E), is the mean of the Euclidean distances, d(vi, vj), between all pairs of
nodes vi, vj ∈ V .

Our next two metrics give us a measure of the level of connectivity in a
network. The density of a network gives us a measure of the global connectivity
of the network.

Definition 1.2.2. The density, D, of a network, N = (V,E), is the percentage
of the total possible edges present in the network

D =
2|E|

|V |(|V | − 1)
. (2.4)

The clustering coefficient of a network, on the other hand, gives us a measure
of the local connectivity of the network. It is a measure of how connected the
neighbourhoods in a network are.

Definition 1.2.3. The clustering coefficient [52], cc, of a node vi ∈ V is given
by

cc(vi) =
number of connected pairs of neighbours of vi

number of pairs of neighbours of vi
. (2.5)

The clustering coefficient, C, of a network N = (V,E) is simply the average of
cc(vi) for all vi ∈ V .
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The final metric we will introduce, average shortest path length, relies on the
concept of a network path. It is a measure of the average number of links we
need to traverse to get from one node to another in a network.

Definition 1.2.4. A path in a network is a sequence of nodes {v1, v2, . . . , vm}
such that every consecutive pair of nodes {vi, vi+1} are connected by a link
(vi, vi+1). The length of such a path is the number of links traversed along the
path. A shortest path is a path between two nodes such that no shorter path
exists. If no such path exists we say that the path length between the two nodes
is infinite.

Definition 1.2.5. The average shortest path length, ASP , of a network is the
average of the lengths of the shortest paths between every pair of nodes in that
network.

1.3 Simple Growth - The Kaiser-Hilgetag Algorithm [41]

The approach of Kaiser and Hilgetag [41] is to begin with some initial con-
nected network. For our purposes we begin with one node at the centre of the
unit square. Nodes are then added to the network until we reach the desired
number of nodes, M . Connections between nodes are established based on the
spatial distance between them. Throughout our analysis in this chapter the dis-
tance we consider will be the Euclidean distance. However, our distance metric
need not be limited to Euclidean distance nor our network to Euclidean space.
We may consider for example measures of similarity such as coexport probabil-
ities which give a measure of the similarity of industrial products [34], an idea
we further investigate in Chapter 4.

The following development algorithm describes the process for adding nodes
and links to the network:

1. New node position is given by a uniform random variable on the unit square.

2. The new node vi connects with each existing node ve with probability

P1 = βe−αd(vi,ve), (2.6)

where d(vi, ve) is the Euclidean distance between the two nodes, 0 < β ≤ 1
and α > 0. Here β simply scales the general probability of link formation.
Increasing β makes the formation of a link between two nodes in any given
spatial locations more likely. The parameter α on the other hand regulates
the dependence of link formation on the spatial distance between nodes.
Note that the given probability measure is well defined. The formation of
each possible link between the new node vi and each existing node ve is
a separate and independent Bernoulli random variable with probability of
success, i.e. link formation, p, where 0 < p = P1 = βe−αd(vi,ve) ≤ 1, since
0 < β ≤ 1 and α > 0, and probability of failure q, where 0 ≤ q = 1− p < 1.

3. The new node survives, i.e. is kept, if and only if it forms a connection
with at least one existing node. If no connections are formed the node is
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discarded. This step is particularly important, it makes the survival of new
nodes dependent on the spatial layout of the existing nodes.

4. We repeat this process until the desired number of nodes, M , is reached.

(a) NS
1 : α = 15 and β = 0.5. (b) NS

2 : α = 50 and β = 0.2.

Figure 2.1: Network diagrams of two 100-node spatial networks generated by the
algorithm outlined above for different values of α and β. The boundaries of the unit
square are shown in grey and the initial node is highlighted in pink.

Figure 2.1 shows two examples of 100-node spatial networks generated by
the Kaiser-Hilgetag algorithm. We can see that different choices of α and β
can produce spatial networks with significantly different structures and prop-
erties. The most striking difference is immediately clear by observation. The
higher α value chosen for the network in Figure 2.1b causes a higher level of
spatial concentration of nodes and lower mean distance between nodes in the
network. This is due to the fact that, according to our algorithm, the probabil-
ity, P1 = βe−αd(vi,ve), of a new node connecting with an existing node decays
exponentially with distance scaled by α. This means that in the case of NS

2 new
nodes must be closer to the existing network in order to be added for higher
values of α. The average node distance of NS

1 is 0.3774 (2.1a) while the aver-
age node distance of NS

2 is 0.1233 (2.1b), indicating the higher level of spatial
clustering in NS

2 that is clear from observation in Figure 2.1.
The average shortest path length of NS

1 is 4.4638 while the average shortest
path length of NS

2 is higher at 5.3457. This means that on average we must
traverse more links to get from one node to another in NS

2 than in NS
1 . The

network NS
1 has a higher clustering coefficient than NS

2 , 0.0639 compared to
0.0502, meaning that on average nodes in NS

1 have more complete neighbour-
hoods than those in NS

2 . Finally, NS
1 also has higher density, 0.032 compared

to 0.028, and so has a higher number of edges and degree of connectivity. These
differences can be attributed, at least in part, to the higher β value used when
generating NS

1 . This causes any possible link to have a higher probability of
being formed, leading to more links in the overall network generated.
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Figure 2.2 gives an overview of the properties of networks generated using the
Kaiser-Hilgetag algorithm with different values for α and β. For each parameter
combination we simulated 300 networks and then took the mean value of each
network metric over the 300 networks.
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(d) Average node distance

Figure 2.2: Comparison of the properties of 100-node spatial networks generated using
different values of the parameters α and β. Each data point represents the average for
50 networks.

We see that the density and clustering are highest for low values of α and
high values of β, this is unsurprising as this maximises the probability, P1 =
βe−αd(vi,ve), of any link forming, increasing the number of links in the network
and so increasing both local and global connectivity. It is also interesting to note
that while density decreases rapidly for all values of β as α increases, clustering
remains, relatively speaking, quite high as short links are still formed, increasing
local connectivity. Average node distance decreases rapidly with increasing
α while average shortest path length is lowest for those networks with high
probabilities of edge formation where α is low and β is high.

Kaiser and Hilgetag found that their model was able to generate small-world
networks, networks which maintain a comparable average shortest path length
to random networks while displaying a higher clustering coefficient, which is not
thought to be possible in the spatial graph model in which positions are chosen
randomly before edge formation [70]. They also showed, amongst other things,
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that the model was able to produce spatial networks that displayed similar
properties to real-world spatial networks such as the German highway system.

We can and will extend this model in what follows to allow for more compli-
cated growth processes. We will investigate what effects these extensions have
on the properties of the networks that are generated and how the resulting net-
works compare to those originally investigated by Kaiser and Hilgetag. These
new ideas and processes will then be used when developing our models of spatial
economic development in Chapter 4.

2 Allowing Mature Nodes to Connect

In the development algorithm presented in Section 1.3 the only time at which
it was possible for two nodes to form a connection was at the point where one of
the nodes was being added to the network for the first time. In this section we
introduce a modification to the original algorithm that allows us to deal with this
issue. In the extension we allow existing nodes to attempt to form connections
with other existing nodes every T timesteps. The probability of establishing
such a connection is also based on the distance between the two nodes. In a
way this can be thought of as a combination of the approach of Kaiser and
Hilgetag, and an approach where the position of our nodes is predetermined.
Nodes added do not have a predetermined position, however every T timesteps,
i.e. every T iterations of our algorithm, we look to add links to a network
of m < M nodes with predetermined positions based on the distance between
them.

2.1 Development Algorithm and Sample Networks

We again begin with one node at the centre of the unit square and proceed
as follows:

1. New node position is given by a uniform random variable on the unit square.

2. The new node vi connects with each existing node ve with probability

P1 = βe−αd(vi,ve). (2.7)

3. The new node survives, i.e. is kept, if and only if it forms a connection with
at least one existing node. If no connections are formed it is discarded.

4. Every T timesteps we allow connections to form between any pair of existing
nodes λ, γ with probability

P2 = Be−Ad(λ,γ), (2.8)

where 0 < B ≤ 1 and A > 0.

5. We repeat this process until the desired number of nodes, M , is reached.
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(a) NM
1 : α = 15, A = 50 and β = 0.5,

B = 0.2.
(b) NM

2 : α = 50, A = 15 and β = 0.2,
B = 0.5.

Figure 2.3: Network diagrams of two 100-node spatial networks generated by the
algorithm outlined above with T = 20 for different values of α, A, β and B. The
boundaries of the unit square are shown in grey and the initial node is highlighted in
pink.

Figure 2.3 shows two examples of 100-node spatial networks generated by
this network development algorithm. We can see that different choices of param-
eter values can produce spatial networks with significantly different structures
and properties. We have chosen the same values for α and β used for generat-
ing the networks NS

1 and NS
2 shown in Figure 2.1 of Section 1.3 which used the

original Kaiser-Higetag algorithm.
Allowing for the establishment of connections between mature nodes every

T = 20 iterations of the algorithm has not made any major impact on the
spatial distribution of the nodes in the networks generated. The higher α value
chosen for the network in Figure 2.3b again causes a higher level of spatial
concentration of nodes and lower mean distance between nodes in the network.
The average node distance of NM

1 is 0.3553 while the average node distance of
NM

2 is 0.1767. In NS
1 and NS

2 the corresponding values were 0.3774 and 0.1233
respectively.

Allowing for the establishment of connections between mature nodes every
T = 20 iterations of the algorithm has made a dramatic difference to other
network properties in the case of NM

2 . The fact that A is significantly smaller
than α for this network is the most prominent reason that these differences exist.
Recall that α regulates the dependence of link formation for new nodes on their
spatial distance from existing nodes and so a high α in this case results in tightly
clustered nodes. On the other hand A for regulates the dependence of link
formation between existing mature nodes nodes on the spatial distance between
them, a low A in the case of this network means there is a high probability
of forming links between mature pairs of nodes in the spatially dense network
every T timesteps. The high value of α also means it requires more iterations
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of the algorithm to produce a 100-node network. This means that there are
more chances for connections between mature nodes to form. The fact that B is
greater than β for this network also compounds the effect. On the other hand,
the effect of allowing connections to form between mature nodes on the network
properties of NM

1 is relatively small as A > α and B < β.
The average shortest path length of NM

1 is 3.7758 which is slightly shorter
than the ASP of NS

1 which was 4.638. On the other hand, the average shortest
path length of NM

2 is now lower than NM
1 at 1.3632 which is significantly lower

than the corresponding ASP of 5.3457 for NS
2 due to the increased number of

links in the network generated by our new algorithm.
The density of NM

1 is 0.0400, this is not a major increase on the density of
0.032 of NS

1 however the clustering coefficient of NM
1 is almost double that of

NS
1 , 0.1244 compared to 0.0639. This may be because many of the links added

between mature nodes every T = 20 timesteps are likely to be between nodes
which both have links to the same node. If nodes u1 an u2 are attached to
the same node v they are likely to be spatially close to eachother as they both
needed to be close to v in order to form the initial connection. In this case every
T = 20 timesteps their proximity means that they will have a relatively high
probability of forming a connection.

The effect is more dramatic in the case of NM
2 due to the relative sizes of α

& A and β & B. A high α causes nodes to be highly spatially concentrated. A
low A then allows mature nodes to form links relatively easily. Both the density
an clustering coefficient of NM

2 are significantly higher than the corresponding
values for NS

2 . NM
2 has a density of 0.6436 and a clustering coefficient of 0.7755

compared to values of 0.028 and 0.0502 respectively for NS
2 .

2.2 Results

In this section we investigate the effect of different parameter value combi-
nations on the spatial networks generated by our algorithm outlined in Section
2.1. Our analysis focuses on the changes in the four metrics defined in Section
1.2. For each parameter combination we simulated 50 100-node networks (in a
very small number of cases we reduced this to 30 networks for high values of α
due to computational constraints). Of particular interest to us are the effects of
the interactions between different values of α and β, of changing T , of different
ratios of α and A and of different ratios of β and B on the properties of the
spatial networks produced by our algorithm. We look first at the interactions
between different values of α and β and how allowing for the formation of links
between mature nodes every T timesteps affects the properties of the network
generated.

2.2.1 Varying α and β

For simplicity when examining how different combinations of α and β affect
the properties of the spatial networks generated by our algorithm we take A = α
and B = β. This means that the probability of forming a link between mature
nodes is equal to the probability of forming such a link when the younger of the
two nodes was first added to the network. Our approach will be to first examine
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the most extreme case of allowing mature nodes to form connections with other
mature nodes. We set T = 1, allowing the formation of links between mature
nodes every timestep.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.4: Comparison of the properties of networks generated by our algorithm for
different values of α and β, allowing connections between mature nodes every T = 1
timesteps. We plot in increasingly magenta for lower β.

We take 11 values of α between 1 and 100, 11 values of β between 1
100

and 1, and generate multiple spatial networks using our algorithm for each
parameter combination. In Figure 2.4 and Figure 2.5 we can see the mean
of the ASP , clustering coefficient, density and average node distance of the
networks generated for each parameter combination.

We first note that the relationship between the average node distance of the
generated networks and the values of α and β used to generate those networks
is strikingly similar to the relationship seen when analysing the original Kaiser-
Hilgetag algorithm, which did not allow mature connections, as seen in Figure
2.2. The relationship between the value of β used when generating a network and
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the average node distance of that network is positive. Increasing β increases the
probability, P1 = βe−αd(vi,ve), of a new node connecting with an existing node
independent of the distance between them, making new nodes of all distances
to the existing network more likely to be added.

The log(α) - average node distance relationship is sigmoidal. This rela-
tionship is negative, the average node distance of the network decreases as we
increase α. This is due to the fact that, according to our algorithm, the proba-
bility, P1 = βe−αd(vi,ve), of a new node connecting with an existing node decays
exponentially with distance scaled by α. This means that as we increase α new
nodes must be closer to the existing network in order to be added. The decrease
in average node distance is relatively slow as we initially increase α on the log
scale this decrease in average node distance becomes more rapid as we increase
α before slowing again as α → ∞. The initial slow rate of decrease of average
node distance as we increase log(α) is due to the fact as α → 0 average node
distance approaches a limit imposed by the finite space in which our network
is located (in this case the unit square). Similarly as α → ∞ average node
distance approaches its lower bound 0.
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ated networks for different combinations
of α and β.
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(c) Density of the generated networks for
different combinations of α and β.

10
0

10
1

10
2

10
−2

10
−1

10
0
0

0.2

0.4

0.6

0.8

αβ

A
ve

ra
ge

 N
od

e 
D

is
ta

nc
e

(d) Average node distance of the gener-
ated networks for different combinations
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Figure 2.5: Comparison of the properties of networks generated by our algorithm for
different values of α and β, allowing connections between mature nodes every T = 1
timesteps.
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Next we examine the relationship between the ASP of the generated net-
works and the values of α and β used to generate those networks. For low
values of α there is a negative relationship between β and ASP . For large val-
ues of α this relationship becomes more complicated and appears to begin to
reverse. This is a feature not seen in the networks generated with the original
Kaiser-Hilgetag algorithm In those networks the negative relationship between
the ASP of the network generated and the value of β used remained negative
for all values of α analysed. For all values of β, ASP initially exhibits an in-
creasing relationship with α before reaching some maximum and falling again
as α→ 100. This is another feature of the relationship not seen in the networks
generated with the original Kaiser-Hilgetag algorithm where the relationship
between ASP and α was strictly increasing for all values of β.

Both the clustering coefficient and the density, our measures of local and
global connectivity, respectively, of the networks generated have similar rela-
tionships with the values of the parameters α and β used to generate them. For
low values of α there is a positive relationship between β and clustering as well
as between β and density. For large values of α these relationships becomes
more complicated and appear to begin to reverse. Again these features are not
seen in the networks generated with the original Kaiser-Hilgetag algorithm In
those networks the positive relationship between the clustering and density of
the network generated and the value of β used was positive for all values of α
analysed. For all values of β, clustering and density initially exhibit a decreas-
ing relationship with α before reaching some minimum and increasing again as
α → 100. These are also features of the relationships not seen in the networks
generated with the original Kaiser-Hilgetag algorithm where the relationships
were strictly decreasing.

For low values of α, decreasing β has the effect of reducing the probability
that any two nodes will connect either when one node is initially added to the
system or later when the two try to connect as mature nodes. This reduces
the number of links in the network and as a result likely increases the average
number of links that must be traversed to get from one node to another, i.e. the
network’s ASP . However, this effect is somewhat offset by the increased number
opportunities given to mature nodes to connect as a result of the increased
number of iterations of our algorithm that are required to produce a network of
M nodes due to the decreased β value. This effect becomes more pronounced as
α increases which also results in an increase in the number of iterations required
to produce a network of M nodes. For a sufficiently high α the relationship
between β and ASP appears to begin to reverse as a result.

This also explains the changes in the relationships between β and the cluster-
ing coefficient of the network generated and the relationship between β and the
density of the network generated. Both the clustering coefficient and the density
of a network are likely to increase as more links are added to the network.
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(a) Ratio of the ASP of the generated
networks for different combinations of α
and β to the ASP of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.

10
0

10
1

10
2

10
−2

10
−1

10
0
0

200

400

600

800

αβ

C
lu

st
er

in
g 

R
at

io

(b) Ratio of the clustering coefficient of the
generated networks for different combina-
tions of α and β to the clustering coeffi-
cient of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and β to the density of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and β to the average node
distance of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.

Figure 2.6: Ratios of the properties of networks generated by our algorithm for different
values of α and β allowing connections between mature nodes every T = 1 timesteps
to the same properties for networks generated by the Kaiser-Hilgetag algorithm

A similar explanation allows us to understand the novel relationship between
α and the three network metrics in question. As α increases the likelihood of
forming a link with a new node distant to the existing network, or between
two distant mature nodes decreases. This initially results in an increase in
ASP and a fall in density and clustering as the number of links in the network
falls. As α increases further the increase in the number of iterations required
to produce a network of M nodes causes the formation of mature links becomes
more influential on the properties of the networks generated. Not only does
the increase in the number of iterations increase the number of chances for new
links to form but the likelihood of mature links forming is higher than a link
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from a new node to an existing one due to the fact that nodes in the network
are already highly spatially concentrated while new nodes are given random
positions in space that may be distant to the existing network. In this way we
may also explain why clustering increases faster than density as α increases.
Mature links are more likely to form between neighbours than the average pair
of nodes in the network they are likely to be spatially close to eachother as they
both needed to be close to the node they are both connected to v in order to
form the initial connection.

In order to compare the networks generated by our new algorithm, which
allows the formation of links between mature nodes every T iterations, to the
networks generated by the original Kaiser-Hilgetag algorithm, which allows links
to form between nodes only when one of the nodes is first being added to the
network, we have plotted the ratios of the value of each of the four network
metrics for a network generated by the new algorithm to the corresponding
value of that metric for a network generated by the original algorithm in Figure
2.6. We first note that this extension of the original algorithm has no effect on
the average node distance of the spatial network produced. For all values of α
and β considered the ratio of the average node distance of networks produced
by the extended algorithm to the average node distance of networks produced
by the original algorithm ≈ 1. This is natural as the spatial location of each
node is entirely determined when it is first added to the network and is not
influenced in any way by the addition of links later on.

For the other three metrics we note that the extension to the model has
the largest effect (our ratio is furthest from 1) when α is large and β is small.
This is, as discussed earlier, due to the fact P1 = βe−αd(vi,ve) is minimised by
maximising α and minimizing β. This causes us to require more iterations of
our algorithm per node added, and as a result more opportunities for mature
nodes to form links with other mature nodes. On the other hand the effect is
smallest for small α and large β.

For every value of α and β the extension of the algorithm results in more
links being present in the generated network than the corresponding network
generated by the original algorithm. This results in a lower ASP and so the
ASP ratio is less than 1 for all values of α and β. It also causes the density and
clustering coefficient of the resulting network to be higher and so these ratios
are both greater than 1 for all values of α and β. The effect is more pronounced
in the case of the clustering coefficient. Local connectivity, in both a spatial
and topological sense is increased as both initial connections and connections
between mature nodes are more likely to form over short spatial distances.

We now examine a less extreme case in which links between mature nodes
are allowed to form but only on selected timesteps. We set T = 100, allowing
the formation of links between mature nodes every 100 timesteps, and look
at how different combinations of α and β affect the properties of the spatial
networks generated by our algorithm. For simplicity we once again take A = α
and B = β. We take the same 11 values of α between 1 and 100 and 11 values
of β between 1

100 and 1 as above, and again generate multiple spatial networks
using our algorithm for each parameter combination. In Figure 2.7 and Figure
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2.8 we can see the mean of the ASP , clustering coefficient, density and average
node distance of the networks generated for each parameter combination.
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(a) ASP of the generated networks for dif-
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.7: Comparison of the properties of networks generated by our algorithm for
different values of α and β, allowing connections between mature nodes every T = 100
timesteps. We plot in increasingly magenta for lower β.

As we saw in Figure 2.4 the relationship between the average node distance
of the generated networks and the values of α and β used to generate those net-
works is once again essentially identical to the relationship seen when analysing
the original Kaiser-Hilgetag algorithm, which did not allow mature connections,
as seen in Figure 2.2. This is again expected as the spatial distribution of the
nodes in any network generated by our extended algorithm depends in no way
on the formation of links between pairs of mature nodes.

When examining the relationship between the ASP , clustering coefficient
and density of the generated networks and the values of α and β used to generate
those networks we again see some of the novel features that were seen for the T =
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1 case analysed above that are not seen when we prohibit pairs of mature nodes
from forming links at any point. The ASP again increases to some maximum
as we increase α for all values of β before decreasing. Both the clustering
coefficient and the density decrease to some minimum before increasing again
as we increase α. The mechanisms by which this occurs is the same as in the
T = 1 case although the effect is less pronounced as we don’t allow mature
nodes to form links with other mature nodes as often.
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.8: Comparison of the properties of networks generated by our algorithm for
different values of α and β, allowing connections between mature nodes every T = 100
timesteps.

For low values of α there is a negative relationship between β and ASP .
For large values of α this relationship becomes more complicated and appears
to begin to reverse however this is not as clear as in the T = 1 case as there
are not as many chances for links between pairs of mature nodes to form. We
hypothesise that increasing α further would see a clearer reversal of this rela-
tionship as the effect of adding mature nodes becomes more pronounced with
the increased opportunities to connect that arise as a result.
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(a) Ratio of the ASP of the generated
networks for different combinations of α
and β to the ASP of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(b) Ratio of the clustering coefficient of the
generated networks for different combina-
tions of α and β to the clustering coeffi-
cient of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and β to the density of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and β to the average node
distance of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.

Figure 2.9: Ratios of the properties of networks generated by our algorithm for different
values of α and β allowing connections between mature nodes every T = 100 timesteps
to the same properties for networks generated by the Kaiser-Hilgetag algorithm

Again, as in the T = 1 case, the clustering coefficient and the density, our
measures of local and global connectivity respectively, of the networks generated
have similar relationships with the values of the parameters α and β used to
generate them. For low values of α there is a positive relationship between β and
clustering and between β and density. For large values of α these relationships
becomes more complicated and again appear to begin to reverse although the
reversal is not as clear or complete as the T = 1 case. we believe this reversal
would again become clearer with further increases in α.

Examining the ratios in Figure 2.9 we again find confirmation that allowing
links to form between pairs of mature nodes does not affect the spatial distri-
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bution of nodes in the network. The ratio of average node distance in networks
generated by our algorithm to networks generated by the original algorithm
≈ 1. The effect of allowing connections between mature nodes every T = 100
timesteps, as in the T = 1 case, is most pronounced for large α and small β.
At these points the ASP , clustering coefficient and density ratios are furthest
from 1. Allowing the possibility of mature connections either does not affect
the network topology or increases clustering and density and decreases ASP for
all combinations of α and β. The clustering coefficient is more affected than
density as connections between mature nodes are always more likely between
nodes which are spatially close which are in turn likely to be neighbours.
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2.2.2 Varying α and T
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(a) ASP of the generated networks for dif-
ferent combinations of α and T .
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(b) Clustering coefficient of the generated
networks for different combinations of α
and T .
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(c) Density of the generated networks for
different combinations of α and T .
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(d) Average node distance of the generated
networks for different combinations of α
and T .

Figure 2.10: Comparison of the properties of networks generated by our algorithm
for different values of α and T . We set β = 1 and plot in increasingly magenta for
higher values of T . The relationship between each of the metrics and α for the original
Kaiser-Hilgetag algorithm is plotted in black.

In this section we examine how different combinations of the parameter
α, which affects the spatial range of links, and the parameter T , which reg-
ulates how often mature nodes may attempt to form links with other mature
nodes, affect the properties of the spatial network generated by our algorithm.
Throughout this analysis we will hold β constant, taking β = 1. As in Section
2.2.1 we will, for simplicity, take A = α and B = β, making the probability of
forming a link between mature nodes equal to the probability of forming such
a link when the younger of the two nodes was first added to the network.

We take 11 values of α between 1 and 100, 10 values of T between 1 and
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1000, and generate multiple spatial networks using our algorithm for each pa-
rameter combination. In Figure 2.10 and Figure 2.11 we can see the mean of the
ASP , clustering coefficient, density and average node distance of the networks
generated for each parameter combination.
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(a) ASP of the generated networks for dif-
ferent combinations of α and T .
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(b) Clustering coefficient of the generated
networks for different combinations of α
and T .
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(c) Density of the generated networks for
different combinations of α and T .
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(d) Average node distance of the generated
networks for different combinations of α
and T .

Figure 2.11: Comparison of the properties of networks generated by our algorithm for
different values of α and T when β = 1.

For large values of T and low values of α we see that allowing mature con-
nections has no influence on the topology of the network generated. This is
due to the fact that for low values of α a 100-node spatial network is generated
by relatively few iterations of the network generation algorithm. This prevents
nodes from having many chances to develop connections between pairs of ma-
ture nodes. However, provided T is not too large or α is not too small we see
that allowing mature connections has a significant influence on the topology of
the network generated.

Unsurprisingly however, in Figure 2.10d we once again see that the rela-
tionship between the mean distance between nodes in the generated network
and α is entirely independent of our choice of T . The spatial position of new
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nodes relative to the existing network does not depend in any way, directly or
indirectly on T .
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(a) Ratio of the ASP of the generated net-
works for different combinations of α and
T where β = 1 to the ASP of networks
generated by the original Kaiser-Hilgetag
algorithm with the same combinations of
α and β.
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(b) Ratio of the clustering coefficient of
the generated networks for different com-
binations of α and T where β = 1 to
the clustering coefficient of networks gen-
erated by the original Kaiser-Hilgetag al-
gorithm with the same combinations of α
and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and T where β = 1 to the density of net-
works generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and T where β = 1 to the
average node distance of networks gener-
ated by the original Kaiser-Hilgetag algo-
rithm with the same combinations of α
and β.

Figure 2.12: Ratios of the properties of networks generated by our algorithm for
different values of α and T when β = 1 to the same properties for networks generated
by the Kaiser-Hilgetag algorithm

For all values of T analysed we again see the novel relationships between α
and ASP , clustering and density observed in Section 2.2.1 that were not seen
in the analysis of the original algorithm when links between pairs of mature
nodes were prohibited. As we increase α ASP increases to a maximum before
decreasing while both clustering and density decrease to minima before increas-
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ing. The maximum attained by ASP is lowest and the minima attained by
clustering and density are highest when T = 1 and pairs of mature nodes have
the maximum possible number of opportunities to form links. The minima of
density and clustering are achieved at increasing values of α as T increases.
Interestingly the value of α for which the maximum ASP is achieved appears
to remain approximately equal as T is increased. Further analysis would be
required to confirm this.

In order to compare the networks generated by our new algorithm to the
networks generated by the original Kaiser-Hilgetag algorithm, which allows the
formation of links between mature nodes every T iterations, we have plotted
the ratios of the value of each of the four network metrics to the corresponding
value of that metric for a network generated by the original algorithm, which
allows links to form between nodes only when one of the nodes is first being
added to the network, in Figure 2.12.

We confirm once again that our extension does not affect the spatial distri-
bution of the nodes in the networks generated. We also note that for the highest
values of T and low to intermediate values of α the extension has no effect on
the topology of the network. This is indicated by ASP , clustering coefficient
and density ratios equal to 1 and is due to the fact that for low α we require
few iterations to generate a 100-node network and so if T is high pairs of ma-
ture nodes will have little or no opportunities to attempt to form links. In the
case of all three metrics we find that the effect of the extension to the original
algorithm as the maximum effect (we observe ratios furthest from 1) when α is
maximised and T is minimised. In all cases the extension has either no effect
or increases density and clustering while decreasing ASP (ratio > 1 and ratio
< 1 respectively).
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2.2.3 Varying β and T
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(a) ASP of the generated networks for dif-
ferent combinations of β and T .
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(b) Clustering coefficient of the generated
networks for different combinations of β
and T .
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(c) Density of the generated networks for
different combinations of β and T .
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(d) Average node distance of the generated
networks for different combinations of β
and T .

Figure 2.13: Comparison of the properties of networks generated by our algorithm for
different values of β and T . We set α = 4 and plot in increasingly magenta for higher
T . The relationship between each of the metrics and β for the original Kaiser-Hilgetag
algorithm is plotted in black.

In this section we examine how different combinations of the parameter β,
which affects the probability of any given link forming, and the parameter T ,
which regulates how often mature nodes may attempt to form links with other
mature nodes, affect the properties of the spatial network generated by our
algorithm. Throughout this analysis we will hold α constant, taking α = 4.
As in Section 2.2.1 we will, for simplicity, take A = α and B = β, making the
probability of forming a link between mature nodes equal to the probability of
forming such a link when the younger of the two nodes was first added to the
network.
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We take 11 values of β between 1
100 and 1, 10 values of T between 1 and 1000,

and generate multiple spatial networks using our algorithm for each parameter
combination. In Figures 2.13 and 2.14 we can see the mean of the ASP , clus-
tering coefficient, density and average node distance of the networks generated
for each parameter combination.
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(a) ASP of the generated networks for dif-
ferent combinations of β and T .
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(b) Clustering coefficient of the generated
networks for different combinations of β
and T .
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(c) Density of the generated networks for
different combinations of β and T .
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(d) Average node distance of the generated
networks for different combinations of β
and T .

Figure 2.14: Comparison of the properties of networks generated by our algorithm for
different values of β and T when set α = 4.

For large values of T and β we see that allowing mature connections has
no influence on the topology of the network generated. For large values of
β a 100-node spatial network is generated by relatively few iterations of the
network generation algorithm as all new nodes have a relatively high probability
of forming at least one link with he existing network. This prevents nodes from
having many chances to develop connections between pairs of mature nodes. For
smaller values of β and T we see that allowing mature connections does have
a significant influence on the topology of the network generated. The spatial
distributions of the nodes in the network on the other hand is not affected.

For α = 4, the relationship between β and the ASP of the network generated
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by our algorithm is negative for all choices of T . The relationships between β
and the clustering coefficient of the network generated by our algorithm and
between β and the density of the network generated are positive for all values
of T . We also observe a positive relationship between ASP and T and negative
relationships between clustering and T and density and T .
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(a) Ratio of the ASP of the generated net-
works for different combinations of β and
T where α = 4 to the ASP of networks
generated by the original Kaiser-Hilgetag
algorithm with the same combinations of
α and β.
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(b) Ratio of the clustering coefficient of
the generated networks for different com-
binations of β and T where α = 4 to
the clustering coefficient of networks gen-
erated by the original Kaiser-Hilgetag al-
gorithm with the same combinations of α
and β.
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(c) Ratio of the density of the generated
networks for different combinations of β
and T where α = 4 to the density of net-
works generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of β and T where α = 4 to the
average node distance of networks gener-
ated by the original Kaiser-Hilgetag algo-
rithm with the same combinations of α
and β.

Figure 2.15: Ratios of the properties of networks generated by our algorithm for
different values of β and T when α = 4 to the same properties for networks generated
by the Kaiser-Hilgetag algorithm

The ratios plotted in Figure 2.15 allow us to compare the properties of
networks generated by our new algorithm, which allows connections to form
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Chapter 2 2. Allowing Mature Nodes to Connect

between pairs of mature nodes to the properties of networks generated by the
original algorithm in which this type of behaviour is prohibited. We see that our
extension has the largest effect on he topology of the networks generated for low
values of T and low values of β as in this case we maximise the opportunities
for connections to form between mature nodes. For high values of T and β
there is no effect and the ASP , clustering coefficient and density ratios ≈ 1 in
these cases. Clustering and density are increased by the extension while ASP
is reduced.

2.2.4 Varying α and A
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(a) ASP of the generated networks for dif-
ferent combinations of α and A.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and A.
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(c) Density of the generated networks for
different combinations of α and A.
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(d) Average node distance of the generated
networks for different combinations of α
and A.

Figure 2.16: Comparison of the properties of networks generated by our algorithm
for different values of α and A. We set β = B = 1, T = 20 and plot in increasingly
magenta for lower A.
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In our analysis so far we have limited our investigation to cases where A = α
and B = β. In this section we investigate how the relationship between our two
spatial range parameters α and A affect the topology of the networks generated
by our algorithm. In particular we are interested in how varying the ratio
between α and A affects each of our four spatial network metrics. For simplicity
we consider β, B and T to be a constant for all the networks we generate. We
set β = B = 1 and T = 20.

We take 11 values of α between 1 and 100, the same 11 values for A, and
generate multiple spatial networks using our algorithm for each parameter com-
bination. In Figures 2.16 and 2.17 we can see the mean of the ASP , clustering
coefficient, density and average node distance of the networks generated for each
parameter combination. The average node distance is unaffected by changes in
A as this parameter influences only the formation of links between pairs of
mature nodes and not the placement of new nodes. Average node distance re-
tains its decreasing sigmoidal relationship with log(α) that we have observed
throughout our analysis of this algorithm and the original algorithm.

Holding A constant as we increase α the ASP of the network generated by
our algorithm increases to some maximum before decreasing. This relationship
is significantly different from the positive relationship between α and the ASP
of networks generated by the original algorithm which did not allow new links
to form between pairs of mature nodes. However, it is similar to the relationship
seen in Section 2.2.1. In that case we took A = α and also observed that as we
increased α (and therefore A) the ASP initially increased to some maximum
before decreasing. We also see that holding A constant as we increase α both
the clustering coefficient and the density of the network initially decrease before
reaching some minimum and increasing thereafter. Again these relationships
differ significantly from the relationships between α and clustering and density
for the original algorithm but bear some resemblance to the relationships be-
tween α and clustering and density for the algorithm allowing links between
mature nodes when we take A = α.

We can explain these novel relationships in a similar way to the explanation
given for the corresponding relationships when we set A = α. Initially as α
increases the likelihood of forming a link with a new node distant to the existing
network, or between two distant mature nodes decreases. This initially results
in an increase in ASP and a fall in density and clustering as the number of
links in the network falls. As α increases further the increase in the number
of the formation of links between mature nodes becomes more influential on
the properties of the networks generated. There are two main factors at play
that cause the formation of these links to becomes more influential. The first of
these factors is the increased number of iterations required to generate a 100-
node network which gives pairs mature nodes more opportunities to form links.
The second is the increase in the ratio of α to A, this results in the nodes in
the network generated to be more spatially concentrated but since we hold A
constant the spatial constraint on the formation of links between mature nodes
does not change resulting these links becoming more likely to form. These added
links between mature nodes increase the overall number of links in the resulting
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Chapter 2 2. Allowing Mature Nodes to Connect

network and for a sufficiently high value of α sees the ASP of the network begin
to reduce and the density and clustering increase.

Decreasing A results in a higher α : A ratio and increases the effect. We see
that for all values of α a decrease in A results in a lower ASP , a higher clustering
coefficient and a higher density for the network generated. In particular we see
that when A = 1 we see that as α nears 100 the effect is so strong that almost
all possible links in the network are formed, density and clustering near their
upper bound 1 and ASP nears its lower bound 1 as a result.
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(a) ASP of the generated networks for dif-
ferent combinations of α and A.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and A.
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(c) Density of the generated networks for
different combinations of α and A.
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(d) Average node distance of the generated
networks for different combinations of α
and A.

Figure 2.17: Comparison of the properties of networks generated by our algorithm for
different values of α and A where β = B = 1 and T = 20.

The ratios plotted in Figure 2.18 allow us to compare the properties of net-
works generated by our new algorithm to the properties of networks generated
by the original algorithm for different combinations of the parameters α and A.
We see that when A is large and α is small, i.e. when the α : A ratio is small,
the extension has no effect on the topology of the networks generated (ASP ,
clustering and density ratios equal to 1). On the other hand we see that our ex-
tension has the largest effect on he topology of the networks generated for large
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values of α and low values of A as in this case we maximise the opportunities for
connections to form between mature nodes, we spatially concentrate the nodes
by means of high α and we make it very probable for mature nodes which are
spatially concentrated to form links by having low A. Where there is an effect,
clustering and density are increased by the extension while ASP is reduced.
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(a) Ratio of the ASP of the generated net-
works for different combinations of α and
A where β = B = 1 and T = 20 to the
ASP of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(b) Ratio of the clustering coefficient of
the generated networks for different com-
binations of α and A where β = B = 1
and T = 20 to the clustering coefficient of
networks generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and A where β = B = 1 and T = 20 to the
density of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and A where β = B = 1
and T = 20 to the average node distance of
networks generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.

Figure 2.18: Ratios of the properties of networks generated by our algorithm for
different values of α and A when β = B = 1 and T = 20 to the same properties for
networks generated by the Kaiser-Hilgetag algorithm
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2.2.5 β : B ratio

In this section we investigate how the relationship between our two scaling
parameters β, which linearly scales the probability of link formation between a
new node and an existing node, and B, which linearly scales the probability of
link formation between two mature nodes, affect the topology of the networks
generated by our algorithm. Recall that so far we have restricted our investiga-
tions to the case where β = B. In particular we are interested in how varying
the ratio between β and B affects each of our four spatial network metrics. For
simplicity we consider α, A and T to be a constant for all the networks we
generate. We set α = A = 4 and T = 20.
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(a) ASP of the generated networks for dif-
ferent combinations of β and B.
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(b) Clustering coefficient of the generated
networks for different combinations of β
and B.
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(c) Density of the generated networks for
different combinations of β and B.
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(d) Average node distance of the generated
networks for different combinations of β
and B.

Figure 2.19: Comparison of the properties of networks generated by our algorithm for
different values of β and B where α = A = 4, T = 20 and plot in increasingly magenta
for lower B.

We take 11 values of β between 1
100 and 1, the same 11 values for B, and
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generate multiple spatial networks using our algorithm for each parameter com-
bination. In Figures 2.19 and 2.20 we can see the mean of the ASP , clustering
coefficient, density and average node distance of the networks generated for each
parameter combination. The average node distance is unaffected by changes in
A as this parameter influences only the formation of links between pairs of ma-
ture nodes and not the placement of new nodes. Average node distance retains
its increasing relationship with β that we have observed throughout our analysis
of this algorithm and the original algorithm.

For this value of α (α = 4), when examining both the original algorithm
in Section 1.3 and the algorithm which allows mature links with β = B in
Section 2.2.1 we found that there was a positive relationship between both the
clustering coefficient and the density of the networks generated and β and a
negative relationship between ASP and β. Here, however, this is not the case.
Holding B constant we find that increasing β sees both density and clustering
fall to some minimum before increasing while ASP increases to some maximum
before decreasing.
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(a) ASP of the generated networks for dif-
ferent combinations of β and B.
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(b) Clustering of the generated networks
for different combinations of β and B.
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(c) Density of the generated networks for
different combinations of β and B.
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(d) Average node distance of the generated
networks for different combinations of β
and B.

Figure 2.20: Comparison of the properties of networks generated by our algorithm for
different values of β and B. We set α = A = 4, T = 20.
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As we increase β we see an increase in the number of links in the network that
will be added when connecting a new node to the existing network. Added links
will increase the density of the network and also tend to decrease the networks
ASP and increase its clustering coefficient. However, increasing β also results in
a fall in the number of links formed between mature nodes if we hold B constant.
This is because as we increase β we reduce the number of iterations required to
generate the network and therefore connection opportunities for mature nodes
while not increasing the probability of a link forming between two mature nodes
each time they attempt to connect (which they do so every T = 20 iterations).

Initially as we increase β the loss of links formed between mature nodes
outweighs the extra links formed by new nodes. This results in a falling density
and clustering coefficient and a rising ASP . However as β increases further the
extra links formed by new nodes begin to outweigh the losses of links formed
between mature nodes and density and clustering begin to rise once more as
ASP falls.

For all values of β we see a positive relationship between B and both the
density and the clustering coefficient of the networks generated and a negative
relationship between B and the ASP of the networks generated. This is due to
the fact that an increase in B results only in an increased probability of forming
connections between pairs of mature nodes and has no influence on the links
formed when nodes are first added to the network.

Using the ratios plotted in Figure 2.21 we can compare the properties of net-
works generated by our new algorithm to the properties of networks generated
by the original algorithm for different combinations of the parameters β and B.
For large β and small B, i.e. when the β : B ratio is large, the extension has no
effect on the topology of the networks generated, this is due to the fact that in
these cases links between mature nodes which are not previously connected are
very unlikely to form and will have relatively very few opportunities to attempt
to connect. On the other hand we see that our extension has the largest effect
on he topology of the networks generated for large values of B and small values
of β as in this case we maximise the opportunities for connections to form be-
tween mature nodes and the small β results in many opportunities to attempt
to connect.
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(a) Ratio of the ASP of the generated net-
works for different combinations of β and
B where α = A = 4 and T = 20 to the
ASP of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(b) Ratio of the clustering coefficient of
the generated networks for different com-
binations of β and B where α = A = 4
and T = 20 to the clustering coefficient of
networks generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of β
and B where α = A = 4 and T = 20 to the
density of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of β and B where α = A = 4
and T = 20 to the average node distance of
networks generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.

Figure 2.21: Ratios of the properties of networks generated by our algorithm for
different values of β and B when α = A = 4, T = 20 to the same properties for
networks generated by the Kaiser-Hilgetag algorithm

3 Considering Node Growth

In some systems, including the economic systems we will introduce in Chap-
ter 4 where nodes may represent firms in an economy, it may be interesting to
not only model the growth of the network but to also allow for the growth of in-
dividual nodes. We model node growth as a discrete process and each iteration
of our algorithm is considered as a timestep.
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In general, our model gives that nodes with a higher weighted degree, i.e.
those that are connected to many other large nodes will grow larger than those
with a low weighted degree. The size, xi(n) of an individual node vi at time n
is given by

xi(n) = ri(n)xi(n− 1) (1− xi(n− 1)) , (2.9)

where
ri(n) = 1 + ρwi(n), (2.10)

and

wi(n) =

∑
vj∈V :(v1,vj)∈E

xj(n)

∑
∀vj∈V

xj(n)
(2.11)

is the normalised weighted degree of the node at time n and ρ ∈ R is taken
such that xi(n) has one stable fixed point. In particular, for our analysis in this
section we will take ρ = 1. This discrete process, which we call the network
logistic map, is further investigated in Chapter 3.

3.1 Development Algorithm

We now consider node size as an important factor in attracting new neigh-
bours. Larger nodes are more likely to develop connections with new nodes than
smaller ones. This may be thought of as a type of preferential attachment.

We again begin with one node at the centre of the unit square and proceed
as follows:

1. New node position is given by a uniform random variable on the unit square,
and new node size is given by a uniform random variable between 0 and the
mean size of all nodes currently in the system.

2. The new node vi connects with each existing node ve with probability

P1 = β

[
(1− L) + L

(
ln(1 + x̄e(n))

ln(2)

)]
e−αd(vi,ve), (2.12)

where x̄e(n) is the normalised size of ve at the time of the addition of vi and
L is a constant such that 0 ≤ L ≤ 1.

3. The new node survives, i.e. is kept, if and only if it forms a connection with
at least one existing node. If no connections are formed it is discarded.

4. Update individual node sizes according to equation (2.9).

5. Repeat this process until the desired number of nodes is reached.
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(a) NG
1 : α = 15 and β = 0.5. (b) NG

2 : α = 50 and β = 0.2.

Figure 2.22: Network diagrams of two 100-node spatial networks generated by the
algorithm outlined above for different values of α and β with L = 0.5. The boundaries
of the unit square are shown in grey and the initial node is highlighted in pink. Nodes
sizes are given by their xi value when the final node v100 was added.

Figure 2.22 shows two examples of 100-node spatial networks generated by
this network development algorithm. We can see that different choices of pa-
rameter values can again produce spatial networks with significantly different
structures and properties. We have chosen the same values for α and β used
for generating the networks in Figures 2.1 and 2.3. The new algorithm has not
had any major visible impact on the spatial distribution of the nodes in the
networks generated. The higher α value chosen for the network in Figure 2.22b
once again causes a higher level of spatial concentration of nodes and lower
mean distance between nodes in the network. The average node distance of
NG

1 is 0.3392 while the average node distance of NG
2 is 0.1307. Recall that the

original Kaiser-Hilgetag algorithm, investigated in Section 1.3, with the same
parameter values generated networks with average node distances of 0.3774 and
0.1233 respectively, while the algorithm which allowed the establishment of ma-
ture connections, investigated in Section 2, with the same parameter values
generated networks with average node distances of 0.3553 and 0.1767.

Allowing node growth and preferential attachment in the way specified by
our algorithm has resulted in sparse networks in both cases. For large networks
ln(1+xe(n))

ln(2) can be very small, resulting in small P1 and the establishment of

fewer links. The effect is similar to choosing small β for the original network
generation algorithm discussed in Section 1.3. However, allowing node growth
also has other effects, making nodes with high degree grow larger and then in
turn attract more links.

The average shortest path length of NG
1 is 4.8251 while the average shortest

path length of NG
2 is higher at 6.2471. NG

1 has a higher clustering coefficient
than NG

2 , 0.0556 compared to 0.0348. Finally, NG
1 also has slightly higher
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density, 0.0260 compared to 0.0219, although both are close to the lower bound
0.02.

In Figure 2.23 we have plotted the distributions of the node sizes of both
networks after the final iteration of our algorithm. In both cases we see that
nodes with smaller sizes are seen more frequently. The minimum node size in
NG

1 is 0.0090 and the maximum is 0.1403. For NG
2 the minimum is 0.0015 while

the maximum is 0.2223. NG
1 has a higher mean node size than NG

2 , 0.0376 versus
0.0317, and a significantly lower standard deviation, 0.0243 versus 0.0412.
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(a) Node sizes histogram for NG
1 : α = 15

and β = 0.5.
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(b) Node sizes histogram for NG
2 : α = 50

and β = 0.2.

Figure 2.23: Histograms of the node sizes of NG
1 and N2

G when the final node v100 was
added.
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(a) Degree distributions of NG
1 : α = 15

and β = 0.5.
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(b) Degree distributions ofNG
2 : α = 50

and β = 0.2.

Figure 2.24: Degree distributions of NG
1 and N2

G .

We see in Figure 2.24 that the distribution of the node sizes of both networks
is quite closely mirrored by their degree distribution. This is a consequence of
the discrete process we use to model the growth of individual nodes in this set-
up. Nodes with higher degrees have a higher ri(n) value, causing them to grow
to be larger.
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3.2 Results

In this section we investigate the effect of different parameter value combi-
nations on the spatial networks generated by our algorithm. Our analysis again
focuses on the changes in the four metrics defined in Section 1.2. For each pa-
rameter combination we simulated 50 100-node networks. In particular we are
interested in how the relationships between α and β and the properties of the
networks our algorithms change as we vary L making individual node size more
and less important when forming links.

3.2.1 Varying α and β
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.25: Comparison of the properties of networks generated by our algorithm for
different values of α and β, with L = 0.1. We plot in increasingly magenta for lower
β.
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We look first at the interactions between different values of α and β and
how allowing node size to have an impact on link formation probabilities affects
the properties of the network generated. In our first example we look at a
case where node size has relatively little influence. We set L = 0.1 and take 11
values of α between 1 and 100, 11 values of β between 1

100 and 1, and generate 50
spatial networks using our algorithm for each parameter combination. In Figure
2.25 and Figure 2.26 we can see the mean of the ASP , clustering coefficient,
density and average node distance of the networks generated for each parameter
combination.
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.26: Comparison of the properties of networks generated by our algorithm for
different values of α and β, with L = 0.1.

The relationships between both α and β and the average node distance of
the spatial networks generated by our algorithm look very similar to the rela-
tionships seen for the original algorithm which did not consider node growth in
Section 1.3 and the relationships seen for the algorithm which allowed connec-
tions to form between mature nodes but also did not consider node growth in
Section 2.2.1. The relationship between β and average node distance is positive
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while the relationship between log(α) and average node distance is sigmoidal
and negative.

The relationships between the density of the networks generated and the
clustering coefficient of the networks generated and α and β also look similar
to the relationships we observed for the original algorithm. Density, a measure
of the global connectivity of the network, falls as we increase α, making it
more difficult for distant nodes to form connections and also decreases as we
decrease β making it more difficult for any given pair of nodes to connect. Local
connectivity, measured by the clustering coefficient has a similar relationship
with α and β, although a relatively high clustering level is maintained for high
α and high β as local connectivity is less affected than global connectivity by
an increase in α.

The relationship between the ASP of the networks generated and α and β
also look similar to the relationships we observed for the original algorithm. In
general we see the ASP of the network increase as we increase α. However for
small values of β where we generate networks with low density we note that the
rate of increase of ASP as we increase α seems to be slower than in the case of
the original algorithm. Perhaps the slight tendency to favour connections with
larger nodes causes us to choose links better suited to maintaining short average
shortest path lengths in sparse networks.

In order to compare the networks generated by our new algorithm to the
networks generated by the original Kaiser-Hilgetag algorithm we have plotted
the ratios of the value of each of the four network metrics for a network generated
by the new algorithm to the corresponding value of that metric for a network
generated by the original algorithm in Figure 2.27. These ratios confirm that
when we choose a small L, in this case we have chosen L = 0.1, considering
node growth has a negligible impact on the spatial distribution or topology
of the network produced with most ratios being close to 1 for all values of
α and β considered. The biggest impact it seems is on the density of the
network produced for large values of β and small values of α. These networks
are slightly less dense than in the case of the original algorithm. This is because
ln(1+x̄e(n))

ln(2) < 1 and so our extension has a similar effect to reducing β in the

original algorithm.
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(a) Ratio of the ASP of the generated
networks for different combinations of α
and β to the ASP of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(b) Ratio of the clustering coefficient of the
generated networks for different combina-
tions of α and β to the clustering coeffi-
cient of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and β to the density of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and β to the average node
distance of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.

Figure 2.27: Ratios of the properties of networks generated by our algorithm for
different values of α and β with L = 0.1 to the same properties for networks generated
by the Kaiser-Hilgetag algorithm

We now look at a more extreme case. We allow node size to have its max-
imum influence on link formation and so on the network generated by setting
L = 1. We take the same 11 values of α and 11 values of β and again generate
spatial networks for each parameter combination. In Figures 2.28 and 2.29 we
can see the mean of the ASP , clustering coefficient, density and average node
distance of the networks generated.
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.28: Comparison of the properties of networks generated by our algorithm for
different values of α and β, with L = 1. We plot in increasingly magenta for lower β.

The density of the networks generated and their clustering coefficients main-
tain negative relationships with α and positive relationships with β however
their values are reduced throughout compared to the densities and clustering
coefficients of networks produced by the original algorithm with the same values
of α and β. This is due to the fact that the connection probability for any two

nodes in the L = 1 case for our new algorithm P1 = β
(

ln(1+x̄e(n))
ln(2)

)
e−αd(vi,ve)

is significantly less than the corresponding value for the original algorithm
Q1 = βe−αd(vi,ve). Average node distance retains its negative sigmoidal re-

lationship with average node distance while β now scaled by ln(1+x̄e(n))
ln(2) has

little effect.
Especially for lower values of β the relationships between ASP and α and β

are not so clear. For high values of β where density is highest there is a positive
relationship between ASP and α. For lower values of β where the number of
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links in the network is close to the minimum the relationship is unclear.
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.29: Comparison of the properties of networks generated by our algorithm for
different values of α and β, with L = 1.

In order to achieve a greater understanding of these relationships we refer
to the ratios plotted in Figure 2.30. For high values of β and low values of α we
see that the ASP of networks generated by this algorithm is significantly higher
than the ASP of networks generated by the original algorithm investigated in
Section 1.3 which did not consider node size during link formation (ratios > 1).
We can attribute this to the reduced density of these networks compared to the
corresponding networks generated by the original algorithm (ratios < 1). For
high values of α and low β on the other hand we find the ASP is significantly
reduced. For these values the density in both the networks produced by the
original algorithm and our new algorithm is close to the minimum and so there
are no density effects on ASP , instead the main driver of difference between
the ASP s of the networks generated by the two algorithms is the nodes that
we prefer to attach to in each case. The only criteria in the case of the original
algorithm is spatial proximity, in the new algorithm the main criteria is node
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size with spatial proximity a secondary criteria. This leads to formation of a few
highly connected nodes in the case of the new network as large nodes attract
more and more connections reducing ASP .
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(a) Ratio of the ASP of the generated
networks for different combinations of α
and β to the ASP of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(b) Ratio of the clustering coefficient of the
generated networks for different combina-
tions of α and β to the clustering coeffi-
cient of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and β to the density of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and β to the average node
distance of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.

Figure 2.30: Ratios of the properties of networks generated by our algorithm for
different values of α and β with L = 1 to the same properties for networks generated
by the Kaiser-Hilgetag algorithm
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3.2.2 Varying α and L
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(a) ASP of the generated networks for dif-
ferent combinations of α and L.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and L.
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(c) Density of the generated networks for
different combinations of α and L.
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(d) Average node distance of the generated
networks for different combinations of α
and L.

Figure 2.31: Comparison of the properties of networks generated by our algorithm for
different values of α and L, with β = 1. We plot in increasingly magenta for higher L.

We now investigate the interactions between different values of α and L and
how varying the influence of node size on link formation affects the properties
of the networks generated. We set β = 1 and take 11 values of α between 1 and
100, 11 values of L between 0 and 1, and generate 50 spatial networks using our
algorithm for each parameter combination. In Figure 2.31 and Figure 2.32 we
can see the mean of the ASP , clustering coefficient, density and average node
distance of the networks generated for each parameter combination.

We first note that α maintains a negative relationship with the density of
the network generated, the clustering coefficient of the network generated and
the average node distance of the network generated. We also see that for this
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value of β, β = 1, for every value of α investigated L has a negative relationship
with density and the clustering coefficient. We hypothesise that the major cause

of this relationship is the fact that ln(1+x̄e(n))
ln(2) < 1 and so one of the effects of

increasing L is equivalent to reducing β in the original algorithm making the
formation of any given link less likely. This reduces the total number of links
in the network and as a result the global connectivity, i.e. the density, of the
network and is also likely to result in a reduction in local connectivity, i.e. the
clustering coefficient, of the network.
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(a) ASP of the generated networks for dif-
ferent combinations of α and L.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and L.
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(c) Density of the generated networks for
different combinations of α and L.
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(d) Average node distance of the generated
networks for different combinations of α
and L.

Figure 2.32: Comparison of the properties of networks generated by our algorithm for
different values of α and L, with β = 1.

This reduction in P1 = β
[
(1− L) + L

(
ln(1+x̄e(n))

ln(2)

)]
e−αd(vi,ve) due to an

increase in L also results in a reduced average node distance. This reduced
probability forces new nodes to be closer to the existing network in order to form
a link. The effect is compounded by the preferential attachment feature of our
new algorithm. New nodes are more likely to form links with the original node
from which the network was grown or nodes added early in the development of
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the network which are more likely to be nearby than newer nodes on the spatial
periphery. This is because these nodes are more likely to have a higher degree
as they have had more opportunities to form links with nodes being added to
the network over time and hence have a lager node size.

For β = 1 and all values of L investigated the relationship between the ASP
of the networks generated by our algorithm is generally positive. However for
high values of L and α where the density of the networks is close to or equal to
the lower bound 0.02 this ASP does not change significantly as we increase α.
For low values of α the relationship between L and ASP is positive, an increase
in L reduces the number of links in the network increasing the ASP . For high
values of α where the density of the networks produced is low for all values of
L choosing high L can lead to a reduced ASP . In these cases a high L causes
node size to be a large factor in link formation, nodes with a high node size
attract more links causing their size to increase further and attract even more
links. This leads to networks with a small number of high degree hubs, which
in turn leads to relatively low ASP .

The ratios plotted in Figure 2.33 allow us to compare the networks generated
by this algorithm to the original algorithm. We note that as expected the ratios
for all four metrics are approximately equal to 1 for L = 0 since in this case our
algorithm reduces to the original algorithm in therms of node placement and
link formation. The largest effects in all four cases are seen when we allow node
size to have the largest influence on link formation by setting L = 1. The effect
on average node distance is largest on sparse networks when α is large and all
new nodes are drawn to connect to nodes with high degree and therefore node
size at the centre of the network.

For L > 0 we see that the density of the networks generated by our algorithm
is reduced compared to the original algorithm (ratio < 1). The effect is most
pronounced for small α where networks generated by our original algorithm with
β = 1 are very dense. Increasing L reduces the probability of link formation

between any two nodes, P1 = β
[
(1− L) + L

(
ln(1+x̄e(n))

ln(2)

)]
e−αd(vi,ve), and so

reduces the number of links formed. For higher α the networks generated by the
original algorithm are quite sparse, with densities close to the minimum 0.02,
in this case the effect is less pronounced as we can only bring our density closer
to the minimum.

The clustering coefficient of the networks produced when L > 0 is also
reduced compared to networks generated by the original algorithm. In this
case the effect is pronounced for all α. Recall that for β = 1 in the original
algorithm clustering remains, relatively speaking, quite high for high α as short
links are still formed, increasing local connectivity. However, as L → 1 node
size dominates the criteria for link formation and so local connectivity does
not remain high even though β = 1. For this reason for all alpha we see our
clustering coefficient ratio approaches 0 as L→ 1 for all α.

For large L and small α the ASP of the networks produced is increased
compared to networks generated by the original algorithm. The reduced density
due to high L is the main influence in his case. As we increase α the density
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although still reduced is less affected. Now the tendency for new nodes to form
links with nodes of a higher node size and so create a small number of highly
connected hubs in the network reduces the ASP of the networks generated
compared to those generated by the original algorithm.
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(a) Ratio of the ASP of the generated net-
works for different combinations of α and
L when β = 1 to the ASP of networks
generated by the original Kaiser-Hilgetag
algorithm with the same combinations of
α and β.
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(b) Ratio of the clustering coefficient of
the generated networks for different com-
binations of α and L when β = 1 to
the clustering coefficient of networks gen-
erated by the original Kaiser-Hilgetag al-
gorithm with the same combinations of α
and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and L when β = 1 to the density of net-
works generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and L when β = 1 to the av-
erage node distance of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.

Figure 2.33: Ratios of the properties of networks generated by our algorithm for
different values of α and L with β = 1 to the same properties for networks generated
by the Kaiser-Hilgetag algorithm
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3.2.3 Varying β and L
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(a) ASP of the generated networks for dif-
ferent combinations of β and L.
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(b) Clustering coefficient of the generated
networks for different combinations of β
and L.
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(c) Density of the generated networks for
different combinations of β and L.
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(d) Average node distance

Figure 2.34: Comparison of the properties of networks generated by our algorithm for
different values of β and L, with α = 4. We plot in increasingly magenta for higher L.

Finally, we will investigate how the interactions between β and L affect the
properties of the spatial networks produced by our algorithm. We set α = 4
and take 11 values of β between 1

100 and 1, 11 values of L between 0 and 1, and
generate 50 spatial networks using our algorithm for each parameter combina-
tion. In Figure 2.34 and Figure 2.35 we can see the mean of the ASP , clustering
coefficient, density and average node distance of the networks generated for each
parameter combination.

We see that for all values of L and α = 4, β has an positive relationship
with the clustering coefficient, density and average node distance of the network
produced. For small β and high L both clustering and density are close to their
respective minimums 0 and 0.02. For all values of β investigated and α = 4
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L has negative relationship with clustering, density and average node distance.
All these relationships can be explained by the fact that an increase in L or
decrease in β reduces the probability of link formation between any two nodes

P1 = β
[
(1− L) + L

(
ln(1+x̄e(n))

ln(2)

)]
e−αd(vi,ve).
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(a) ASP of the generated networks for dif-
ferent combinations of β and L.
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(b) Clustering coefficient of the generated
networks for different combinations of β
and L.
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(c) Density of the generated networks for
different combinations of β and L.
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(d) Average node distance of the generated
networks for different combinations of β
and L.

Figure 2.35: Comparison of the properties of networks generated by our algorithm for
different values of β and L, with α = 4.

The most interesting relationship is between L and the ASP of the network
generated. For the highest density networks investigated, generated when β = 1
the relationship between ASP and L is positive as any increase in L results in
a significant fall in the number of links in the network generated leading to
an increased ASP . As we reduce β the density of all networks reduces and
approaches its minimum. This makes the falls in density due to an increase in
L less significant and the relationship begins to reverse. For β = 1

100 the density
of the network produced for all values of L ≈ 0.02 and any change in L has an
almost insignificant impact on the number of links in the network. Now the
higher tendency to generate networks with a hub and spoke structure for higher
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L results in a shorter ASP for networks generated in these cases.
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(a) Ratio of the ASP of the generated net-
works for different combinations of β and
L when α = 4 to the ASP of networks
generated by the original Kaiser-Hilgetag
algorithm with the same combinations of
α and β.
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(b) Ratio of the clustering coefficient of
the generated networks for different com-
binations of β and L when α = 4 to
the clustering coefficient of networks gen-
erated by the original Kaiser-Hilgetag al-
gorithm with the same combinations of α
and β.
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(c) Ratio of the density of the generated
networks for different combinations of β
and L when α = 4 to the density of net-
works generated by the original Kaiser-
Hilgetag algorithm with the same combi-
nations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of β and L when α = 4 to the av-
erage node distance of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.

Figure 2.36: Ratios of the properties of networks generated by our algorithm for
different values of β and L with α = 4 to the same properties for networks generated
by the Kaiser-Hilgetag algorithm

The ratios in Figure 2.36 confirm that the networks generated by this al-
gorithm differ most significantly from those generated by the original Kaiser-
Hilgetag algorithm, which did not consider node growth or the influence of node
size on link formation, when L = 1 and this influence is at its maximum. The
density and clustering coefficients of networks generated are both reduced com-
pared to the case of the original algorithm when L > 0. For β the effect is less
pronounced for small β as in the case of the original algorithm the density of the
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networks generated for these values of β was already close to the minimum pos-
sible. In the case of clustering the effect is significant for all β as node size rather
than spatial distance now dominates link formation probabilities, significantly
reducing the formation of links between neighbours. For large β and high L the
ASP of the relatively sparse network produced by our new algorithm is longer
than the corresponding, relatively dense, network produced by the original algo-
rithm. For small β and high L the topology of the sparse network produced by
our algorithm favouring larger nodes during link formation has a smaller ASP
than the corresponding sparse network produced by the original algorithm.

3.2.4 Degree Distributions

In this Section we present an example of how different values of L affect the
structure of the degree distributions of the networks generated by our algorithm
and how these changes in the degree distribution can lead to shorter average
shortest path lengths for networks of equal densities as we increase the influence
of node size on link formation. We saw evidence of this behaviour for extremely
sparse networks in Sections 3.2.1, 3.2.2 and 3.2.3, we will present some evidence
now for slightly more dense networks.

For our example we take α = 20 and generate 50 100-node networks for
L = 0, L = 0.5 and L = 1. For the L = 0 case (which reduces us to the
original algorithm in terms of node placement and link formation) we take
β = 0.5 and the mean density of the 50 networks generated is 0.0309. For
L = 0.5 and L = 1 we choose values of β in order to give us the same mean
density over the 50 networks generated. If this value of β was greater than

1 we took P1 = max{1, β
[
(1− L) + L

(
ln(1+x̄e(n))

ln(2)

)]
e−αd(vi,ve)} in place of

β
[
(1− L) + L

(
ln(1+x̄e(n))

ln(2)

)]
e−αd(vi,ve).
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Figure 2.37: Degree distribution of 50 100-node networks generated by our algorithm
for different values of L, where α = 20 for all values of L, β = 0.5 for L = 0 and β is
chosen to produce networks of the same mean density for L = 0.5 and L = 1.

Increasing L from 0 to 0.5 sees a very slight change in the degree distribution
of the networks produced. An increased number of nodes now have degree
1 while the number of highly connected nodes of degree > 10 also slightly
increases. The mean ASP length over the 50 networks generated also shows a
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slight fall from 4.8583 to 4.7315. Increasing L further to 1 sees a more significant
visual change in the degree distribution of the networks generated. Most nodes
now have degree 1 and the maximum degree seen increases significantly from
13 to 28 this is consistent with a hub and spoke topology in which very small
number of nodes have a high degree, the hubs, while the rest have a small degree,
the spokes. This topology allows the networks generated to have a significantly
lower mean ASP of 3.8272. Figure 2.38 allows us to see that the distribution of
node sizes quite closely resembles the distribution of degrees of nodes. Generally
speaking, as we discussed in Chapter 3, for the discrete process we have used to
model node growth for this algorithm leads to higher node sizes for nodes with
a higher degree.
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Figure 2.38: Node size distribution of 50 100-node networks generated by our algorithm
for different values of L, where α = 20 for all values of L, β = 0.5 for L = 0 and β is
chosen to produce networks of the same mean density for L = 0.5 and L = 1.

4 Overlapping Networks

We now look to model the growth of two overlapping spatial networks, the
pioneer network and the overlapping settler network.

The Pioneer Network, Np = (Vp,Ep), In this analysis we will consider
only cases where the growth of the pioneer network is completely independent
of the overlapping settler network. It grows according to one of the simple
development algorithms outlined in Section 1.3, Section 2 or Section 3 choosing
parameters independent of those chosen for the settler network.

The Settler Network, Ns = (Vs,Es), The settler network also develops
over time and its growth is affected by the structure of the pioneer network.

4.1 Settler Network Development Algorithm

In the most simple case, which we investigate here, we allow the pioneer
network to affect only the initial spatial location of potential nodes.

We again begin with one node from each network in the unit square. We
allow the pioneer network to develop according to one of the algorithms detailed
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in Sections 1.3 - 3. At the same time our settler network develops according to
the following algorithm:

1. For each new node we define a truncated Gaussian mixture distribution with
probability density function

f(x) =
∑
v∈Vp

wvfv(x), (2.13)

where the weights wv are given by the normalised node size of v and fv(x) is
the probability density function of a truncated Gaussian distribution1 on the
unit square with mean µv given by the spatial location of v and covariance
matrix Σv = σ2I. From this distribution we choose our new node position.

2. The new node vi connects with each existing node ve with probability

P1 = βse
−αsd(vi,ve), (2.14)

where d(vi, ve) is the Euclidean distance between the two nodes, 0 < βs ≤ 1
and αs > 0.

3. The new node survives, i.e. is kept, if and only if it forms a connection with
at least one existing node. If no connections are formed it is discarded.

4. We repeat this process until the desired number of nodes is reached.

For simplicity, we choose to generate our pioneer networks in this section
using the original, simple Kaiser-Hilgetag algorithm, detailed in Section 1.3.
Figure 2.39 shows two examples of 100-node settler networks generated by this
network development algorithm, along with their corresponding 10-node pioneer
networks. Both pioneer networks were generated using the algorithm discussed
in Section 1.3 grown from an initial node at (0.5, 0.1) with α = αp = 3 and
β = βp = 0.4. We have chosen the same values for αs and βs as were given
to α and β when generating the networks in Figures 2.1, 2.3 and 2.22. We
can immediately see striking differences between the spatial distribution of the
nodes in NO

1 and NO
2 and the corresponding networks in Figures 2.1, 2.3 and

2.22 in Sections 1.3, 2.1 and 3.1 respectively.
In Figure 2.39a we can see that the relationship between the pioneer network

and the settler network has resulted in the formation of multiple clearly distinct
spatial clusters in the settler network NO

1 . Spatial clusters of this kind were not
clearly visible in the case of NS

1 (see Figure 2.1a) where we used the original
Kaiser-Hilgetag algorithm, NM

1 where we allowed mature connections to form,
or NG

1 where we considered the growth of individual nodes. Despite the clearly
different spatial structure of NO

1 the new algorithm has not had such a major
effect on the average node distance of NO

1 . The significant change has been in
the distribution of node distances rather than the mean of all node distances.

1In our simulations we generate pseudo-random vectors drawn from the truncated Gaussian
distribution using code by Benham from the mathworks.com file exchange [14].
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The average node distance of NO
1 is 0.3120 compared to 0.3774 for NS

1 , 0.3553
for NM

1 and 0.3392 for NG
1 .

(a) NO
1 : αs = 15 and βs = 0.5. (b) NO

2 : αs = 50 and βs = 0.2.

Figure 2.39: Network diagrams of two 100-node settler (pink, small nodes) networks,
NO

1 and NO
2 , generated by the algorithm outlined above for different values of αs

and βs with σ2 = 0.001. For both networks we have chosen ten-node pioneer (cyan,
large nodes) networks , NP

1 and NP
2 , generated by development algorithm outlined in

Section 1.3 grown from an initial node at (0.5, 0.1) with αp = 3 and βp = 0.4. The
boundaries of the unit square are shown in grey.
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(a) Distribution of the distances between
pairs of nodes in the network NS

1 gener-
ated by the original Kaiser-Hilgetag algo-
rithm and analysed in Section 1.3.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Node Distance

F
re

qu
en

cy

(b) Distribution of the distances between
pairs of nodes in the settler network NO

1

seen in Figure 2.39a.

Figure 2.40: Node distance distributions for NS
1 and NO

1 .
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Figure 2.40 shows the frequency distribution of the distances between each
pair of nodes in the networks NS

1 and NO
1 . The distribution for NS

1 is unimodal
with a slightly long right-hand tail. This is consistent with a spatial network
whose nodes are distributed in a single spatial cluster as we observed in Section
1.3. The distribution for NO

1 by contrast is trimodal. These multiple modes
are a consequence of the multiple clearly distinct spatial clusters seen in the
settler network. There are a high number of short distances between pairs of
nodes which are in the same spatial cluster, a high number of medium distances
between pairs of nodes which are in the nearby spatial clusters and a high
number of long distances between pairs of nodes in distant spatial networks.

In Figure 2.39b we can see that, despite the presence of the pioneer network
NP

2 , multiple spatial clusters have not formed in the settler network NO
2 . This

may be attributed to the relative sizes of αs & αp and βs & βp. The settler
network has a very high αs and a low βs. This makes it very difficult for new
nodes to be added in the vicinity of a distant node in the pioneer network, whose
nodes are widely spread across the unit square as a result of its low αp, in order
to form a new spatial cluster. We do however see a significantly higher level of
spatial concentration in NO

2 than was seen in NS
2 , NM

2 , or NG
2 as nodes in the

settler network NO
2 cluster around a single node of the pioneer network NP

2 .
The average node distance of NO

2 is 0.0532 compared to 0.1233 for NS
2 , 0.1767

for NM
2 and 0.1307 for NG

2 . Figure 2.41 shows the frequency distribution of
the distances between each pair of nodes in the networks NS

2 and NO
2 . We can

see that both distributions are unimodal, consistent with with spatial networks
whose nodes are distributed in a single spatial cluster. The distribution of NO

2 .
has both a lower spread of distances and a lower mode.
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(a) Distribution of the distances between
pairs of nodes in the network NS

2 gener-
ated by the original Kaiser-Hilgetag algo-
rithm and analysed in Section 1.3.
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(b) Distribution of the distances between
pairs of nodes in the settler network NO

2

seen in Figure 2.39b.

Figure 2.41: Node distance distributions for NS
2 and NO

2 .
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The formation of multiple spatial clusters in NO
1 has also resulted in a net-

work which is highly connected locally but has few links between spatial clusters.
This has caused NO

1 to have a relatively high clustering coefficient while main-
taining quite a low density. The clustering coefficient of NO

1 is 0.1450 and its
density is 0.0484. NS

1 , generated with the original simple algorithm has a clus-
tering coefficient of 0.0639 and a density of 0.032. The average shortest path
length of NO

1 is 3.8063, lower than the corresponding value of 4.638 for NS
1 .

The high level of spatial concentration in NO
2 has also had effects on its net-

work topology. The proximity of the added nodes has resulted in the formation
of a higher number of links than in the corresponding network generated by
the original algorithm. NO

2 has a slightly higher density and higher clustering
coefficient than NS

2 , a density of 0.0416 compared to 0.028 and a clustering co-
efficient of 0.0680 compared to 0.0502.The average shortest path length of NO

2

is 3.4337 compared to a value of 5.3457 for NS
2 .

4.2 Results

In this section we investigate the effect of different parameter value com-
binations on the spatial settler networks generated by our algorithm described
in Section 4.1. Our analysis again focuses on the changes in the four metrics
defined in Section 1.2. For each parameter combination we simulated 50 100-
node networks. Of particular interest to us are the effects of the interactions
between different values of α and β, and of changing σ2 on the properties of the
settler networks produced by our algorithm. For simplicity we have generated
the 10-node pioneer network in every case using the original Kaiser-Hilgetag
algorithm, described in Section 1.3 with α = 3, β = 0.4 and a single starting
node with position (0.4, 0.5).

4.2.1 Varying α and β

We first look at the effect of different combinations of α and β on the settler
networks generated when σ2 = 0.001. As we have done previously, we take 11
values of α between 1 and 100, 11 values of β between 1

100 and 1, and generate
multiple spatial networks using our algorithm for each parameter combination.
In Figure 2.42 and Figure 2.43 we can see the mean of the ASP , clustering
coefficient, density and average node distance of the networks generated for
each parameter combination.

The relationship between log(α) and the average node distance of the settler
network generated by our algorithm is sigmoidal, similar to the relationships
seen in our analysis of the original Kaiser-Hilgetag algorithm in Section 1.3,
our extension allowing connections between mature nodes in Section 2 and our
extension which considered growth of individual nodes in Section 3. This rela-
tionship is negative, the average node distance of the network decreases as we
increase α. This is again due to the fact that, according to our algorithm, the
probability, P1 = βe−αd(vi,ve), of a new node connecting with an existing node
decays exponentially with distance scaled by α. This means that as we increase
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α new nodes must be closer to the existing network in order to be added. The
decrease in average node distance is relatively slow as we initially increase α on
the log scale this decrease in average node distance becomes more rapid as we
increase α before slowing again as α → ∞. The initial slow rate of decrease of
average node distance as we increase log(α) is due to the fact as α → 0 aver-
age node distance approaches a limit imposed by the finite space in which our
network is located and the truncated Gaussian mix distribution with small σ2,
generated by a small, finite pioneer network from which the spatial location of
nodes we attempt to add is chosen. Once again average node distance tends to
0 as α→∞.
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(a) ASP of the generated networks for dif-
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.42: Comparison of the properties of the settler networks generated by our
algorithm for different values of α and β, σ2 = 0.001. We plot in increasingly magenta
for lower β.
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.43: Comparison of the properties of the settler networks generated by our
algorithm for different values of α and β, σ2 = 0.001.

The relationship between β and the average node distance of the network
generated is not so clear. Previously we have seen a positive relationship between
β and average node distance caused by the fact that links of all lengths are
more likely to form as we increase β, increasing the number of spatially distant
nodes added to the network during its formation. This positive relationship is
observed for intermediate and high values of α, however, for low values of α the
relationship between β and average node distance is not seen to necessarily be
positive. This perhaps due to the fact that for low values of α and high β almost
every node we attempt to add to our network will form a link and be added as
a result. Since the spatial distribution of the nodes we attempt to add will be
relatively concentrated, due to the truncated Gaussian mix with small σ2 from
which we choose their locations, this will not result in an increase in average
node distance as was the case when we chose these locations from a uniform
distribution.

As was the case for the original Kaiser-Hilgetag algorithm, there is generally
a positive relationship between β and density with every potential link being
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more likely to form as we increase β. For low β density nears its lower bound
0.02. A similar relationship is observed between β and the clustering coefficient
of the generated settler network. For most values of α we also see that the higher
density in the network due to an increased β causes the ASP of the generated
settler networks to be reduced.

As we increase α we generally see a decrease in density and clustering and
an increase in ASP . However the relationships, are not entirely monotonic.
Perhaps the intermediate fluctuations are due to switches in the number of
spatial clusters that the settler network can sustain as α increases.
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(a) Ratio of the ASP of the generated
networks for different combinations of α
and β to the ASP of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(b) Ratio of the clustering coefficient of the
generated networks for different combina-
tions of α and β to the clustering coeffi-
cient of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and β to the density of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and β to the average node
distance of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.

Figure 2.44: Ratios of the properties of settler networks generated by our algorithm
for different values of α and β with σ2 = 0.001 to the same properties for networks
generated by the Kaiser-Hilgetag algorithm
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In order to compare the 100-node settler networks generated by our new
algorithm, which chooses the spatial location of potential new network nodes
based on a truncated Gaussian mix distribution generated by a pioneer network,
to the original Kaiser-Hilgetag algorithm,which chooses these locations from a
uniform distribution, we have plotted the ratios of the value of each of the four
network metrics for a network generated by the new algorithm to the corre-
sponding value of that metric for a network generated by the original algorithm
in Figure 2.44.

For all three topological metrics we note that the extension to the model
appears to have the largest effect (our ratio is furthest from 1) for intermediate
values of α and large values of β. These differences are driven by the increased
number of links, i.e. increased density, in the networks generated by our new
algorithm for these values of α and β compared to the corresponding networks
generated by the original algorithm. We hypothesise that this increased density
is the result of the increased number of links formed by the average new node
added to the settler network due to its position being chosen very close to a
cluster of spatially concentrated nodes as a result of the presence of the pioneer
network. This effect is most pronounced for intermediate values of α as for these
values a small number of highly spatially concentrated and highly connected
clusters of nodes may be sustained by the network, resulting in far higher spatial
concentration and density than in the corresponding networks generated by the
original algorithm. For lower values of α this effect is less as we see the formation
of a high number of highly spatially concentrated clusters of nodes which are
themselves widely spaced across the unit square. For higher values of α the effect
is less as the single highly spatially concentrated cluster which forms around a
single pioneer node in this case is quite similar to the highly concentrated spatial
cluster that forms in the absence of the pioneer network.

The effects of the formation of these spatial clusters due to the pioneer net-
work can also explain the differences in average node distances between networks
generated using the two different methods. In all cases due to the low σ2 value
our average node distance is lower for networks generated using the new algo-
rithm. The effect is largest for intermediate values of α when a small number of
spatial clusters form in the case of the new algorithm and nodes are relatively
widely distributed in the case of the original algorithm.

We now look to see what changes, if any, occur in these relationships if
we increase σ2 to 0.01. The relationship between log(α) and the average node
distance of the settler network generated by our algorithm is once again negative
and sigmoidal. As in the σ2 = 0.001 case the relationship between β and the
average node distance of the network generated is not entirely clear for low
values of α. The positive relationship between average node distance and β
does however emerge earlier in this case than in the σ2 = 0.001 case.
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.45: Comparison of the properties of the settler networks generated by our
algorithm for different values of α and β, σ2 = 0.01. We plot in increasingly magenta
for lower β.

Again, as was the case for the original Kaiser-Hilgetag algorithm, there is
generally a positive relationship between β and density with every potential link
being more likely to form as we increase β. For low β density nears its lower
bound 0.02. A similar relationship is observed between β and the clustering
coefficient of the generated settler network. For most values of α we also see
that the higher density in the network due to an increased β causes the ASP
of the generated settler networks to be reduced.

As we increase α we generally see a decrease in density and clustering and an
increase in ASP . However the relationships, are not entirely monotonic. The
intermediate fluctuations however, do seem to be less significant than those seen
in the σ2 = 0.001 case.
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(a) ASP of the generated networks for dif-
ferent combinations of α and β.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.46: Comparison of the properties of the settler networks generated by our
algorithm for different values of α and β, σ2 = 0.01.

The ratios plotted in Figure 2.47 allow us to compare the networks generated
by this algorithm when σ2 = 0.01 to the corresponding networks generated by
the original algorithm. We see that for large values of α the networks generated
are the same and the pioneer-settler network structure has no effect and so we
see ratios for all four metrics ≈ 1. This is due to the fact that the spatial
constraints put on the position of new nodes in being forced to be close to the
pioneer network are far less constraining than those imposed by the need for
new links to form between new nodes and the existing network when α is high.
For lower values of α we also see that the effect is less than in the σ2 = 0.001
case, for example the maximum density ratio observed is ≈ 1.6 while in the
σ2 = 0.001 case we saw in Figure 2.44 the maximum density ratio observed was
≈ 2.6.
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(a) Ratio of the ASP of the generated
networks for different combinations of α
and β to the ASP of networks generated
by the original Kaiser-Hilgetag algorithm
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(b) Ratio of the clustering coefficient of the
generated networks for different combina-
tions of α and β to the clustering coeffi-
cient of networks generated by the original
Kaiser-Hilgetag algorithm with the same
combinations of α and β.
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(c) Ratio of the density of the generated
networks for different combinations of α
and β to the density of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and β to the average node
distance of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.

Figure 2.47: Ratios of the properties of settler networks generated by our algorithm
for different values of α and β with σ2 = 0.01 to the same properties for networks
generated by the Kaiser-Hilgetag algorithm

As we increase σ2 further we would expect to see he resulting networks to
resemble even more closely those generated by the original algorithm as when
we increase σ2 the truncated Gaussian mix distribution becomes approximately
equal to a uniform distribution. We now look at the σ2 = 0.1 case and see that
this is indeed what occurs.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.48: Comparison of the properties of the settler networks generated by our
algorithm for different values of α and β, σ2 = 0.1. We plot in increasingly magenta
for lower β.

In Figure 2.48 and Figure 2.49 we can see the mean of the ASP , clustering
coefficient, density and average node distance of the networks generated for
each parameter combination. There now seems to be a positive relationship
between β and the average node distance of the network generated for almost
every value of α as was the case for the original algorithm as seen in Section 1.3.
The maximum average node distance observed is now also closer to that seen
for the original algorithm than for either the σ2 = 0.001 or the σ = 0.012 case.
The relationships between α and β and the three topological networks also look
very similar to those seen for the original algorithm.
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(b) Clustering coefficient of the generated
networks for different combinations of α
and β.
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(c) Density of the generated networks for
different combinations of α and β.
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(d) Average node distance of the generated
networks for different combinations of α
and β.

Figure 2.49: Comparison of the properties of the settler networks generated by our
algorithm for different values of α and β, σ2 = 0.1.

The ratios plotted in Figure 2.50 allow us to more easily compare the net-
works generated by this algorithm when σ2 = 0.1 to the corresponding net-
works generated by the original algorithm. We see that for values of α > 10
the networks generated are essentially the same and the pioneer-settler network
structure has no effect and so we see ratios for all four metrics ≈ 1. For values
of α < 10 any effect of the pioneer-settler structure is quite small with all four
ratios remaining relatively close to 1. For example the maximum density ratio
is less than 1.2, the minimum ASP ratio is greater than 0.9 and the minimum
average node distance ratio is ≈ 1.
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(a) Ratio of the ASP of the generated
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(b) Ratio of the clustering coefficient of the
generated networks for different combina-
tions of α and β to the clustering coeffi-
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(c) Ratio of the density of the generated
networks for different combinations of α
and β to the density of networks generated
by the original Kaiser-Hilgetag algorithm
with the same combinations of α and β.
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(d) Ratio of the average node distance of
the generated networks for different com-
binations of α and β to the average node
distance of networks generated by the orig-
inal Kaiser-Hilgetag algorithm with the
same combinations of α and β.

Figure 2.50: Ratios of the properties of settler networks generated by our algorithm
for different values of α and β with σ2 = 0.1 to the same properties for networks
generated by the Kaiser-Hilgetag algorithm

5 Conclusion

In this chapter we introduced three new models of spatial network growth.
These new models are adaptations and extensions of a model due to Kaiser and
Hilgetag [41] which was initially motivated by a wish to analyse the growth and
structure of biological networks. We allow spatial networks to grow by adding
nodes over time whose positions are not predetermined rather their position
and the links between them are established over time based on spatial and
other constraints as the network grows and develops.
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The first extension we introduced in this chapter allows for links to be estab-
lished between pairs of existing nodes in the network rather than limiting link
formation between pairs of nodes to the moment one of the pair is first added
to the network. The second extension we introduced allowed nodes to grow ac-
cording to a map, in the examples analysed here this map is the network logistic
map which we will introduce formally and analyse in more detail in Chapter 3,
and allowed link formation to depend on node size. The final extension looked
at the case of overlapping spatial networks in which the growth and structure
of one of the networks, known as the pioneer network, affects the development
of the other, known as the settler network. All three extensions were shown
to have significant effects on the structure of the networks generated, both in
terms of topology and spatial distribution.

It is possible to combine two or more of these extensions in the same model
of spatial network growth. However, we do not examine the results of doing so
in any detail here. We believe it would be both useful and interesting to do so
in the future. Indeed in Chapter 4 our models of the economy incorporates the
ideas of all three of the extensions analysed in this chapter. We introduce an
approach to modelling the economy as a series of overlapping spatial networks
where links can develop between pairs of existing nodes, and nodes grow over
time according to a map. There is also great scope to develop these extensions
further, for example it is possible to have an element of feedback in the case
of the overlapping networks where both networks have an effect on the spatial
distribution of the nodes in the other network or to have more complicated
models of node growth in which perhaps the structure and spatial distribution
of one network has an effect on the growth of nodes in another.
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1 Introduction

In this chapter we investigate growth of individual nodes in a network, N =
(V,E). We simulate our systems throughout in Matlab [47]. In our model
the growth of nodes in the network is governed by a discrete time evolution
operator known as a map. Maps are a specific type of dynamical system that
are well suited to our purposes. Before continuing we first introduce some
general information about the analysis of dynamical systems and in particular
the analysis of maps and their long-term behaviour.

1.1 Dynamical Systems

A dynamical system is made up of a set of states, X, known as the state space
and a dynamical rule that specifies the immediate future of all state variables,
in terms of past states. A dynamical system can have discrete or continuous
time. A deterministic system with discrete time is defined by a map.

Definition 1.1.1. A deterministic evolution operator, f , with discrete time,
T = N, and a continuous state space, X ⊆ Rm, is called a map,

f : X → X,

where the state evolution is defined by x(n+ 1) = f(x(n)) for x(n) ∈ X, n ∈ T .

A dynamical system with continuous time is essentially the limiting case of
discrete-time systems with smaller and smaller updating times. A deterministic
system with continuous time is defined by a flow.

Definition 1.1.2. A deterministic evolution operator, φ, with continuous time,
T = R, and a continuous state space, X ⊆ Rm, is called a flow,

φ : X → X,

where evolution is defined by d
dtx(t) = φ(x(t)) for x(t) ∈ X, t ∈ T .

For our purposes it is useful to consider systems with discrete time and so
our focus will be on maps.

1.1.1 Fixed Points, Periodic Orbits & Stability

Of particular interest in the analysis of any dynamical system that we may
consider is the concept of homeostasis, equilibrium or steady state. We wish to
find the points of the system at which there is no change. In the context of a
map, a fixed point or steady state, x∗ ∈ X, of the system is some value that
satisfies

x(n+ 1) = x(n) = x∗, (3.1)

i.e a point at which there is no change in the system from time n to time n+ 1.
For a map where the evolution is defined by x(n + 1) = f(x(n)), a fixed point
x∗ satisfies the relation

x∗ = f(x∗). (3.2)
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We are able to distinguish between two different types of fixed points. If
all points sufficiently close to x∗ evolve even closer to x∗ under iteration, then
we call x∗ a stable fixed point, an attractor or a sink. On the other hand if
the converse is true and all points sufficiently close to x∗ evolve away from
x∗ under iteration, then we call x∗ an unstable fixed point, a repellor or a
source. A good analogy is that a ball balanced on the tip of the peak of a
mountain is unstable as it will roll down the mountain and away from the peak
if it is moved even slightly, while a ball resting at the bottom of a valley is
stable as when it is moved slightly it will roll back down to the bottom of
the valley to its original resting place. More formally, we have the following
two definitions where ||x|| =

√
x2

1 + x2
2 + . . . x2

m is the Euclidean length of the
vector x = (x1, x2, . . . , xm) ∈ Rm.

Definition 1.1.3. Let f be a map and f(x∗) = x∗. If there is an ε > 0 such
that for all x ∈ {x ∈ X : ||x − x∗|| < ε}, fk(x) → x∗ as k → ∞, where fk

denotes the kth composition of the map f , then x∗ is a stable fixed point.

Definition 1.1.4. Let f be a map and f(x∗) = x∗. If there is an ε > 0 such that
there exists K ∈ N such that for all k ≥ K and all x ∈ {x ∈ X : ||x− x∗|| < ε}
other than x∗ itself fk(x) 6∈ {x ∈ X : ||x−x∗|| < ε} then x∗ is an unstable fixed
point.

These definitions lead us to the following result for one-dimensional maps
through a process of linearisation.

Theorem 1.1.1. [1] Let f be a differentiable map on X ⊆ R, f(x(n)) = x(n+
1). Given a fixed point x∗, i.e. f(x∗) = x∗, then

1. if |f ′(x∗)| < 1, x∗ is a stable fixed point,

2. if |f ′(x∗)| > 1, x∗ is an unstable fixed point,

where

|f ′(x∗)| = lim
x→x∗

∣∣∣∣f(x)− f(x∗)

x− x∗

∣∣∣∣ = lim
x→x∗

∣∣∣∣f(x)− x∗

x− x∗

∣∣∣∣
(magnification factor).

As we wish to model the growth of individual nodes in networks with more
than one node we will mainly deal with higher dimensional maps. In this case
we arrive at an analogous result which requires the definition of the Jacobian
matrix of a map.

Definition 1.1.5. Let f = (f1, f2, . . . , fm) be a map on X ⊆ Rm, and let
x ∈ Rm. The Jacobian matrix of f at x, which we denote J(x), is the matrix

J(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xm

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2
∂xm

(x)
...

...
. . .

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) . . . ∂fm
∂xm

(x)


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of partial derivatives evaluated at x.

We can now examine the properties of the eigenvalues of the Jacobian matrix
of f , evaluated at a fixed point x∗, in order to determine the stability of the
fixed point.

Theorem 1.1.2. [1] Let f be a differentiable map X ⊆ Rm, f(x(n)) = x(n+1).
Given a fixed point x∗, i.e. f(x∗) = x∗, then

1. if for each eigenvalue λi of J(x), |λi| < 1, x∗ is a stable fixed point,

2. if for some eigenvalue λi of J(x), |λi| > 1, x∗ is an unstable fixed point.

For a 2-dimensional system it is sufficient to test whether the condition

2 > 1 + c > |b| (3.3)

is satisfied, where λ2 − bλ+ c = 0 is the characteristic equation of J(x∗).
We are also interested in the periodic orbits of a map. Instead of remaining

at the same point in a periodic orbit a map will oscillate between a finite set of
points, returning to the same points in the same order each time.

Definition 1.1.6. Let f be a map on X ⊆ Rm. We call p a periodic point of
period k if fk(p) = p, and k is the smallest such positive integer. The orbit
with the initial point p is called a periodic orbit of period k.

Just as in the case of fixed points it is important to distinguish between
stable periodic orbits, which we will return to after a small perturbation away,
and unstable periodic orbits where a small perturbation away will be magnified
under iteration. Using the fact that a periodic point of period k for f is a fixed
point for the map fk we can easily define what it means for a periodic orbit to
be stable.

Definition 1.1.7. Let f be a map and p a period k point with corresponding
period-k orbit {p, f(p), f2(p), . . . , fk−1(p)}.

1. The period-k orbit of p is stable (an attractor) if p is a stable fixed point
for fk.

2. The period-k orbit of p is unstable (a repellor) if p is an unstable fixed
point for fk.

Again using the fact that a periodic point of period k for f is a fixed point
for the map fk we can apply Theorem 1.1.1 and Theorem 1.1.2 along with the
chain rule to arrive at the following results for one and higher-dimensional maps.

Theorem 1.1.3. [1] Let f be a differentiable map on X ⊆ R, f(x(n)) = x(n+
1). Given a periodic point of period k for f , p, then the corresponding period-k
orbit {p1, p2, p3, . . . , pk}

1. is stable if |f ′(p1)f ′(p2) . . . f ′(pk)| < 1,
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2. is unstable if |f ′(p1)f ′(p2) . . . f ′(pk)| > 1.

Theorem 1.1.4. [1] Let f be a differentiable map X ⊆ Rm, f(x(n)) = x(n+1).
Given a periodic point of period k for f , p, then the corresponding period-k orbit
{p1, p2, p3, . . . , pk}

1. is stable if for each eigenvalue λi of the matrix product, J(p1)J(p2) . . .J(pk),
|λi| < 1,

2. is unstable if for some eigenvalue λi of the matrix product, J(p1)J(p2) . . .J(pk),
|λi| > 1.

1.1.2 Bifurcations and Bifurcation Diagrams

Bifurcation is the name given to a qualitative change in the phase portrait
of a dynamical system under parameter variation. In other words, bifurcation
refers to changes in behaviour such as a switch from fixed point to an oscillation
between two points or other significant changes such as changes to higher pe-
riodicities, quasi-periodicity and chaos. The term was introduced to the world
by the “father of dynamical systems”, French mathematician, Henri Poincaré.

Bifurcation diagrams are useful diagrams which provide a summary of the
essential dynamics of a system. They show the appearance, evolution and disap-
pearance of attracting sets under parameter variation. For a map with parame-
ter r, fr(x), a bifurcation diagram can be produced by choosing an initial value
for x and calculating the orbit of x under fr(x) for values of r in an appropriate
range. We ignore the first N iterates for some large N ∈ N iterates and plot
the orbit. The plotted points then approximate either fixed or periodic attrac-
tors or other attracting sets such as quasi-periodic or chaotic attractors. This
type of bifurcation diagram is sometimes referred to as a brute-force bifurcation
diagram.
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Figure 3.1: Bifurcation diagram for the map fr(x) = rx(1− x) for values of r ∈ (0, 4].
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In Figure 3.1 we give an example of a bifurcation diagram of the map fr(x) =
rx(1 − x) for values of r ∈ (0, 4]. This map is known as the logistic map. We
see for example that this map has a stable fixed point for r = 2 and at r = 3.25
the diagram shows the two points of a period-two attractor. For values of r
closer to 4 we see that the orbit appears to fill a subinterval of [0, 1] randomly.
This represents a chaotic attractor. Chaos, unlike fixed or periodic behaviour, is
quite hard to describe. Essentially a chaotic orbit is one that is bounded, non-
periodic and displays sensitive dependence on the initial conditions. In other
words even a slight perturbation away from our initial condition will produce a
significantly different orbit.

We will return to analyse the dynamics of the map fr(x), known as the
logistic map, in more detail in Section 2. Now, we concern ourselves with giving
a more precise definition of chaos.

1.1.3 Lyapunov Exponents

In order to quantify chaos we introduce the concept of Lyapunov exponents
[45]. Chaos, as mentioned in Section 1.1.2, can be considered, in essence, as a
highly sensitive dependence on initial conditions. Lyapunov exponents measure
the exponential divergence of nearby trajectories and so can give us a quantita-
tive measure of chaos. We will consider a strictly positive maximal Lyapunov
exponent as the definition of chaos.1

Consider a system allowed to evolve from two slightly differing initial points,
x0 and x0 +ε0, where |ε0|≪ 1. Let εn be the separation between the two points
after n iterations, then

|fn(x0 + ε0)− fn(x0)| = |εn| ≈ |ε0|eµn. (3.4)

Here µ the Lyapunov exponent which gives the average rate of divergence. If µ
is negative we observe convergence of nearby trajectories; while if µ is positive
we observe divergence of slightly separated trajectories. Divergence of nearby
trajectories implies that the evolution of the system is sensitive to the initial con-
ditions. We say that a system is chaotic if it has a positive Lyapunov exponent.
Taking logarithms we find

µ ≈ 1

n
log

∣∣∣∣fn(x0 + ε0)− fn(x0)

ε0

∣∣∣∣ . (3.5)

Taking the limit as ε0 → 0 this becomes

µ ≈ 1

n
log

∣∣∣∣dfndx
∣∣∣∣

=
1

n
log |(fn)′(x)|

1A stricter definition can be found in [1] and would require us to ensure orbits are not
asymptotically periodic, however, in this thesis we will limit ourselves to examining Lyapunov
exponents for indications of chaotic behaviour.
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=
1

n
log

∣∣∣∣∣
n−1∏
k=0

f ′(x(k))

∣∣∣∣∣
=

1

n

n−1∑
k=0

log |f ′(x(k))| . (3.6)

Finally taking the limit as n → ∞ we obtain an expression for the Lyapunov
exponent

µ = lim
n→∞

1

n

n−1∑
k=0

log |f ′(x(k))| . (3.7)

For m-dimensional maps there are m Lyapunov exponents, since stretching can
occur along each of the m axes. An m dimensional initial volume develops on
average as

V = V0e
(µ1+µ2+...+µm)n. (3.8)

1.2 Logistic Maps

When defining node growth in our networks we take inspiration from a par-
ticular map known as the logistic map, given by

x(n+ 1) = λx(n)(1− x(n)), x(n) ∈ [0, 1] , n ∈ T, λ ≥ 0. (3.9)

The logistic map was made famous by the theoretical physicist and mathemat-
ical biologist Lord Robert May in his 1976 article Simple mathematical models
with very complicated dynamics [48]. In it he showed that even simple and
deterministic maps such as the logistic map can exhibit a surprising array of
dynamical behaviour, including chaos. The logistic map itself is named after
the corresponding differential equation

dx

dt
= λx(1− x), λ ≥ 0, (3.10)

that was first published by Pierre François Verhulst in 1845 [68]. This differ-
ential equation can be seen as a model of the growth of a population whose
reproductive rate is density-regulated due to environmental constraints.

We model the growth of each node in a network over time using a modified
form of the logistic map. The size, yi, of an individual node, vi ∈ V , at time
n+ 1 is given by

yi(n+ 1) = ri(n)yi(n)

(
1− yi(n)

Y

)
, Y > 0, (3.11)

where the constant Y represents the maximum possible size of a node. This
set-up allows us to vary our control parameter. In place of a constant control
parameter λ we take a function ri(n) of time which varies between nodes.

For simplicity we consider the ratio of each node’s size to the maximum

possible size, xi(n) =
yi(n)

Y
, and so (3.11) reduces to

xi(n+ 1) = ri(n)xi(n)(1− xi(n)) xi(n) ∈ (0, 1] . (3.12)
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2 Growth of a Single Isolated Node

To develop an understanding of the classic logistic map we first we look at
the growth of a single isolated node v. We take r(n) to be a constant r ∈ (0, 4]
and so our growth model for the size, x(n), of v reduces to the logistic map

x(n+ 1) = rx(n)(1− x(n)) = f(x(n)). (3.13)

Let us now analyse the long-term dynamics of this system.

2.1 Analysis

2.1.1 Fixed Points

As is the case when analysing any dynamical system the fixed points of the
system are of particular interest. The fixed points of the logistic map are given
by x∗ where

x∗ = rx∗(1− x∗) =⇒
x∗ = rx∗ − rx∗

2

=⇒
0 = rx∗ − x∗ − rx∗

2

=⇒

0 = rx∗
(
r − 1

r
− x∗

)
=⇒

x∗a = 0, x∗b =
r − 1

r
. (3.14)

For r < 1 the fixed point x∗b =
r − 1

r
is negative and so it does not exist. For

r < 1 it is in a sense unphysical.
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Figure 3.2: Node size converging to the fixed point x∗b = 1
3

for r = 3
2
.

In Figure 3.2 we see an example of the convergence of the node size x(n)
to the fixed point x∗b = r−1

r = 1
3 for r = 3

2 as n → ∞. The convergence is
monotonic and it appears that for this value of r the fixed point x∗b is stable.
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An overall picture of the stability of the two fixed points, x∗a = 0 and x∗b =
r−1
r , for all values of r ∈ (0, 4] is of interest. We wish to know, for each value

of r, whether each of these fixed points is a stable attractor, sometimes known
as a sink, or an unstable repellor, sometimes known as a source. To do this we
examine the derivative of f(x) = rx(1− x), given by

f ′(x) = r − 2rx. (3.15)

Any fixed point, x∗, of the map given by x(n+ 1) = f(x(n)) is stable when

|f ′(x∗)| < 1. (3.16)

First we examine the stability of the fixed point x∗a = 0. We have that x∗a = 0
is stable for

|f ′(x∗a)| = |f ′(0)| = |r| < 1 (3.17)

We only consider cases with r > 0. And so the fixed point x∗a = 0 is stable for

0 < r < 1. (3.18)

We now examine the stability of the second fixed point, bx
∗ = r−1

r . We have
that x∗ = r−1

r is stable for

|f ′(x∗b)| =
∣∣∣∣f ′(r − 1

r

)∣∣∣∣ =

∣∣∣∣r − 2r2 − 2r

r

∣∣∣∣ = |2− r| < 1 (3.19)

Since x∗b = r−1
r is unphysical for r < 1 we only consider cases with r > 1. And

so x∗b = r−1
r is stable for

1 < r < 3: = rc. (3.20)

The following Figures show the behaviour of x(n) for different values of r about
the critical value rc.
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(a) Node size over time for r = 0.99rc =
2.97.
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(b) Node size over time for r = 1.01rc =
3.03.

Figure 3.3: Behaviour of x(n) for different values of r about the critical value rc.
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In Figure 3.3a we take a value for r just less than the critical value rc and
we observe slow oscillatory convergence to the fixed point. This is in contrast
to the rapid monotonic convergence seen in Figure 3.2 for a lower value of r.
In Figure 3.3b we take a value for r just greater than the critical value rc = 3
and we observe that there is no convergence to the fixed point. Instead x(n)
appears to settle into a period-two orbit.

2.1.2 Period-two Orbits

We now wish to find all the period-2 orbits of the logistic map. The period-2
points of the map given by x(n+ 1) = f(x(n)) are the fixed points of f(f(x)) =
f2(x), and so are found by solving x∗ = f2(x∗).

x∗ = f2(x∗) = rf(x∗)(1− f(x∗)) =⇒
x∗ = r(rx∗(1− x∗))(1− (rx∗(1− x∗))) =⇒
0 = x∗(r2(1− x∗))(1− (rx∗(1− x∗)))− 1). (3.21)

We know x∗ is a root since x∗a = 0 is a fixed point of the map and hence a
period-two point. Ignoring x∗a = 0 we find

r2(1− x∗))(1− (rx∗(1− x∗)))− 1 = 0 =⇒
r3(x∗)3 − 2r3(x∗)2 + (r3 + r2)x∗ + (1− r2) = 0 =⇒
r3(x∗)3 − 2r3(x∗)2 + (r3 + r2)x∗ + (1− r2) = 0 =⇒

(x∗)3 − 2(x∗)2 +
r + 1

r
x∗ +

1− r2

r3
= 0 =⇒(

x∗ − r − 1

r

)(
(x∗)2 − r + 1

r
x∗ +

r + 1

r2

)
= 0. (3.22)

Again we know x∗ − r−1
r is a root since x∗ = r−1

r is a fixed point of the map
and hence a period-two point. Ignoring x∗ = r−1

r we find

(x∗)2 − r + 1

r
x∗ +

r + 1

r2
= 0 =⇒(

x∗ −
r + 1 +

√
(r + 1)(r − 3)

2r

)(
x∗ −

r + 1−
√

(r + 1)(r − 3)

2r

)
= 0.(3.23)

Our period-two points are therefore

x∗+ =
r + 1 +

√
(r + 1)(r − 3)

2r
, x∗− =

r + 1−
√

(r + 1)(r − 3)

2r
. (3.24)

These period-two points exist only for r > 3 = rc. For r < 3 x∗+ and x∗− are
complex. In Figure 3.3b we see an example of this period-two behaviour for
r = 1.01rc = 3.03.

The stability of the period-two orbit, (x∗+, x
∗
−), found above is also of interest.

We can investigate the stability of this periodic orbit by again examining the
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derivative of f(x) = rx(1− x), f ′(x) = r − 2rx. The periodic orbit (x∗+, x
∗
−) of

the map given by x(n+ 1) = f(x(n)) is stable for∣∣f ′(x∗+)f ′(x∗−)
∣∣ < 1. (3.25)

In our case this gives that ∣∣(r − 2rx∗+)(r − 2rx∗−)
∣∣ =∣∣∣∣(r − 2r

2r

(
r + 1 +

√
(r + 1)(r − 3)

)
)(r − 2r

2r

(
r + 1−

√
(r + 1)(r − 3)

)
)

∣∣∣∣ =∣∣∣(−1−
√

(r + 1)(r − 3)
)(
−1 +

√
(r + 1)(r − 3)

)∣∣∣ =

|1− (r + 1)(r − 3)| =∣∣r2 − 2r − 4
∣∣ < 1. (3.26)

So the periodic orbit is stable when the following two inequalities are satisfied

r2 − 2r − 4 > −1 & r2 − 2r − 4 < 1. (3.27)

The first inequality gives

r2 − 2r − 3 > 0 =⇒
(r − 3)(r + 1) > 0. (3.28)

Since we have that r > 0 this gives us that

r > 3. (3.29)

The second inequality gives

r2 − 2r − 5 < 0 =⇒
(r −

(
1 +
√

6
)

)(r −
(

1−
√

6
)

) < 0 =⇒

r < 1 +
√

6. (3.30)

Taking these two together we find our period-two orbit is stable for

3 < r < 1 +
√

6 ≈ 3.4494897. (3.31)

2.1.3 Period-two Doubling to Chaos

As further in-depth analysis becomes increasingly cumbersome we will not
present the methods for finding any higher period orbits analytically. As r
increases beyond 1+

√
6 a stable period-four orbit appears. As r increases further

we observe a period-two doubling effect with stable orbits of period 8, 16, 32, . . .
appearing. These successive bifurcations occur at an increasing rate. In fact
the ratio of distances between successive values of r at which these bifurcations
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occur converges to a constant δ defined by Feigenbaum in 1978 [28]. If the ith

bifurcation occurs at ri then

δ = lim
i→∞

ri − ri−1

ri+1 − ri
= 4.669201609 . . . . (3.32)

This constant has a remarkable universality property. Its value is the same for
all unimodal maps with a quadratic maximum. It can finally be shown that the
period-doubling bifurcations come successively closer, eventually accumulating
at the point r∞ where an infinite number of bifurcations occur

r = r∞ = 3.5699456718 . . . . (3.33)

As r increases beyond r∞ we observe regions of chaotic behaviour, interrupted
by intervals of periodic behaviour known as periodic windows. In Figure 3.4 we
see an example of this chaotic behaviour for r = 1.3rc = 3.9.
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Figure 3.4: Chaotic behaviour of node size over time for r = 1.3rc = 3.9.

2.1.4 Bifurcation Diagram

The bifurcation diagram in Figure 3.5 shows the long-term behaviour of the
logistic map model for values of r ∈ (0, 4]. This diagram confirms our earlier
results numerically. For 0 < r < 1 we see that x∗ = 0 is a global attractor
for the system, as we increase r beyond 1 this attractor becomes unstable. For
1 < r < 3 x∗ = r−1

r is a global attractor for the system which becomes unstable
when we increase r beyond the critical value rc = 3. After this value a period-
doubling cascade occurs, we first see the appearance of a period-two attractor,
which is stable for 3 < r < 1 +

√
6 followed by a stable period-four attractor

and so on as we move towards chaos.
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Figure 3.5: Bifurcation Diagram for the Logistic Map.

2.1.5 Lyapunov Exponents
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Figure 3.6: Numerically Calculated Lyapunov Exponents for the Logistic Map for
0 < r ≤ 4.

Using the method outlined in Section 1.1.3 we numerically estimated the
Lyapunov exponent of the logistic map for values of r ∈ (0, 4]. We plot the
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numerically estimated exponents in Figure 3.6. We see positive Lyapunov ex-
ponents for many values of r > r∞, the accumulation point defined in Equation
(3.33), indicating chaotic behaviour in this region. We also see some negative
Lyapunov exponents in this range corresponding to periodic windows inter-
spersed amongst the chaos. Figure 3.7 allows us to take a closer look at the
largest of these periodic windows.

(a) Bifurcation Diagram for the logistic
map when r ∈ [3.81, 3.87].

(b) Close up of the behaviour of a single
branch of the original period 3 orbit.

Figure 3.7: Magnification of the bifurcation diagram in the region of the period 3
window.

At first a stable period 3 orbit emerges from the chaos. We then observe
period doubling on the return to chaos. In fact when magnified the bifurca-
tion diagram for each branch once period doubling begins mirrors the overall
bifurcation diagram for r in the interval [3, 4]. This can be seen in Figure 3.7b.

3 Growth of Nodes in a Complete Network

Having familiarised ourselves with the dynamics of the classic logistic map in
Section 2 we now present our modified logistic map for a network. We consider
connected networks N = (V,E) with m ≥ 2 nodes. As we discussed in Section 1
we allow our control parameter to vary between nodes and over time. For each
node vi ∈ V we let the control function ri(n) depend on the weighted degree of
vi at time n. We set

ri(n) = 1 + ρwi(n) = 1 + ρ


∑

j:(vi,vj)∈E

xj(n)

m∑
j=1

xj(n)

 (3.34)
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where ρ > 0 and wi(n) is the normalised weighted degree of vi at time n. Then
for all i ∈ {1, 2, . . . ,m} we have that

xi(n+ 1) =

1 + ρ


∑

j:(vi,vj)∈E

xj(n)

m∑
j=1

xj(n)


xi(n)(1− xi(n)), xi(n) ∈ (0, 1].(3.35)

We call this map the network logistic map of N . In what follows, in order to
avoid confusion, we will refer to the classic logistic map discussed in Section
2 as the single logistic map. It is intuitive to expect that the network logistic
map of any network N will bear some similarities to the single logistic map. In
particular we expect that the map will also display an interesting and diverse
range of dynamical behaviour. In the following sections we investigate these
dynamics.

We begin our investigations by analysing the the growth of nodes in a net-
work, N , that is fully connected or complete, i.e. for i 6= j (vi, vj) ∈ E. We are
interested mainly in the long-term behaviour of the system and any bifurcations
the system undergoes as we vary the parameter ρ.

3.1 A Network With Two Nodes

To begin our analysis of the network logistic map we look at the simplest case
of a complete network. This network has only two nodes, v1 and v2, connected
by a single link (v1, v2). We will refer to this network as NC

2 . A network diagram
of this type of network is given in Figure 3.8.

Figure 3.8: Network diagram of a complete two-node network

For the network logistic map of NC
2 we have that

x1(n+ 1) = r1(n)x1(n) (1− x1(n)) (3.36)

where our control function

r1(n) = 1 + ρ

(
x2(n)

x1(n) + x2(n)

)
. (3.37)

93



Chapter 3 3. Growth of Nodes in a Complete Network

Similarly we have that,

x2(n+ 1) = r2(n)x2(n) (1− x2(n)) (3.38)

where

r2(n) = 1 + ρ

(
x1(n)

x1(n) + x2(n)

)
. (3.39)

3.1.1 Fixed Points

First let us find every fixed point of the network logistic map of NC
2 . The

fixed points for x1(n) are given by x∗1 where

x∗1 = r1(n)x∗1(1− x∗1) =⇒
x∗1 = r1(n)x∗1 − r1(n)(x∗1)2 =⇒
0 = r1(n)x∗1 − x∗1 − r1(n)(x∗1)2 =⇒

0 = r1(n)x∗1

(
r1(n)− 1

r1(n)
− x∗1

)
. (3.40)

We have that x1(n) > 0 and so our fixed point is given by

x∗1 =
r1(n)− 1

r1(n)
=

1 + ρ x2(n)
x∗
1+x2(n) − 1

1 + ρ x2(n)
x∗
1+x2(n)

=
ρ x2(n)
x∗
1+x2(n)

x∗
1+x2(n)+ρx2(n)
x∗
1+x2(n)

=
ρx2(n)

x∗1 + (1 + ρ)x2(n)

(3.41)
This is stationary only when x2(n) is a constant i.e. when x2(n) is also at its
fixed point x∗2 and so

x∗1 =
ρx∗2

x∗1 + (1 + ρ)x∗2
. (3.42)

Similarly we find the fixed point for x2(n) is given by

x∗2 =
ρx∗1

x∗2 + (1 + ρ)x∗1
. (3.43)

Developing (3.42) further gives

x∗1 =
ρx∗2

x∗1 + (1 + ρ)x∗2
=⇒

ρx∗2 = x∗1(1 + ρ)x∗2 + (x∗1)2 =⇒
0 = (x∗1)2 + (1 + ρ)x∗1x

∗
2 − ρx∗2. (3.44)

Similarly, developing (3.43) gives

0 = (x∗2)2 + (1 + ρ)x∗1x
∗
2 − ρx∗1. (3.45)

Subtracting (3.45) from (3.44) gives

(x∗1)2 − (x∗2)2 + ρ(x∗1 − x∗2) = 0 =⇒
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(x∗1 − x∗2)(x∗1 + x∗2 + ρ) = 0. (3.46)

So we have that x∗1 = x∗2 or x∗1 = −(x∗2 + ρ). This second solution is unphysical
as it implies that x∗1 is negative since ρ > 0 and x∗2 > 0. Therefore we have that
x∗1 = x∗2. Combining this and (3.42) gives

x∗1 =
ρx∗2

x∗1 + (1 + ρ)x∗2
=

ρx∗1
x∗1 + (1 + ρ)x∗1

=
ρx∗1

(2 + ρ)x∗1
=

ρ

2 + ρ
= x∗2. (3.47)

In Figure 3.9 we see an example of the node sizes in NC
2 rapidly converging to

this fixed point monotonically for ρ = 1
2 . If we look at Figure 3.9 it certainly
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Figure 3.9: Node sizes converging to the fixed point x∗ = 1
5

for m = 2 and ρ = 1
2
.

appears that the fixed point (x∗1, x
∗
2) =

(
ρ

2+ρ ,
ρ

2+ρ

)
is stable for ρ = 1

2 . We now

wish to investigate the stability of this fixed point in detail. Combining (3.36)
and (3.37) gives

x1(n+ 1) =

(
1 + ρ

(
x2(n)

x1(n) + x2(n)

))
x1(n) (1− x1(n))

=

(
1 + ρ

(
x2(n)

x1(n) + x2(n)

))
(x1(n)− (x1(n))2)

= (x1(n)− (x1(n))2) + ρ

(
x2(n)

x1(n) + x2(n)

)
(x1(n)− (x1(n))2)

= f(x1(n), x2(n)) (3.48)

or

f(x1, x2) = (x1 − x2
1) + ρ

(
x2

x1 + x2

)
(x1 − x2

1) (3.49)

Similarly,
x2(n+ 1) = g(x1(n), x2(n)) (3.50)

where

g(x1, x2) = (x2 − x2
2) + ρ

(
x1

x1 + x2

)
(x2 − x2

2) (3.51)
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We can investigate the stability of our fixed points by examining the Jacobian.
The partial derivatives of the functions f and g given in (3.49) and (3.51) re-
spectively are

∂f

∂x1
= (1− 2x1) + ρ

[
(x1 − x2

1)
−x2

(x1 + x2)2
+

x2

x1 + x2
(1− 2x1)

]
, (3.52)

∂f

∂x2
= ρ

x2
1(1− x1)

(x1 + x2)2
, (3.53)

∂g

∂x1
= ρ

x2
2(1− x2)

(x1 + x2)2
, (3.54)

and

∂g

∂x2
= (1− 2x2) + ρ

[
(x2 − x2

2)
−x1

(x1 + x2)2
+

x1

x1 + x2
(1− 2x2)

]
. (3.55)

Evaluating at our fixed point (x∗1, x
∗
2) =

(
ρ

2+ρ ,
ρ

2+ρ

)
we find

∂f

∂x1
|( ρ

2+ρ ,
ρ

2+ρ ) =
∂g

∂x2
|( ρ

2+ρ ,
ρ

2+ρ ) =
4− ρ2 − ρ
2(2 + ρ)

(3.56)

and
∂f

∂x2
|( ρ

2+ρ ,
ρ

2+ρ ) =
∂g

∂x1
|( ρ

2+ρ ,
ρ

2+ρ ) =
ρ

2(2 + ρ)
. (3.57)

So the Jacobian is

J

(
ρ

2 + ρ
,

ρ

2 + ρ

)
=


4− ρ2 − ρ
2(2 + ρ)

ρ

2(2 + ρ)
ρ

2(2 + ρ)

4− ρ2 − ρ
2(2 + ρ)

 (3.58)

and the characteristic equation is

λ2 −
4− ρ2 − ρ

2 + ρ
λ+

(ρ− 2)(ρ2 + 2ρ− 4)

4(2 + ρ)
= 0. (3.59)

The condition for stability is therefore

2 > 1 +
(ρ− 2)(ρ2 + 2ρ− 4)

4(2 + ρ)
>

∣∣∣∣4− ρ2 − ρ
2 + ρ

∣∣∣∣ (3.60)

Using the fact that ρ > 0 this reduces to

16 + 8ρ > ρ3 − 4ρ+ 16 > 4
∣∣4− ρ− ρ2

∣∣ (3.61)

which reduces further to

0 > ρ3 − 12ρ > 4
(∣∣4− ρ− ρ2

∣∣− 4− 2ρ
)
. (3.62)
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Taking each inequality separately this gives that

ρ3 − 12ρ < 0 =⇒ ρ2 < 12 =⇒ 0 < ρ < 2
√

3 (3.63)

and

ρ3 − 12ρ > 4
(∣∣4− ρ− ρ2

∣∣− 4− 2ρ
)

=⇒
ρ3 − 4ρ+ 16 > 4

∣∣4− ρ− ρ2
∣∣ =⇒

ρ6 − 8ρ4 + 32ρ3 + 16ρ2 − 128ρ+ 196 > 16(16− 8ρ− 7ρ2 + 2ρ3 + ρ4) =⇒
ρ6 − 24ρ4 + 128ρ2 > 0 =⇒
ρ4 − 24ρ2 + 128 > 0 =⇒

(ρ2 − 16)(ρ2 − 8) > 0 (3.64)

Taking (3.63) and (3.64) together gives that the fixed point (x∗, x∗) =
(

ρ
2+ρ ,

ρ
2+ρ

)
is stable when

0 < ρ < 2
√

2 = ρc2 . (3.65)
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(a) Node size over time in a complete
network with m = 2 and ρ = 0.99ρc2 .
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(b) Difference in node size over time in a
complete network with m = 2 and

ρ = 0.99ρc2 .

Figure 3.10: Node behaviour in a complete network with m = 2 and ρ = 0.99ρc2 ≈
2.80.

Figures 3.10 - 3.12 show the behaviour of xi(n) for different values of ρ about
the critical value ρc2 = 2

√
2. In Figure 3.10a we take a value for ρ just less than

the critical value ρc2 above which the fixed point (x∗, x∗) becomes unstable. We
plot the dynamics of a network with initial node sizes randomly chosen from
a uniform distribution on (0, 1), x1(0) ∈ (0, 1) and x2(0) ∈ (0, 1), and observe
slow oscillatory convergence to (x∗, x∗) as n → ∞. The dynamics of x1(n) are
plotted in blue while the dynamics of x2(n) are plotted in green. Both oscillate
about the fixed point x∗ as they converge. This behaviour is in contrast to the
rapid monotonic convergence we saw earlier in Figure 3.9 for a lower value of
ρ, ρ = 1

2 . It is interesting to note that while oscillating about the fixed point
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before converging the two node sizes are out of phase. This can be seen by
examining Figure 3.10b. Here we show the difference between the two node
sizes over time, x1(n) − x2(n). If the two node sizes moved perfectly together
we would have x1(n)− x2(n) = 0, instead we observe a difference in sizes that
oscillates between positive and negative values before converging to 0 as the
node sizes converge to (x∗, x∗). This indicates that at every timestep the node
with the largest size alternates between v1 and v2, with the difference between

the two sizes becoming smaller at each step until they reach
(

ρ
2+ρ ,

ρ
2+ρ

)
.
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Figure 3.11: Node size over time in a complete network with m = 2 and ρ = 1.01ρc2 ≈
2.86.
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Figure 3.12: Difference in node size over time in a complete network with m = 2 and
ρ = 1.01ρc2 ≈ 2.86.

In Figure 3.11 we take a value for ρ just greater than the critical value ρc2
below which the fixed point (x∗, x∗) is stable. We again plot the dynamics of
a network with initial node sizes randomly chosen from a uniform distribution
on (0, 1), x1(0) ∈ (0, 1) and x2(0) ∈ (0, 1). The dynamics of x1(n) are plotted
in blue while the dynamics of x2(n) are plotted in green. The panel on the left
shows the dynamics of the system from time n = 0 to 400 while the panel on
the right gives us a more detailed view of the dynamics for n = 375 to 400 after
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Chapter 3 3. Growth of Nodes in a Complete Network

they settle into a regular pattern. We observe that in this case, unlike both of
the cases we have examined so far, there is no convergence to the fixed point(

ρ
ρ+2 ,

ρ
ρ+2

)
as n→∞. Instead both node sizes x1(n) and x2(n) appear to settle

into a period-two orbit, oscillating between the same two values, x∗− ≈ 0.539
and x∗+ ≈ 0.631. In Figure 3.12 we plot the difference between the two node
sizes, x1(n)− x2(n) over time. The panel on the left again shows the dynamics
from time n = 0 to 400 while the panel on the right gives us a more detailed
view for n = 375 to 400 after they settle. We see that the difference between
the two node sizes settles into a period-two orbit about 0. This, together with
the right hand panel of Figure 3.11 allow us to see that that the orbits of the
two node sizes are out of phase. As n→∞ when x1(n) = x∗−, x2(n) = x∗+ and
vice versa.
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Figure 3.13: Node size over time in a complete network with m = 2 and ρ = 1.5ρc2 ≈
4.24.
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Figure 3.14: Difference in node size over time in a complete network with m = 2 and
ρ = 1.5ρc2 ≈ 4.24.

In Figures 3.13 and 3.14 we see evidence of chaotic behaviour in the system
for values of the parameter ρ significantly larger than ρc2 . We again plot the
dynamics of a network with randomly chosen initial node sizes x1(0) ∈ (0, 1)
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and x2(0) ∈ (0, 1). The dynamics of x1(n) are plotted in blue while the dy-
namics of x2(n) are plotted in green. The panel on the left shows the dynamics
of the system from time n = 0 to 400 while the panel on the right gives us a
more detailed view of the dynamics for n = 375 to 400. After a large num-
ber of timesteps the dynamics of the system do not appear to settle into any
recognisable pattern. It is interesting to note that not only do the sizes between
the two nodes appear to experience chaos but there is evidence in Figure 3.14,
where we plot the difference between the two node sizes, x1(n) − x2(n) over
time, that their relationship is also chaotic. Just like the node sizes themselves,
this difference does not appear to settle into any recognisable pattern.

3.1.2 Towards Chaos

Finding further attractors analytically becomes increasingly cumbersome.
However, numerically we can see that although the initial behaviour of the
network logistic map is very similar to the behaviour of the single logistic map,
the routes the two systems take to chaos are quite different.

When analysing the single logistic map in Section 2 we observed that as we
increased the control parameter, r, beyond rc = 3 a period doubling cascade to
chaos occurred. However, this is is not the case when dealing with the network
logistic map of NC

2 . As we increase ρ beyond ρc = 2
√

2 we do not always
observe the same qualitative behaviour. At first we do see the appearance of a
stable period-two attractor as is the case in the single logistic map. However, in
the single logistic map as we increase r beyond 1 +

√
6 a period four attractor

appears, in the case of the network logistic map of NC
2 in place of a period-four

attractor after our next bifurcation point ρ ≈ 3.65 a quasi-periodic attractor
with period-two appears. In Figure 3.15 we see a nice example of this striking
behaviour for ρ = 3.7. The subsequent bifurcation sees the appearance of a
period ten attractor before cascading to seemingly chaotic behaviour. Later
by analysing the Lyapunov exponents of the system we will be able to quantify
chaos and show that the behaviour of the system in this region is indeed chaotic.
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Figure 3.15: Quasi-periodic behaviour of x1(n) (magenta) and x2(n) (blue) in a com-
plete two node network for ρ = 3.7.
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3.1.3 Bifurcation Diagrams

The bifurcation diagrams in Figure 3.16 allow us to analyse and observe the
long-term behaviour of the network logistic map model for m = 2 and values
of ρ ∈ (0, 4.47]. These bifurcation diagrams confirm our earlier analytical and
numerical results. For ρ < 2

√
2 we see a single stable fixed point given by(

ρ
2+ρ ,

ρ
2+ρ

)
. For ρ > 2

√
2 this fixed point becomes unstable and a period-two

attractor appears. The two node sizes oscillate out of phase between the same
two values for each value of ρ for which the period-two attractor is stable. This
period-two attractor remains stable until the next bifurcation, at this point a
quasi-periodic attractor of period two appears. The subsequent bifurcation sees
the appearance of a period-ten attractor before cascading to chaos.
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(a) Bifurcation diagram for a complete
network with m = 2.
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(b) x1(n) vs x2(n).
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(c) Bifurcation diagram projection for
x1(n).
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(d) Bifurcation diagram projection for
x2(n).

Figure 3.16: Bifurcation diagrams for a complete network with m = 2. Colour corre-
sponds to ρ value.

101



Chapter 3 3. Growth of Nodes in a Complete Network

3.1.4 Lyapunov Exponents

We have numerically estimated the maximum Lyapunov exponent of the
network logistic map of NC

2 for values of ρ ∈ (0, 4.47]. Our estimates were
obtained by implementing a version of an algorithm due to Eckmann and Ruelle
in Matlab [25]. We plot the numerically estimated exponents in Figure 3.17. We
see that the maximum Lyapunov exponent of the network logistic map of NC

2

is negative for values of ρ / 3.65. This indicates the non-chaotic behaviour of
the map for these values of ρ. We note that the maximum Lyapunov exponent
is converging to zero for the range of values of ρ for which stable quasi-periodic
behaviour was observed in Section 3.1.3. After this the maximum Lyapunov
exponent becomes negative again until ρ exceeds ρ∞2

≈ 4.02.
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Figure 3.17: Numerically Calculated Maximum Lyapunov Exponents for the Network
Logistic Map of a Complete Network with m = 2.

Positive Lyapunov exponents are then observed for values of ρ > ρ∞2
≈ 4.02

indicating chaotic behaviour in this region as expected from our earlier analysis
and bifurcation diagrams. However for some values of ρ in this range we also
observe negative Lyapunov exponents. These negative values correspond to
periodic windows interspersed amongst the chaos.
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(a) Bifurcation diagram for x1(n) and
x2(n).

(b) x1(n) vs x2(n). Colour corresponds
to ρ value.

Figure 3.18: Bifurcation diagrams for x1(n) and x2(n) for ρ ∈ [4.096, 4.103].

Figures 3.18, 3.19 and 3.20 allow us to take a closer look at one of these
periodic windows. At first a stable period 26 orbit emeges from the chaos. We
then observe period doubling-like behaviour on the return to chaos. In Figure
3.20 we magnify one branch of the period 26 orbit in order to see this period
doubling behaviour clearly. We note the similarities between the behaviour of
this branch and the single logistic map.

(a) Bifurcation diagram projections for
x1(n) for ρ ∈ [4.096, 4.103].

(b) Bifurcation diagram projections for
x2(n) for ρ ∈ [4.096, 4.103].

Figure 3.19: Bifurcation diagram projections for x1(n) and x2(n) for ρ ∈ [4.096, 4.103].

103



Chapter 3 3. Growth of Nodes in a Complete Network

4.097 4.098 4.099 4.1 4.101

0.917

0.9175

0.918

0.9185

0.919

0.9195

0.92

0.9205

0.921

0.9215

ρ

x 1(n
)

Figure 3.20: Close up of the behaviour of a single branch of the original period 26
orbit shown in Figure 3.19a.

3.2 A Network With m Nodes

We would now like to generalise the results of Section 3.1 for a fully connected
or complete network N = (V,E) with m ≥ 2 nodes. Here N has node set
V = {vi}mi=1 where each node vi has a corresponding size xi(n) at time n and
link set E = {(vi, vj) : i 6= j, i, j ∈ {1, 2, . . . ,m}}. We will refer to a complete
m node network as NC

m.
The network logistic map of NC

m is given by

xi(n+ 1) = ri(n)xi(n) (1− xi(n)) , (3.66)

where, following the definition given in (3.121), we have that

ri(n) = 1 + ρ


∑
j 6=i

xj(n)

m∑
j=1

xj(n)

 (3.67)

for all i ∈ {1, 2, . . . ,m}.
Throughout our analysis we will refer to two examples to illustrate the be-

haviour of a complete m-node network, namely m = 3 and m = 10. Network
diagrams for these two sample networks are shown in Figure 3.21.

104



Chapter 3 3. Growth of Nodes in a Complete Network

(a) A complete network with 3
nodes.

(b) A complete network with 10
nodes.

Figure 3.21: Network diagrams of our two sample networks, NC
3 and NC

10 .

3.2.1 Fixed Points

Again we begin our analysis of the system by finding all of the fixed points
of the system. For all i ∈ {1, 2, . . . ,m} the fixed points for xi(n) are given by
x∗i where

x∗i = ri(n)x∗i (1− x∗i ) =⇒
x∗i = ri(n)x∗i − ri(n)(x∗i )

2 =⇒
0 = ri(n)x∗i − x∗i − ri(n)(x∗i )

2 =⇒

0 = ri(n)x∗i

(
ri(n)− 1

ri(n)
− x∗i

)
. (3.68)

Since xi(n) > 0 this means that our fixed points, x∗i , for xi(n), are given by

x∗i =
ri(n)− 1

ri(n)
=

1 + ρ


∑
j 6=i

xj(n)

m∑
j=1

xj(n)

− 1

1 + ρ


∑
j 6=i

xj(n)

m∑
j=1

xj(n)


=

ρ

∑
j 6=i

x∗j

m∑
j=1

x∗j

m∑
j=1

x∗j + ρ
∑
j 6=i

x∗j

m∑
j=1

x∗j

=

ρ
∑
j 6=i

x∗j

m∑
j=1

x∗j + ρ
∑
j 6=i

x∗j

=

ρ
∑
j 6=i

x∗j

x∗i + (1 + ρ)
∑
j 6=i

x∗j
.

(3.69)
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Rearranging (3.69) gives

(x∗i )
2 + x∗i (1 + ρ)

∑
j 6=i

x∗j − ρ
∑
j 6=i

x∗j = 0. (3.70)

For every pair of nodes in the complete network, va, vb, with a, b ∈ {1, 2, . . . ,m}
we have

(x∗a)2 + x∗a(1 + ρ)
∑
j 6=a

x∗j − ρ
∑
j 6=a

x∗j = 0, (3.71)

(x∗b)
2 + x∗b(1 + ρ)

∑
j 6=b

x∗j − ρ
∑
j 6=b

xj(n) = 0. (3.72)

(3.71) - (3.72) gives

(x∗a)2 − (x∗b)
2 + (x∗a − x∗b)(1 + ρ)

∑
j 6=a
j 6=b

x∗j + ρ

∑
j 6=b

x∗j −
∑
j 6=a

x∗j

 = 0 =⇒

(x∗a)2 − (x∗b)
2 + (x∗a − x∗b)(1 + ρ)

∑
j 6=a
j 6=b

x∗j + ρ(x∗a − x∗b) = 0 =⇒

(x∗a − x∗b)

x∗a + x∗b + ρ+ (1 + ρ)
∑
j 6=a
j 6=b

x∗j

 = 0. (3.73)

So we have that x∗a = x∗b or x∗a = −

x∗b + ρ+ (1 + ρ)
∑
j 6=a
j 6=b

x∗j

. This second

solution is unphysical as it implies that x∗a is negative since ρ > 0 and xi(n) > 0
for all i, n. and so we have x∗a = x∗b . This implies that x∗i = x∗ > 0 for all
i ∈ {1, 2, . . . ,m} and so

x∗ =

ρ

m−1∑
i=1

x∗

x∗ + (1 + ρ)

m−1∑
i=1

x∗

=
(m− 1)ρx∗

mx∗ + (m− 1)ρx∗
=

(m− 1)ρ

m+ (m− 1)ρ
. (3.74)

In Figure 3.22 we see examples of the node sizes in NC
3 and NC

10 converging to
this fixed point monotonically for ρ = 1

2 .
It is interesting to note that

lim
m→∞

x∗ = lim
m→∞

(m− 1)ρ

m+ (m− 1)ρ
=

ρ

1 + ρ
(3.75)
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Figure 3.22: Monotonic convergence of node sizes to the fixed point in an m node
complete network.

and

ρ

1 + ρ
= ρ

∞∑
k=0

(−ρ)k, |ρ| < 1. (3.76)

In fact, this should be expected since for a complete network with m nodes we
have that

lim
m→∞

ri(n) = lim
m→∞

1 + ρwi(n) = 1 + ρ. (3.77)

Now referring to Section 2 we see that the fixed point in the simple logistic map

with constant control parameter r was given by
r − 1

r
and

(1 + ρ)− 1

(1 + ρ)
=

ρ

1 + ρ
.

If we look at Figure 3.22 it certainly appears that the fixed point (x∗, x∗, . . . , x∗) =(
(m−1)ρ

m+(m−1)ρ , . . . ,
(m−1)ρ

m+(m−1)ρ

)
is stable for ρ = 1

2 for the logistic network map of

both NC
3 and NC

10. We know wish to investigate the stability of this fixed point
in detail. Combining (3.66) and (3.67) gives

xi(n+1) =

1 + ρ


∑
j 6=i

xj(n)

m∑
j=1

xj(n)


xi(n) (1− xi(n)) = fi(x1(n), x2(n), . . . , xm(n))

(3.78)
For all i ∈ {1, 2, . . . ,m}

fi(x1, x2, . . . , xm) =

1 + ρ


∑
j 6=i

xj

m∑
j=1

xj


xi (1− xi) (3.79)
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We can investigate the stability of the fixed points by examining the Jacobian.
We have

∂fi
∂xi

= (1− 2xi)

1 + ρ


∑
j 6=i

xj

m∑
j=1

xj


− xi(1− xi)ρ



∑
j 6=i

xj m∑
j=1

xj

2


(3.80)

and for j 6= i

∂fi
∂xj

= ρxi(1− xi)



m∑
j=1

xj −
∑
j 6=i

xj m∑
j=1

xj

2


=
ρ(x2

i − x3
i ) m∑

j=1

xj

2 (3.81)

Evaluating at the fixed point (x∗1, x
∗
2, . . . x

∗
m) we find

∂fi
∂xi
|( (m−1)ρ
m+(m−1)ρ

,
(m−1)ρ

m+(m−1)ρ
,...,

(m−1)ρ
m+(m−1)ρ ) =

m2 − (m− 1)2ρ2 − (m− 1)ρ

m(m+ (m− 1)ρ)
(3.82)

and for i 6= j

∂fi
∂xj
|( (m−1)ρ
m+(m−1)ρ

,
(m−1)ρ

m+(m−1)ρ
,...,

(m−1)ρ
m+(m−1)ρ ) =

ρ

m(m+ (m− 1)ρ)
. (3.83)

So the Jacobian is

J

(
(m− 1)ρ

m+ (m− 1)ρ
,

(m− 1)ρ

m+ (m− 1)ρ
, . . . ,

(m− 1)ρ

m+ (m− 1)ρ

)
=

m2−(m−1)2ρ2−(m−1)ρ
m(m+(m−1)ρ)

ρ
m(m+(m−1)ρ) . . . ρ

m(m+(m−1)ρ)
ρ

m(m+(m−1)ρ)
m2−(m−1)2ρ2−(m−1)ρ

m(m+(m−1)ρ) . . . ρ
m(m+(m−1)ρ)

...
...

. . .
...

ρ
m(m+(m−1)ρ)

ρ
m(m+(m−1)ρ) . . . m2−(m−1)2ρ2−(m−1)ρ

m(m+(m−1)ρ)

(3.84)

J has v1 = (1, 1, . . . , 1)T as an eigenvector with corresponding eigenvalue

λ1 =
m2 − (m− 1)2ρ2 − (m− 1)ρ

m(m+ (m− 1)ρ)
+ (m− 1)

ρ

m(m+ (m− 1)ρ)
.

J’s other eigenvectors are given by (−1, 1, 0, . . . , 0)T , (−1, 0, 1, . . . , 0)T , . . . ,
(−1, 0, 0, . . . , 1)T and all have the corresponding eigenvalue

λ2 =
m2 − (m− 1)2ρ2 − (m− 1)ρ

m(m+ (m− 1)ρ)
− ρ

m(m+ (m− 1)ρ)
.
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For stability we require |λ1| < 1 and |λ2| < 1. First

|λ1| < 1 =⇒∣∣∣∣m2 − (m− 1)2ρ2 − (m− 1)ρ+ (m− 1)ρ

m(m+ (m− 1)ρ)

∣∣∣∣ < 1 =⇒∣∣∣∣ m2 − (m− 1)2ρ2

m(m+ (m− 1)ρ)

∣∣∣∣ < 1 (3.85)

Using the fact that ρ > 0 and m ≥ 2 this becomes

− (m(m+ (m− 1)ρ) < m2 − (m− 1)2ρ2 < m(m+ (m− 1)ρ. (3.86)

Since we know ρ > 0 and m ≥ 2 the second inequality is always satisfied.
Examining the other inequality we find

m2 − (m− 1)2ρ2 > −(m(m+ (m− 1)ρ) =⇒
m2 − (m− 1)2ρ2 > −m2 −m(m− 1)ρ =⇒

2m2 − (m− 1)2ρ2 +m(m− 1)ρ > 0 =⇒

(m− 1)ρ2 −mρ− 2m2

m− 1
< 0 =⇒(

ρ− m+
√
m2 + 8m2

2(m− 1)

)(
ρ− m−

√
m2 + 8m2

2(m− 1)

)
< 0 =⇒(

ρ− 2m

m− 1

)(
ρ+

m

m− 1

)
< 0 =⇒(

ρ− 2m

m− 1

)
< 0 =⇒

ρ <
2m

m− 1
. (3.87)

Since ∀m ≥ 2 : m
m−1 > 0. Now

|λ2| < 1 =⇒∣∣∣∣m2 − (m− 1)2ρ2 − (m− 1)ρ− ρ
m(m+ (m− 1)ρ)

∣∣∣∣ < 1 =⇒∣∣∣∣m2 − (m− 1)2ρ2 −mρ
m(m+ (m− 1)ρ)

∣∣∣∣ < 1 (3.88)

Using the fact that ρ > 0 and m ≥ 2 this becomes

− (m(m+ (m− 1)ρ) < m2 − (m− 1)2ρ2 −mρ < m(m+ (m− 1)ρ. (3.89)

Since we know ρ > 0 and m ≥ 2 the second inequality in 3.89, m2−(m−1)2ρ2−
mρ < m(m + (m − 1)ρ is always satisfied. Examining the other inequality in
3.89, −(m(m+ (m− 1)ρ) < m2 − (m− 1)2ρ2 −mρ, we find

m2 − (m− 1)2ρ2 −mρ > −(m(m+ (m− 1)ρ) =⇒
m2 − (m− 1)2ρ2 −mρ > −m2 −m(m− 1)ρ (3.90)
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Chapter 3 3. Growth of Nodes in a Complete Network

Note that

lim
m→∞

ρcm = lim
m→∞

m2 − 2m+
√

12m2 − 20m3 + 9m4

2(m− 1)2
= 2. (3.94)

Again this should be expected as for a complete network with m nodes we have
that

lim
m→∞

ri(n) = lim
m→∞

1 + ρwi(n) = 1 + ρ (3.95)

where ρ is a constant. Referring to Section 2 we see that the critical value of
the constant control parameter r in the single logistic map is given by rc = 3
and taking 1 + ρc = rc = 3 gives that ρc = 2.

We now examine the behaviour of xi(n) for different values of ρ about the
critical value ρcm above which the fixed point (x∗, . . . , x∗) becomes unstable
according to our analysis. In Figures 3.23 and 3.24 we take a value for ρ just
less than the critical value ρcm . We plot the dynamics of node sizes in a 3-node
complete network in 3.23 and a 10-node complete network in 3.24, choosing the
initial node sizes xi(0) randomly from the interval (0, 1). In Figure 3.23a and
3.24a we plot the dynamics of each individual xi(n) as n → ∞ in a different
colour. Just like in the two-node case, in both cases we observe slow oscillatory
convergence to (x∗, . . . , x∗). We also see that again while oscillating the node
sizes in each system are not all in phase or equal. In Figures 3.23b and 3.24b we
have plotted the dynamics of the difference, x1(n) − xi(n), between each node
size and the size of v1, x1(n), as n → ∞, in different colours. If the node sizes
moved perfectly together we would have x1(n) − xi(n) = 0 for all i. Instead,
in both the 3-node and the 10-node network we observe node-size differences
that oscillate between positive and negative values before converging to 0 as the

node sizes converge to
(

(m−1)ρ
m+(m−1)ρ , . . . ,

(m−1)ρ
m+(m−1)ρ

)
.
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(a) Node size over time in a complete
network with m = 3 and ρ = 0.99ρcm .
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(b) Difference in node size over time in a
complete network with m = 3 and

ρ = 0.99ρcm .

Figure 3.23: Node size over time in a complete network with m = 3 and ρ = 0.99ρcm ≈
2.50.
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(a) Node size over time in a complete
network with m = 10 and ρ = 0.99ρcm .
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(b) Difference in node size over time in a
complete network with m = 10 and

ρ = 0.99ρcm .

Figure 3.24: Node size over time in a complete network with m = 10 and ρ =
0.99ρcm ≈ 2.12.

In Figures 3.25 to 3.28 we take a value for ρ just greater than the critical
value ρcm , below which the fixed point (x∗, . . . , x∗) is stable. Again we plot the
dynamics of node sizes in a 3-node complete network and a 10-node complete
network, choosing the initial node sizes xi(0) randomly from the interval (0, 1).
For both networks we observe behaviour resembling what was seen in the 2-node
network in Section 3.1.1. We observe that there is no convergence to (x∗, . . . , x∗)
as n → ∞. Instead in both cases all of the xi(n)’s appear to settle into one of
two period-two orbits which are out of phase. The right-hand panels of Figure
3.25 and Figure 3.27 allow us to get a closer look at this settled behaviour. In
Figure 3.25 we see that in this case the sizes of the nodes in the three-node
network settle into two period-two orbits with significantly different oscillation
ranges. In Figure 3.27 the oscillation ranges of the two observed orbits have
quite similar oscillation ranges.

In Figure 3.26 and Figure 3.28 we have plotted the dynamics of the difference,
x1(n)− xi(n), between each node size and the size of v1, x1(n), as n → ∞. In
the three-node case shown in Figure 3.26 we can see from the right-hand panel
that neither x2(n) nor x3(n) is equal to x1(n) as n→∞. Instead x2(n) = x3(n)
and the difference x1(n) − x2(n) is periodic with period 2, oscillating between
a positive value and a negative value. In the ten-node case shown in Figure
3.28 we can see from the right-hand panel that some other node sizes, xi(n) are
equal to x1(n) as n → ∞ since x1(n) − xi(n) = 0 for some i 6= 1. All other
xj(n) 6= x1(n) are equal as n → ∞ and the difference x1(n) − xj(n) is again
periodic with period 2, oscillating between a positive value and a negative value.
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Figure 3.25: Node size over time in a complete network with m = 3 and ρ = 1.01ρcm ≈
2.55.
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Figure 3.26: Difference in node size over time in a complete network with m = 3 and
ρ = 1.01ρcm ≈ 2.55.
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Figure 3.27: Node size over time in a complete network with m = 10 and ρ =
1.01ρcm ≈ 2.16.
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Figure 3.28: Difference in node size over time in a complete network with m = 10 and
ρ = 1.01ρcm ≈ 2.16.

Increasing ρ further sees these period-two attractors become unstable in
both cases. For sufficiently large values of ρ we observe what appears to be
chaotic behaviour, we confirm that this behaviour is indeed chaotic in Section
3.3. Examples of this chaotic behaviour for both the three-node and the ten-node
complete network are shown in Figures 3.29 to 3.32. As n → ∞ the dynamics
of the xi(n)s in both cases do not settle into any regular recognisable pattern.
This is shown in Figure 3.29 for the three-node case and in Figure 3.31 for the
ten-node case. We can see from the right-hand panels in both figures that node
size dynamics to not fall into any recognisable pattern even after 400 timesteps.
It is interesting to note that in the three-node case the relationship between the
different node sizes for this value of ρ is not entirely chaotic. In the right-hand
panel of Figure 3.30 we can see that as n→∞, although the behaviour of both
x1(n) and x3(n) is chaotic, their difference x1(n) − x3(n) which is shown in
green converges to 0 and they become equal. The relationship between these
two node sizes and x2(n) on the other hand appears to be chaotic, with their
difference x1(n)− x2(n) settling into no recognisable pattern as n→∞.
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Figure 3.29: Node size over time in a complete network with m = 3 and ρ = 3.5.
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Figure 3.30: Difference in node size over time in a complete network with m = 3 and
ρ = 3.5.
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Figure 3.31: Node size over time in a complete network with m = 10 and ρ = 1.4ρcm ≈
3.00.
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Figure 3.32: Difference in node size over time in a complete network with m = 10 and
ρ = 1.4ρcm ≈ 3.00.
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3.2.2 Bifurcation Diagrams

The first set of bifurcation diagrams in this section show the long-term be-
haviour of the complete network logistic map model for m = 3 and values of
ρ ∈ (0, 3.91]. Beyond ρ = ρc3 our numerical work has shown there are 3 separate
attractors with different basins of attraction. In the first part of our analysis we
limit ourselves to tracking one of these attractors. Later we try to show all 3
attractors in the same bifurcation diagram. In reality however, when consider-
ing a complete network in which the nodes do not have any specific properties
attached to them other than size these three attractors are one and the same.
The three attractors can be generated by a single attractor by taking three
simple permutations of x1, x2 and x3.

(a) Long-term behaviour of the
relationship between x1(n), x2(n) and

x3(n).

(b) x1(n) vs x2(n).

(c) x1(n) vs x3(n). (d) x2(n) vs x3(n).

Figure 3.33: Long-term behaviour of the relationship between node sizes in a complete
network with m = 3, colour corresponds to ρ value.

By examining Figure 3.33 and Figure 3.34 we can see that after the bifurca-
tion at ρc3 node sizes are absorbed by a period-two orbit. In this example the
period-two behaviour of x1(n) has the wider oscillation range while x2(n) and
x3(n) have an identical, narrower oscillation range. The two sets of nodes also
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oscillate out of phase.

(a) Bifurcation diagram for x1(n) and
x2(n).

(b) Bifurcation diagram for x1(n) and
x3(n).

(c) Bifurcation diagram for x2(n) and
x3(n).

(d) Bifurcation diagram for x1(n).

(e) Bifurcation diagram for x2(n). (f) Bifurcation diagram for x3(n) .

Figure 3.34: Bifurcation diagrams for a complete network with m = 3, colour corre-
sponds to ρ value.

The next bifurcation sees another period-doubling bifurcation and a subse-
quent cascade to chaos, much like the behaviour of the single logistic map. This
contrasts with the behaviour of the network logistic map of NC

2 where we saw
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a very different route to chaos via a quasi-periodic attractor and a period-ten
attractor. From chaos a period-two attractor emerges before once again expe-
riencing a period-doubling cascade to chaos. In this region it appears that all
three nodes behave identically.

In Figure 3.35 and Figure 3.36 we show all attractors. The three separate
period-two attractors after the bifurcation at ρc3 are generated by choosing any
pair of the three node sizes to behave like x2(n) and x3(n) are shown to behave
in Figure 3.33 and Figure 3.34 and allowing the remaining node to behave like
x1(n). Interestingly, after the descent to chaos it appears that only one attractor
emerges from the chaos and all nodes behave identically for subsequent values
of ρ. We will return to further investigate this behaviour in Section 3.4 where
we show that all three nodes do indeed behave identically for these values of ρ.

(a) Long-term behaviour of the
relationship between x1(n), x2(n) and

x3(n).

(b) x1(n) vs x2(n).

(c) x1(n) vs x3(n). (d) x2(n) vs x3(n).

Figure 3.35: Long-term behaviour of the relationship between node sizes considering
all attractors in a complete network with m = 3, colour corresponds to ρ value.
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(a) Bifurcation diagram for x1(n) and
x2(n).

(b) Bifurcation diagram for x1(n).

Figure 3.36: Bifurcation diagrams showing all attractors for a complete network with
m = 3, colour corresponds to ρ value.
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The bifurcation diagrams that follow in this section show the long-term
behaviour of the complete network logistic map model for m = 10 and val-

ues of ρ ∈ (0, 3.]. Beyond ρ = ρcm there are
∑bm2 c
i=0

(
m
i

)
separate period-

two attractors with different basins of attraction for a complete network with
m ∈ {4, 5, 6, . . . , 10} nodes where bxc is the integer floor function (In fact we
believe this is indeed the case for all m ≥ 4). In the first part of our analysis we
limit ourselves to tracking one of these attractors, focusing on the behaviour of
three node sizes x1(n), x2(n), x3(n). x1(n) and x2(n) are in phase while x3(n)
is out of phase. Later we try to show all attractors. Only 1 + bm2 c of these are
truly different period-two attractors the others are simply given by permuting
the xis.

(a) Long-term behaviour of the
relationship between x1(n), x2(n) and

x3(n).

(b) Long-term behaviour of the
relationship between x1(n) and x2(n).

(c) Long-term behaviour of the
relationship between x1(n) and x3(n).

(d) Long-term behaviour of the
relationship between x2(n) and x3(n).

Figure 3.37: Long-term behaviour of the relationship between node sizes in a complete
network with m = 10, colour corresponds to ρ value.
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(a) Bifurcation diagram for x1(n) and
x2(n).

(b) Bifurcation diagram for x1(n) and
x3(n).

(c) Bifurcation diagram for x2(n) and
x3(n).

(d) Bifurcation diagram projection for
x1(n).

(e) Bifurcation diagram projection for
x2(n).

(f) Bifurcation diagram projection for
x3(n).

Figure 3.38: Bifurcation diagrams for x1(n), x2(n) and x3(n) in a complete network
with m = 10, colour corresponds to ρ value.

Examining Figure 3.37 and Figure 3.38 we can see that after the bifurcation
at ρc10 node sizes are absorbed by a period-two orbit. In this example we focus
on three node sizes, x1(n), x2(n) and x3(n). The period-two behaviour of x1(n)
and x3(n) is identical while x2(n) has a different oscillation range and is out of
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phase with x1(n) and x3(n). Just as in the three-node case node sizes are split
into two sets that move together out of phase with the other. Subsequent bifur-
cations see a period-doubling cascade to chaos. the chaos itself is interrupted by
a large periodic window which begins with a period four attractor and cascades
once again to chaos.

(a) Bifurcation diagram for two nodes in
a ten node complete network showing all

attractors.

(b) Bifurcation diagram projection for a
single node in a ten node complete

network showing all attractors.

(c) A close up look at all period-two
attractors.

Figure 3.39: Bifurcation diagrams showing all attractors in a complete network with
m = 10

In Figure 3.39 we show bifurcation diagrams for two typical nodes in NC
10

with all attractors. Our focus is on the period-two behaviour of the system
after ρc10 where we see the appearance of several period-two attractors, some
becoming stable later than others. In Figure 3.39c it can be seen that each node
can fall into one of ten different stable period-two orbits. Each of these orbits
corresponds to being in a set S of s ∈ {1, 2, . . . , 10} nodes in the system whose
node sizes move exactly together, i.e for all vi, vj ∈ S xi(n) = xj(n) as n→∞.
The other 10 − s node sizes also fall into a stable period-two orbit moving
exactly together out of phase with the nodes sizes in S, i.e for all vi, vj 6∈ S
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xi(n) = xj(n) as n→∞.

3.3 Lyapunov Exponents

We have numerically estimated the maximum Lyapunov exponent of the
network logistic map for different values of ρ for m = 3. Our estimates were
again obtained by implementing a version of an algorithm due to Eckmann and
Ruelle in Matlab. We plot the numerically estimated exponents in Figure 3.40.
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Figure 3.40: Maximum Lyapunov Exponents for an Complete 3 Node Network.
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Figure 3.41: A close up look at a projection of the large periodic window seen in the
case of a complete network with m = 3 nodes.

Positive Lyapunov exponents are observed for values of ρ > ρ∞3
≈ 3.39
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indicating chaotic behaviour in this region. However we observe negative Lya-
punov exponents for ρ ∈ (3.53, 3.86). These negative values correspond to a
large periodic window which is one of the striking features of the bifurcation
diagrams in Figures 3.34 and 3.36. Figure 3.41

We have also numerically estimated the maximum Lyapunov exponent of
the network logistic map for different values of ρ for m = 10. We plot the nu-
merically estimated exponents in Figure 3.42. We again see evidence of chaotic
behaviour for large values of ρ and periodic windows amongst the chaos. One
of these periodic windows is again interesting due to its size and is easy to see
with the naked eye in Figure 3.38.
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Figure 3.42: Maximum Lyapunov Exponents for an Complete 10 Node Network.

3.4 An Invariant Set

Definition 3.4.1. An invariant set of a map (1.1.1) is a subset A ⊂ X such
that x ∈ A implies f(x) ∈ A. It then follows that fn(x) ∈ A for all n ∈ N.

For every complete network N there exists an invariant set of the corre-
sponding network logistic map, L, given by

L = {x = (x1, x2, . . . , xm) = t(1, 1, . . . , 1) : t ∈ (0, 1)}. (3.96)

For any x(n) ∈ L we also have that x(n+ 1) ∈ L. This means that if we choose
any initial condition x(0) such that x(0) ∈ L we will remain on L as n→∞.

Consider a complete network with m nodes such that x(n) = (x1(n), x2(n),
. . . , xm(n)) ∈ L. The long-term behaviour of each individual xi(n) is the same as
the long-term behaviour given by the single logistic map with control parameter
r = 1 + ρ

(
m−1
m

)
. This is because for all x(n) ∈ L and i ∈ {1, 2, . . . ,m} we have
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ri(n) = 1 + ρwi(n) = 1 + ρ


∑

j:(xi,xj)∈E

xj(n)

m∑
j=1

xj(n)

 = 1 + ρ



m∑
j=1
j 6=i

xj(n)

m∑
j=1

xj(n)


= 1 + ρ

(
(m− 1)t

mt

)
= 1 + ρ

(
m− 1

m

)
. (3.97)

We are interested in the fixed points and periodic orbits of the invariant
set, L, and their stability. We consider their stability in terms of both L and
the overall system. Any fixed point or orbit that is stable in terms of the
overall system is of course also stable in terms of L, however the converse is not
necessarily true.

3.4.1 The Attractors of The Invariant Set

Using the information above we can easily analyse the long-term dynamics
of points on the invariant set. For any point x(n) = (x1(n), x2(n), . . . , xm(n))
on L we have that x(n) = y(n)(1, 1, . . . , 1) where y(n) ∈ (0, 1) and

y(n+ 1) =

(
1 + ρ

(
m− 1

m

))
y(n)(1− y(n)). (3.98)

Referring to Section 2 we can immediately see that the fixed point of y(n) is
given by

y∗ =
(m− 1)ρ

m+ (m− 1)ρ
(3.99)

and so the fixed point of the invariant set is
(

(m−1)ρ
m+(m−1)ρ ,

(m−1)ρ
m+(m−1)ρ , . . . ,

(m−1)ρ
m+(m−1)ρ

)
.

Since y∗ = (m−1)ρ
m+(m−1)ρ is a stable fixed point of y(n) for 0 < ρ < 2m

m−1 = ρSMcm .

We have that
(

(m−1)ρ
m+(m−1)ρ ,

(m−1)ρ
m+(m−1)ρ , . . . ,

(m−1)ρ
m+(m−1)ρ

)
is stable in terms of the

invariant set for values of ρ in this range.
Again referring to Section 2 we find that the period-two orbit of the map

given in 3.98 is given by

(y∗+, y
∗
−) =

2 + ρ
(
m−1
m

)
+

√
ρ2
(
m−1
m

)2 − 4

2
(
1 + ρ

(
m−1
m

)) ,
2 + ρ

(
m−1
m

)
−
√
ρ2
(
m−1
m

)2 − 4

2
(
1 + ρ

(
m−1
m

))


(3.100)

and exists ony for ρ > 2m
m−1 . This orbit is stable for 2m

m−1 < ρ <
√

6m
m−1 . This

means that
(
(y∗+, y

∗
+, . . . , y

∗
+), (y∗−, y

∗
−, . . . , y

∗
−)
)

is a period-two attractor which
is stable in terms of the set for those values of ρ.
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Continuing in the same manner it is possible to find expressions for further
attractors and bifurcation points in terms of ρ and m as the system period
doubles to chaos along the set, for example the accumulation point after which
chaos occurs is given by ρSM∞ = (2.569946 . . .) m

m−1 . However, the rest of our
analysis will focus on the stability of the period one and period-two attractors
in terms of the overall system.

0
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1
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(n)

x 2(n
)

Figure 3.43: Bifurcation diagram for a two node system beginning on the invariant set
in colour. The logistic map with control parameter r = 1 + ρ

(
m−1
m

)
in black.

3.4.2 The Overall Stability of These Attractors

We have already seen in Section 3.2 that
(

(m−1)ρ
m+(m−1)ρ ,

(m−1)ρ
m+(m−1)ρ , . . . ,

(m−1)ρ
m+(m−1)ρ

)
is a stable fixed point of the network logistic map of a complete network with
m nodes for

0 < ρ <
m2 − 2m+

√
12m2 − 20m3 + 9m4

2(m− 1)2
= ρcm <

2m

m− 1
= ρSMcm . (3.101)

It is interesting that although in general this fixed point becomes unstable earlier
in terms of the overall system, these two bifurcation points converge as m→∞.

lim
m→∞

ρcm = lim
m→∞

m2 − 2m+
√

12m2 − 20m3 + 9m4

2(m− 1)2
= 2 = lim

m→∞

2m

m− 1
= lim
m→∞

ρSMcm .

(3.102)
To test the stability of the period-two fixed point we need to examine the

eigenvalues of the matrix given by the product

J(y∗+, y
∗
+, . . . , y

∗
+)J(y∗−, y

∗
−, . . . , y

∗
−) =

ac+ (m− 1)bd ad+ bc+ (m− 2)bd . . . ad+ bc+ (m− 2)bd
ad+ bc+ (m− 2)bd ac+ (m− 1)bd . . . ad+ bc+ (m− 2)bd

...
...

. . .
...

ad+ bc+ (m− 2)bd ad+ bc+ (m− 2)bd . . . ac+ (m− 1)bd

(3.103)
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where

a = (1− 2y∗+)

(
1 + ρ

(
m− 1

m

))
− (1− y∗+)ρ

(
m− 1

m2

)
,

b =
ρ

m2
(1− y∗+),

c = (1− 2y∗−)

(
1 + ρ

(
m− 1

m

))
− (1− y∗−)ρ

(
m− 1

m2

)
,

d =
ρ

m2
(1− y∗−). (3.104)

By observation we find that J(y∗+, y
∗
+, . . . , y

∗
+)J(y∗−, y

∗
−, . . . , y

∗
−) has v1 = (1, 1, . . . , 1)T

as an eigenvector with corresponding eigenvalue

λ1 = ac+ (m− 1)(ad+ bc+ (m− 1)bd). (3.105)

J(y∗+, y
∗
+, . . . , y

∗
+)J(y∗−, y

∗
−, . . . , y

∗
−)’s other eigenvectors are given by (−1, 1, 0, . . . , 0)T ,

(−1, 0, 1, . . . , 0)T , . . . , (−1, 0, 0, . . . , 1)T and all have the corresponding eigen-
value

λ2 = (a− b)(c− d). (3.106)

For stability we require |λ1| < 1 and |λ2| < 1. First

|λ1| < 1 =⇒∣∣∣∣m2ρ2 − 2mρ2 − 5m2 + ρ2

m2

∣∣∣∣ < 1 =⇒∣∣m2ρ2 − 2mρ2 − 5m2 + ρ2
∣∣

m2
< 1 =⇒∣∣(m− 1)2ρ2 − 5m2

∣∣ < m2. (3.107)

Using the fact that m ≥ 2 and ρ > 0 this gives us that

−m2 < (m− 1)2ρ2 − 5m2 < m2 =⇒
4m2 < (m− 1)2ρ2 < 6m2 =⇒

4m2

(m− 1)2
< ρ2 <

6m2

(m− 1)2
=⇒

2m

m− 1
< ρ <

√
6m

m− 1
. (3.108)

Notice that this is the same range of values of ρ for which this period-two orbit
is an attractor for the invariant set. The second inequality gives us that

|λ2| < 1

|λ2| < 1 =⇒∣∣∣∣14
(

1

m2(mρ+m− ρ)2

)∣∣∣∣
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×
∣∣((2γm2ρ+ 2γm2 − 3γmρ+ 2m2ρ+mρ2 + 2m2 − 2ρm− ρ2)

∣∣
×
∣∣(2γm2ρ+ 2γm2 − 3γmρ− 2m2ρ−mρ2 − 2m2 + 2ρm+ ρ2))

∣∣ < 1.(3.109)

where γ =

√
m2ρ2 − 2mρ2 − 4m2 + ρ2

m2
.

For m = 2 for example using the fact that ρ > 0 this gives that

4 < ρ <∞. (3.110)

Taking the inequalities in (3.108) and (3.110) together this gives that the period-
two orbit given by

(
(y∗+, . . . , y

∗
+), (y∗−, . . . , y

∗
−)
)

is not stable for any value of ρ
in the overall sense.

For m = 3 we find that

−3

4
+

9

8

√
2 +

3

8

√
22 + 20

√
2 < ρ

< −3

4
+

1

8
Ω + 18

√
6

(
(χ

2
3 + 72χ

1
3 + 129)Ω + 828χ

1
3

χ
1
3 Ω

) 1
2

(3.111)

where

Ω =

√
−6(2079 + 24

√
3777)

2
3 + 216(2079 + 24

√
3777)

1
3 − 774

(2079 + 24
√

3777)
1
3

and χ = 2079 + 24
√

3777.
Taking the inequalities in (3.108) and (3.111) together this gives that the

period-two orbit given by
(
(y∗+, . . . , y

∗
+), (y∗−, . . . , y

∗
−)
)

is an attractor for

3.500167883 . . . = −3

4
+

9

8

√
2 +

3

8

√
22 + 20

√
2 < ρ <

3
√

6

2
= 3.674234614 . . . .

(3.112)
In Figure 3.44 we look at the case of a complete network with three nodes and

have plotted bifurcation diagrams for both the overall system and the invariant
set. Notice that our earlier results are confirmed numerically by these diagrams.
Both have the same fixed point attractor to begin with however this attractor
becomes unstable earlier in the overall case. Initially the period-two attractor
for the invariant set is not stable in the case of the overall system. We see that
after a period of chaos in the overall system the period-two attractor of the
invariant set becomes stable in the overall sense. In fact all attractors for the
overall system after this point before the map leaves its domain are attractors
on the invariant set.

For m = 10 it can be shown that

|λ2| < 1 =⇒ 2.269119885 · · · < ρ < 2.810648520 . . . . (3.113)

Taking the inequalities in (3.108) and (3.113) together we see that the period-
two attractor for the invariant set is an attractor in the overall sense for

2.269119885 · · · < ρ <
10
√

6

9
= 2.721655269 . . . . (3.114)
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(a) Bifurcation diagram for x1(n) and
x2(n) in a three-node complete network in
colour with the bifurcation diagram for the
invariant set in black.

(b) Bifurcation diagram projection for
x1(n) in a three-node complete network in
colour with the bifurcation diagram for the
invariant set in black.

(c) Bifurcation diagram projection for
x2(n) in a three-node complete network in
colour with the bifurcation diagram for the
invariant set in black.

(d) Close up look at the point at which the
period-two attractor of the stable maniold
becomes stable in the overall sense.

Figure 3.44: Bifurcation diagrams for a three-node complete network and the invariant
set.

In Figure 3.45 we look at the case of a complete network with ten nodes and
have plotted a bifurcation diagram projection for a typical node in the system
showing all period-two attractors. We see that the period-two attractor of the in-
variant set becomes stable in terms of the overall system for ρ > 2.269119885 . . .
and this attractor corresponds to the period-two attractor for which all node
sizes move together.

In the case of a 100 node network we find that the period-two attractor for
the invariant set is an attractor in the overall sense for

2.023642493 · · · < ρ <
100
√

6

99
= 2.474232065 . . . . (3.115)

This is almost the entire range of values of ρ for which the attractor is stable in
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Figure 3.45: A close up look at all period-two attractors for a node in a complete
network with ten nodes in colour, overlayed with the period-two attractor for the
invariant set in black.

the sense of the invariant set given by

2.020202020 · · · = 200

99
< ρ <

100
√

6

99
= 2.474232065 . . . . (3.116)

3.5 The Limiting Case

Since many real-world networks are large, i.e. have a large number of nodes,
it is interesting to see how the system behaves as m→∞. We have seen already
that in the limiting case of a complete network

lim
m→∞

x∗ = lim
m→∞

(m− 1)ρ

m+ (m− 1)ρ
=

ρ

1 + ρ
(3.117)

and
lim
m→∞

ρcm = 2 (3.118)

corresponding to the single logistic map seen in Section 2 with control parameter
r = 1 + ρ. In fact, in the limiting case, since

lim
m→∞

ri(n) = lim
m→∞

1 + ρwi(n) = lim
m→∞

1 + ρ


∑

j:(xi,xj)∈E

xj(n)

m∑
j=1

xj(n)



= lim
m→∞

1 + ρ



m∑
j=1
j 6=i

xj(n)

m∑
j=1

xj(n)


= 1 + ρ, (3.119)
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our entire system reduces to a series of m independent logistic maps describing
the behaviour of the m node sizes, each with control parameter r = 1 + ρ

xi(n+ 1) = (1 + ρ)xi(n)(1− xi(n)). (3.120)

3.5.1 An Example of a Complete Network With m≫ 1

In this section we examine the long-term behaviour of the logistic network
map for NC

100 to illustrate the convergence of the network logistic map of a
complete network with m nodes to the behaviour described above as m → ∞.
In Figure 3.46 we can see that all attractors for very value of ρ in a complete
network with m = 100 nodes are converging to a single attractor. This sin-
gle attractor corresponds to the attractor in a single logistic map with control
parameter r = 1 + ρ .

(a) Bifurcation diagram for two typical
nodes in a complete network with
m = 100 showing all attractors.

(b) Bifurcation diagram projection for a
typical node in a complete network with

m = 100 showing all attractors.

(c) A close up look at all period-two
attractors for a typical node in a
complete network with m = 100.

Figure 3.46: Bifurcation diagrams for a complete network with m = 100 showing all
attractors.
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Figure 3.47: Bifurcation diagram for a typical xi(n) in a 100 node complete network in
colour, overlayed with the bifurcation diagram for the single logistic map with control
parameter 1 + ρ in black.

In Figure 3.47 we have plotted the bifurcation diagrams for a node growing
according to both the single logistic map with control parameter r = 1 + ρ
described by Equation (3.120) and a typical node from a 100 node complete
network growing according to the network logistic map described in Section 3.2.
It is immediately clear that the behaviour in both cases is extremely similar.
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Figure 3.48: Maximum Lyapunov exponent for the 100 node complete network logistic
map in colour, overlayed with the Lyapunov exponent for the single logistic map with
control parameter 1 + ρ in black.
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The major difference between the behaviour of the two systems is that each
bifurcation in the 100 node system occurs slightly later than the corresponding
bifurcation in the single logistic map. As m increases these bifurcation points
converge.

Figure 3.48 allows us to compare the maximum Lyapunov exponent for the
two systems. Again we can see that the behaviour of the two systems seems to be
converging as predicted by our analysis in Section 3.5 and that the bifurcations
occur for slightly lower values of ρ in the network case than the corresponding
single case.

4 Growth of Nodes in an Incomplete Network

It is also interesting to consider more complicated, incomplete but connected
networks. In fact, when applying this model of node growth later, in general
the networks we will deal with will be incomplete. In this section we will look
at various examples of incomplete networks. Again we set

ri(n) = 1 + ρwi(n) (3.121)

where ρ > 0 and wi(n) is the normalised weighted degree of vi at time n.

4.1 A Network With 3 Nodes

We begin our analysis by first considering the simplest possible case. In the
simplest case an incomplete network has three nodes v1, v2 and v3 and two links
(v1, v2) and (v1, v3). We call the node with two links, v1, the central node or
hub node of the network.

Figure 3.49: An incomplete network with three nodes. v1 is coloured orange while v2
and v3 are coloured pink.

For this network configuration we then have

x1(n+ 1) = r1(n)x1(n) (1− x1(n)) (3.122)

where

r1(n) = 1 + ρ

(
x2(n) + x3(n)

x1(n) + x2(n) + x3(n)

)
. (3.123)
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Similarly,
x2(n+ 1) = r2(n)x2(n) (1− x2(n)) (3.124)

where

r2(n) = 1 + ρ

(
x1(n)

x1(n) + x2(n) + x3(n)

)
. (3.125)

x3(n+ 1) = r3(n)x3(n) (1− x3(n)) (3.126)

where

r3(n) = 1 + ρ

(
x1(n)

x1(n) + x2(n) + x3(n)

)
. (3.127)

4.1.1 Fixed Points

Just as we saw in the complete cases studied in Section 3for all xi(n) we find

that we have fixed points at x∗i = ri(n)−1
ri(n) .

x∗1 =
r1(n)− 1

r1(n)
=

1 + ρ
(

x2(n)+x3(n)
x∗
1+x2(n)+x3(n)

)
− 1

1 + ρ
(

x2(n)+x3(n)
x∗
1+x2(n)+x3(n)

)
=

ρ
(

x2(n)+x3(n)
x∗
1+x2(n)+x3(n)

)
x∗
1+(1+ρ)(x2(n)+x3(n))
x∗
1+x2(n)+x3(n)

=
ρ(x2(n) + x3(n))

x∗1 + (1 + ρ)(x2(n) + x3(n))
, (3.128)

x∗2 =
r2(n)− 1

r2(n)
=

1 + ρ
(

x1(n)
x1(n)+x∗

2+x3(n)

)
− 1

1 + ρ
(

x1(n)
x1(n)+x∗

2+x3(n)

)
=

ρ
(

x1(n)
x1(n)+x∗

2+x3(n)

)
x∗
2+x3(n)+(1+ρ)x1(n)
x1(n)+x∗

2+x3(n)

=
ρx1(n)

x∗2 + x3(n) + (1 + ρ)x1(n)
(3.129)

and

x∗3 =
r3(n)− 1

r3(n)
=

1 + ρ
(

x1(n)
x1(n)+x2(n)+x∗

3

)
− 1

1 + ρ
(

x1(n)
x1(n)+x2(n)+x∗

3

)
=

ρ
(

x1(n)
x1(n)+x2(n)+x∗

3

)
x2(n)+x∗

3+(1+ρ)x1(n)
x1(n)+x2(n)+x∗

3

=
ρx1(n)

x2(n) + x∗3 + (1 + ρ)x1(n)
. (3.130)

So

x∗2 =
ρx∗1

x∗2 + x∗3 + (1 + ρ)x∗1
= x∗3

=⇒ x∗2 =
ρx∗1

2x∗2 + (1 + ρ)x∗1
(3.131)
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and

x∗3 =
ρx∗1

2x∗3 + (1 + ρ)x∗1
. (3.132)

We also find

x∗1 =
2ρx∗2

x∗1 + 2(1 + ρ)x∗2
(3.133)

Developing (3.133) further gives

(x∗1)2 + 2(1 + ρ)x∗1x
∗
2 − 2ρx∗2 = 0. (3.134)

Developing (3.131) further gives

2(x∗2)2 + (1 + ρ)x∗1x
∗
2 − ρx∗1 = 0. (3.135)

Similarly we find
2(x∗3)2 + (1 + ρ)x∗1x

∗
3 − ρx∗1 = 0. (3.136)

(3.134) - (3.135) gives

0 = (x∗1)2 + ((1 + ρ)x∗2 + ρ)x∗1 − 2x∗2(x∗2 + ρ)

=⇒ x∗1 =
− ((1 + ρ)x∗2 + ρ)±

√
((1 + ρ)x∗2 + ρ)

2
+ 8x∗2(x∗2 + ρ)

2
.(3.137)

We take

x∗1 =
− ((1 + ρ)x∗2 + ρ) +

√
((1 + ρ)x∗2 + ρ)

2
+ 8x∗2(x∗2 + ρ)

2
(3.138)

since the other option is unphysical. Combining (3.138) and (3.131) we find

x∗2 =

−ρ

 ((1 + ρ)x∗2 + ρ)−
√

((1 + ρ)x∗2 + ρ)
2

+ 8x∗2(x∗2 + ρ)

2


2x∗2 − (1 + ρ)

 ((1 + ρ)x∗2 + ρ)−
√

((1 + ρ)x∗2 + ρ)
2

+ 8x∗2(x∗2 + ρ)

2



=

−ρ
[
((1 + ρ)x∗2 + ρ)−

√
((1 + ρ)x∗2 + ρ)

2
+ 8x∗2(x∗2 + ρ)

]
4x∗2 − (1 + ρ)

[
((1 + ρ)x∗2 + ρ)−

√
((1 + ρ)x∗2 + ρ)

2
+ 8x∗2(x∗2 + ρ)

](3.139)

which has a positive real solution for ρ > 0 corresponding to the single fixed
point (x∗1, x

∗
2, x
∗
3) = (x∗1, x

∗
2, x
∗
2) which is stable for 0 < ρ / 2.66. As it is

extremely cumbersome we will not present any further analytical investigation
of this system, instead we will focus on using numerical work to give us a better
understanding of the long-term dynamics.
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Figure 3.50: Node sizes converging to the fixed point (x∗1, x
∗
2, x

∗
2) for ρ = 1

2
in an

incomplete 3-node network. x1(n) is plotted in blue, x2(n) is plotted in red and x3(n)
is plotted in green.

4.1.2 Long-Term Relationships

Before looking at explicit bifurcation diagrams let us first examine at the
long-term relationship between x1(n), x2(n) and x3(n) for varying values of the
parameter ρ.

Figure 3.51: Bifurcation Diagram x1(n) vs x2(n) vs x3(n). Colour corresponds to ρ
value.

In Figure 3.52 we observe a simple relationship between the long-term values
of x1(n) and x2(n) for lower values of ρ. As ρ increases this relationship becomes
far more interesting. We also see that x2(n) = x3(n) as n → ∞. Intuitively,
since r2(n) = r3(n) and we know for the single logistic map if we fix r all
initial conditions in (0, 1) will be absorbed by the same attractor, this is not
particularly surprising. This means that the more simple bifurcation diagrams
examined later in Section 4.1.3 are sufficient to show the relationship between
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Figure 3.52: Bifurcation Diagram x1(n) vs x2(n) and x2(n) vs x3(n). Colour corre-
sponds to ρ value.

the value of ρ and the long-term behaviour of the system.

4.1.3 Bifurcation Diagrams

Figure 3.53: Bifurcation diagram for an incomplete 3 node network.

Finding further attractors analytically becomes increasingly messy. Numer-
ically we can see that the initial behaviour of the network logistic map is very
similar to the behaviour of the single logistic map. We also observe that in this
case, unlike the most simple case of a complete network investigated in Section
3.1, there is a period doubling cascade to chaos as ρ increases. We note however
that of the three nodes only the hub node, v1, experiences chaotic behaviour
which fills the interval (0, 1). The value of ρc, the value for which the fixed
point becomes unstable and we see our first period doubling, is also lower than
in the corresponding complete three node network case.
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Figure 3.54: Bifurcation diagram projections for x1(n) and x2(n).

4.1.4 Lyapunov Exponents

We have again numerically estimated the maximum Lyapunov exponent of
the network logistic map for different values of ρ for this incomplete network.
We plot the estimates in Figure 3.55. Positive Lyapunov exponents are ob-
served for many values of ρ > ρ∞3I

≈ 3.54 indicating chaotic behaviour in this
region. However for values of ρ in this range we also observe negative Lyapunov
exponents. These negative values correspond to periodic windows interspersed
amongst the chaos.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

ρ

M
ax

im
um

 L
ya

pu
no

v 
E

xp
on

en
t

Figure 3.55: Maximum Lyapunov Exponents for an Incomplete 3 Node Network.

4.2 Star Networks

The network described in Section 4.1 is a star network. In star networks all
nodes are connected to a central node or hub node by links and these are the
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only links present in the network. In this section we will examine star networks
for m = 10 and m = 100. For convenience we will always label the central or
hub node v1. Let us first examine the m = 10 case.

Figure 3.56: Network diagram of a 10 node star network. v1 is coloured orange while
all other nodes are coloured pink.

(a) Long-term behaviour of the
relationship between x1(n), x2(n) and

x3(n).

(b) x1(n) vs x2(n).

(c) x2(n) vs x3(n).

Figure 3.57: Long-term behaviour of the relationship between node sizes in a star
network with m = 10, colour corresponds to ρ value.

In Figure 3.57 we have plotted the long-term behaviour of the relationship
between x1(n), x2(n) and x3(n). Here it is clear that asymptotically x2(n) =
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x3(n) and in fact just as in the case of the three node star network xi(n) = xj(n)
asymptotically for all i, j 6= 1. This is again easy to understand because for all
i, j 6= 1 we have that ri(n) = rj(n) for all values of n. This is true for all star
networks of any size if we label the central node v1.

(a) Bifurcation diagram for x1(n) and
x2(n) .

(b) Bifurcation diagram projection for
x1(n).

(c) Bifurcation diagram projection for
x2(n).

Figure 3.58: Bifurcation diagrams for x1(n) and x2(n) in a star network with m = 10,
colour corresponds to ρ value.

With this knowledge we can get a complete understanding of the long-term
dynamics of the system using the bifurcation diagrams in Figure 3.58. Note
that v1 is the dominant node in the network, growing to a larger steady-state
size than the other two nodes for ρ / 2.3 and having a wider range of oscillation
for the range of values of ρ for which the system undergoes periodic behaviour.
We also see that the chaotic orbit of x1(n) is wider than the corresponding
chaotic orbits of x2(n) and x3(n). This node seems to drive the dynamics of
the overall system. Its behaviour looks quite similar to that of a single logistic
map period doubling to chaos which eventually fills the interval (0, 1). All other
nodes also experience a period-doubling cascade to chaos, however, their steady-
state values are lower for each value of ρ before the first bifurcation and their
chaotic attractor does not fill the interval (0, 1) for any value of ρ.
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Also note that the value for ρc, the value at which the fixed point becomes
unstable and a stable period-two attractor appears is greater than 2.25. This is
in turn greater than the corresponding value in a complete 10-node network as
analysed in Section 3.2.

Figure 3.59: Network diagram of a 100 node star network. v1 is coloured orange while
all other nodes are coloured pink.

(a) Long-term behaviour of the
relationship between x1(n), x2(n) and

x3(n).

(b) x1(n) vs x2(n).

(c) x2(n) vs x3(n).

Figure 3.60: Long-term behaviour of the relationship between node sizes in a star
network with m = 100, colour corresponds to ρ value.
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Now let us consider the m = 100 node example. Again the most interesting
long-term relationship between the xi(n)s is between x1(n) and any other xj(n).
This is because as before xi(n) = xj(n) asympotically for all i, j 6= 1. this can
be seen in Figure 3.60.

With this knowledge we can get a complete understanding of the long-term
dynamics of the system using the bifurcation diagrams in Figure 3.61. Again, as
in the ten-node case we note that x1(n) is the dominant node size having larger
steady-state values and wider periodic oscillation ranges. Its behaviour looks
quite similar to that of a single logistic map period doubling to chaos which
eventually fills the interval (0, 1). All other nodes also experience a period-
doubling cascade to chaos, however, their steady-state values are lower for each
value of ρ before the first bifurcation and their chaotic attractor does not fill
the interval (0, 1) for any value of ρ.

(a) Bifurcation diagram for x1(n) and
x2(n) .

(b) Bifurcation diagram projection for
x1(n).

(c) Bifurcation diagram projection for
x2(n).

Figure 3.61: Bifurcation diagrams for x1(n) and x2(n) in a star network with m = 100,
colour corresponds to ρ value.

Also note that the value for ρc, the value at which the fixed point becomes
unstable and a stable period-two attractor appears is greater than 2.05. This
is in turn greater than the corresponding value in a complete 100 node network
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as analysed in Sections 3.2 and 3.5.1.

4.3 More Incomplete Networks

In this section we look at the behaviour of the network logistic map for a
network with 100 nodes generated using the algorithm described in Chapter 2.
We number the nodes by the order in which they were added to the network by
our algorithm. Due to the large size of these systems it is necessary to focus most
of our in analysis on a small portion of the nodes. We analyse three examples
and focus on the long-term behaviour of 3 separate nodes in each case. For
both networks we will look in detail at the behaviour of x1(n), the size of the
original node from which the network was grown, as this node is naturally very
important in the system. Our criteria for choosing the other two nodes will be
based on their centrality. We will choose the two nodes with the highest and
lowest centrality in the network after v1.

4.3.1 Centrality

Centrality measures allow us to quantify the importance of each node to the
overall network structure. There are of course many different ways in which
a node could be considered important to the network and each may lead to
a separate centrality measure. The most simple centrality measure is degree
centrality, in this measure the centrality of each node is simply its degree.

We use a more sophisticated centrality measure popularly known as PageR-
ank, which is the name that was given to it by the internet web search company
Google [52]. This centrality measure is a variation of Katz centrality. Katz
centrality allows nodes to derive centrality not only from its own degree, but
also from its neighbours. In PageRank centrality the centrality a node derives
from its neighbours is proportional to their centrality divided by their degree.

Definition 4.3.1. The PageRank centrality of node vi is given by

cPRi = α
∑

j:vj∈N
Aij

cPRj
dj

+ β (3.140)

where dj is the degree of node vj , A is the adjacency matrix of the network and
α, β are constants.

We choose 0.85 as the value of our free parameter α, the value used by
Google [52]. By convention we take β = 1,

4.3.2 Example 1 - Bifurcation Diagrams

The first network we analyse, N1, is shown in Figure 3.62. This network has
a density of 0.1032 and an average clustering coefficient of 0.1563. The average
shortest path length between any two nodes in the network is 2.3388 and the
mean degree of an individual node is 10.2200. Recall that both the average
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clustering coefficient and average shortest path length of a network are defined
in Chapter 2. The node with the highest centrality, 14.7284, is v2, the node with
the lowest centrality, 1.6170, is v96. v2 is the node with the minimum shortest
path length to v1 while v96 has the maximum shortest path length to v1.

Figure 3.62: Network Diagram of N1 highlighting the three nodes of interest and the
edges attached to those nodes. In the diagram v1 is coloured green, v2 is coloured
orange and v96 is coloured black.

In Figure 3.63 we look in detail at the long-term relationships between the
node sizes x1(n), x2(n) and x96(n). The only edge between these three nodes
connects v1 to v2, the shortest path length between both other pairs of nodes is
3. We see that the long-term relationships between the node sizes are far from
trivial and vary between each pair of nodes. We also note that the direct link
between v1 and v2 does not necessarily imply a simpler relationship between
the long-term behaviour of their sizes under the network logistic map. Before
the switch to period-two behaviour we see that the fixed point for nodes with
higher centrality is higher.
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(a) Long-term behaviour of the
relationship between x1(n), x2(n) and

x96(n).

(b) x1(n) vs x2(n).

(c) x1(n) vs x96(n). (d) x2(n) vs x96(n).

Figure 3.63: Long-term behaviour of the relationship between node sizes in a random
network with m = 100, colour corresponds to ρ value.

In Figure 3.64 we examine bifurcation diagrams for x1(n) and x2(n). The
shortest path length between these two nodes is 1, i.e. there is a direct link
between the two, v1 has degree 13 while v2 has degree 26. We see that x2(n), the
node size of the node with the maximum centrality in N1 has the higher steady-
state node size for all values of ρ before the first bifurcation at the critical value
of ρ, ρc ≈ 6.1. After this first period-doubling bifurcation both x1(n) and x2(n)
undergo a period doubling cascade to chaos. While the behaviour of x2(n) looks
quite similar to the behaviour of the single logistic map the dynamics of x1(n)
appear ‘squashed’. We hypothesise that this occurs because in the case of the
node with high centrality, v2, the main cause of the period doubling and chaotic
dynamics experienced as ρ increases is the magnitude of its corresponding r2(n).
In the case of the single logistic map an increase in the control parameter is also
what pushes the system to chaos. On the other hand we believe the main cause
of the period doubling and chaotic dynamics of x1(n) is not the magnitude of
r1(n) but rather the chaotic behaviour of r1(n) itself, which is driven in large
by the changes in x2(n).
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(a) Bifurcation Diagram for x1(n) and
x2(n).

(b) Bifurcation Diagram projection for
x1(n).

(c) Bifurcation Diagram projection for
x2(n).

Figure 3.64: Bifurcation diagrams for x1(n) and x2(n).

(a) Bifurcation Diagram for x1(n) and
x96(n).

(b) Bifurcation Diagram projection for
x96(n).

Figure 3.65: Bifurcation diagrams for x1(n) and x96(n).

In Figure 3.65 we have given bifurcation diagrams for x1(n) and x96(n).
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The shortest path length between these two nodes is 3, v96 has degree 1. We
again see that node with lower centrality has a lower fixed point node size value
for values of ρ below ρc and ’squashed’ dynamics thereafter. The squashing of
the dynamics is even more pronounced in this case as v96 is the node with the
minimum centrality in N1.

In Figure 3.66 we have plotted the bifurcation diagram for the mean of all
node sizes in N1. We have also plotted the bifurcation diagram for a single
logistic map given by

x(n+ 1) =

(
1 + ρ

(
100∑
i=1

di
1002

))
x(n)(1− x(n)) (3.141)

where di is the degree of vi. We can see that this map can give us a very crude
estimate of the mean node size of the network. This is quite a natural idea,
in the network logistic map ri(n) = 1 + ρwi(n) where wi(n) is the normalised
weighted degree of vi. Now in order to estimate the mean of all xi(n) we are
replacing the normalised weighted degree of vi(n) with the mean normalised
unweighted degree over the whole network.
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Figure 3.66: Bifurcation diagram for the size of an average node in N1 in colour,

bifurcation diagram for a single logistic map with r = 1 + ρ
(∑100

i=1
di

1002

)
in black.

4.3.3 Example 2 - Bifurcation Diagrams

Our second network, N2, is shown in Figure 3.67. This network has a density
of 0.1515 and an average clustering coefficient of 0.2612. The average shortest
path length between any two nodes in the network is 2.0473 and the mean degree
of an individual node is 15. The node with the highest centrality, 11.9441, is
v33, the node with the lowest centrality, 1.7125, is v87. The shortest path length
between any two of these nodes is the same.
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Figure 3.67: Network Diagram of N2 highlighting the three nodes of interest and the
edges attached to those nodes. In the diagram v1 is coloured green, v33 is coloured
orange and v87 is coloured black.

In Figure 3.68 we look in detail at the long-term relationships between the
node sizes x1(n), x33(n) and x87(n). The shortest path length between these
any pair of these nodes is 2. We see that the long-term relationships between
the node sizes are are again complex in nature. We note that, just as in the
case of N1, before the switch to period-two behaviour the fixed point for nodes
with higher centrality is higher.

148



Chapter 3 4. Growth of Nodes in an Incomplete Network

(a) Long-term behaviour of the
relationship between x1(n), x33(n) and

x87(n).

(b) Long-term behaviour of the
relationship between x1(n) and x33(n).

(c) Long-term behaviour of the
relationship between x1(n) and x87(n).

(d) Long-term behaviour of the
relationship between x33(n) and x87(n).

Figure 3.68: Long-term behaviour of the relationship between node sizes in a random
network with m = 100, colour corresponds to ρ value.

In Figure 3.69 we examine bifurcation diagrams for x1(n) and x33(n). The
shortest path length between these two nodes is 2, v1 has degree 22 while v33

has degree 30. Again, we see that x33(n), the node size of the node with the
maximum centrality in N2 has the higher steady-state node size for all values
of ρ before the first bifurcation at the critical value of ρ, ρc ≈ 5.2. We also see
that the dynamics of x1(n) appear ‘squashed’ once more. This supports our
hypothesis that qualitative changes in the long-term behaviour of node size is
driven in large part by the magnitude of ri(n) for nodes vi with high centrality
while the largest cause for changes in behaviour of nodes vj with low centrality
is the changes in behaviour of the nodes’ rj(n).
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(a) Bifurcation diagram for x1(n) and
x33(n).

(b) Bifurcation diagram projection for
x1(n).

(c) Bifurcation diagram projection for
x33(n).

Figure 3.69: Bifurcation diagrams for x1(n) and x33(n), colour corresponds to ρ value.

(a) Bifurcation diagram for x1(n) and
x87(n).

(b) Bifurcation diagram projection for
x87(n).

Figure 3.70: Bifurcation diagrams for x1(n) and x87(n), colour corresponds to ρ value.
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In Figure 3.70 look at bifurcation diagrams for x1(n) and x87(n). The short-
est path length between these two nodes is 2, v87 has degree 2. We again see
that the node with lower centrality has a lower fixed point node size value for
values of ρ below ρc and ’squashed’ dynamics thereafter. The squashing of the
dynamics is even more pronounced for v87 than it was for v33. We argue that
this is because as v87 is the node with the minimum centrality in N2 its bifur-
cations after this point are driven almost entirely by the behaviour, rather than
the magnitude, of r87(n).
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Figure 3.71: Bifurcation diagram for the size of an average node in N2 in colour,

bifurcation diagram for a single logistic map with r = 1 + ρ
(∑100

i=1
di

1002

)
in black.

Finally, in Figure 3.71 we again see that the map given by x(n + 1) =(
1 + ρ

(∑100
i=1

di
1002

))
x(n)(1 − x(n)) can give us a crude estimate of the long-

term dynamics of the mean node size in N2.

4.3.4 Example 3 - Bifurcation Diagrams

Our third network, N3, is shown in Figure 3.72. N3 has a density of 0.0978
and an average clustering coefficient of 0.3115. The average shortest path length
between any two nodes in the network is 3.0240 and the mean degree of an
individual node is 9.68. The node with the highest centrality, 12.2328, is v19,
the node with the lowest centrality, 2.2098, is v70. There are no links directly
connecting any two of these nodes.
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Figure 3.72: Network Diagram of N3 highlighting the three nodes of interest and the
edges attached to those nodes. In the diagram v1 is coloured green, v19 is coloured
orange and v70 is coloured black.

In Figure 3.73 we look in detail at the long-term relationships between the
node sizes x1(n), x19(n) and x70(n). The minimum shortest path length between
any two of these three nodes is 2, between v1 and v19. The shortest path length
between both other pairs is 4. We see that the relationships between the node
sizes are complex, especially after the first bifurcation. We also note that the
shorter path length between v1 and v19 does not result in a simpler relationship
between the long-term behaviour of their sizes under the network logistic map.
Before the switch to period-two behaviour we see that the fixed point for nodes
with higher centrality is higher.
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(a) Long-term behaviour of the
relationship between x1(n), x19(n) and

x70(n).

(b) Long-term behaviour of the
relationship between x1(n) and x19(n).

(c) Long-term behaviour of the
relationship between x1(n) and x70(n).

(d) Long-term behaviour of the
relationship between x19(n) and x70(n).

Figure 3.73: Long-term behaviour of the relationship between node sizes in a random
network with m = 100, colour corresponds to ρ value.

Figure 3.74 shows bifurcation diagrams for x1(n) and x19(n). The short-
est path length between these two nodes is 2, v1 has degree 15 while v19 has
degree 22. Figure 3.75 shows bifurcation diagrams for x1(n) and x70(n). The
shortest path length between these two nodes is 4, v70 has degree 2. Despite
the significantly different network topology of N3 we see that the striking fea-
tures observed in N1 and N2 are also present here. The node with the highest
centrality, v19, dominates. It has the highest fixed point value for all values of
ρ < ρc ≈ 6.3 and the widest dynamics for values of ρ > ρc. The node with the
lowest centrality v70 has dynamics so ‘squashed’ beyond ρc that the period-two
dynamics are almost invisible to the naked eye.
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(a) Bifurcation diagram for x1(n) and
x19(n).

(b) Bifurcation diagram projection for
x1(n).

(c) Bifurcation diagram projection for
x19(n).

Figure 3.74: Bifurcation diagrams for x1(n) and x19(n), colour corresponds to ρ value.

(a) Bifurcation diagram for x1(n) and
x70(n).

(b) Bifurcation diagram projection for
x70(n).

Figure 3.75: Bifurcation diagrams for x1(n) and x70(n), colour corresponds to ρ value.
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Finally, in Figure 3.76 we once more observe that the map given by x(n+1) =(
1 + ρ

(∑100
i=1

di
1002

))
x(n)(1− x(n)) can once more give us a crude estimate of

the long-term dynamics of the mean node size in N3.
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Figure 3.76: Bifurcation diagram for the size of an average node in N3 in colour,

bifurcation diagram for a single logistic map with r = 1 + ρ
(∑100

i=1
di

1002

)
in black.

5 A Lower Bound for ρc

Of particular interest to us is the critical value ρc for any network. This is
the value above which our fixed point becomes unstable and the dynamics of
the entire system become far more complicated. In this section we hypothesise
that there exists a lower bound for ρc. This will be useful to us as later when
applying this type of node growth in our model. Knowledge of this bound will
allow us to bound our parameter ρ to ensure realistic model dynamics.

Note that for any network N = (V,E)

wi(n) =

∑
j:(xi,xj)∈E

xj(n)

m∑
j=1

xj(n)

≤ 1. (3.142)

Using this fact we have that for all i and n:

ri(n) = 1 + ρwi(n) ≤ 1 + ρ. (3.143)

We argue that a switch to period-two behaviour in the system begins at lastest
when any node vi has a corresponding ri(n) with a steady-state ri(n) > 3. This
is of course the point at which period doubling begins in the single logistic map.
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In fact, this is exactly the steady-state value of ri(n) for which this bifurcation
occurs that is approached in the limiting case of a complete network where
m→∞. In this case ρc approaches 2 as argued in Section 3.2.1. We also have
that since for a complete network with m nodes

ρc =
m2 − 2m+

√
12m2 − 20m3 + 9m4

2(m− 1)2
> 2, (3.144)

where 2 represents a lower bound for ρc in the case of a complete network.
We argue that this bound is in fact satisfied by all networks. A complete net-
work maximises connectivity and hence steady-state node size and the level of
coupling in the system. This forces the bifurcation to occur earliest in these
networks. In Figure 3.77 we have plotted the bifurcation diagrams for typical
nodes in twenty 20-node networks with randomly generated adjacency matrices
and we can see none of the systems switch to period-two behaviour before a
complete 20-node network or in particular before ρ exceeds our proposed lower
bound.

Figure 3.77: Bifurcation diagram projections for a typical node in twenty 20-node
networks with randomly generated adjacency matrices in black, bifurcation diagram
projection for a typical node in 20-node complete network highlighted in colour showing
ρc is lowest for this network. Our proposed lower bound for ρc in red.

For less dense networks, like those examined in Section 4.3 ρc is in fact often
significantly larger than this hypothesised lower bound. This can be clearly seen
in Figure 3.64 for example where ρc > 6 for a network with a density of 0.1032.
In this section we also saw evidence that the node with the highest centrality
in the system drives the system to undergo period-doubling bifurcations. This
is further reason to believe that a network in which every node has maximised
its possible centrality by maximising its connections period doubling will occur
earlier than in any other network with the same number of nodes. Finally, we
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saw in Section 4.2 that a star network with m nodes has a higher value of ρc
than the corresponding complete network.

5.1 Networks With Large ρc

To further illustrate this let us look at two examples of chain networks. In
these networks E = {(vi, vj) : i = j+1 mod m}, so for example v1 is connected
to v2 and vm, v2 is connected to v3 and v1 and so on. These networks have both
low density and low maximum degree, we would therefore expect these networks
to have a large value for ρc.

(a) A chain network with
m = 10 nodes.

(b) A chain network with
m = 100 nodes.

Figure 3.78: Network diagrams for two chain networks.

Examining the bifurcation diagrams of these networks we see that this is
indeed the case. In Figure 3.79 we see that the ρc ≈ 6.87 for m = 10 and
ρc ≈ 70.35 for m = 100. These values are significantly higher than our proposed
lower bound 2 and also the corresponding values for a complete network given
by 10

81 (4 +
√

178) ≈ 2.14 and 100
9801 (49 +

√
22003) ≈ 2.01 respectively.

(a) Bifurcation diagram projection for x1
for a chain network with m = 10 nodes.

(b) Bifurcation diagram projection for x1
for a chain network with m = 100 nodes.

Figure 3.79: Bifurcation diagrams for our two chain networks.
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6 A New Centrality Measure?

In Section 4.3.1 we introduced the concept of a centrality measure. The
main goal of any centrality measure is to quantify in some way the importance
of each node in a network. Identifying the most important node in a network
can be extremely useful. Many centrality measures have their origins in social
network theory, however, there are applications in many fields, from biology
to computer science and finance. Knowledge of the most important node in a
system is useful to search engines such as Google as it allows them to rank their
pages, it is useful in controlling power grids, epidemics & the dissemination of
information, protecting systems such as computer networks from attack and
identifying important proteins.

6.1 Logistic Centrality

We propose that the network logistic map of a network, N , can itself provide
us with a new centrality measure. If we restrict our view to the range of values
of ρ for which N has a single stable fixed point we have seen throughout our
analysis in Chapter 3 that the more important nodes have always had the largest
steady-state value. In Section 3 we proved that for a complete network, a
network where all nodes are of equal importance, the steady-state value for each
node under the network logistic map is equal. It is easy to show numerically that
this is also the case for the chain networks examined in Section 5.1. In Section
4.1 and Section 4.2 we saw that the hub node of a star network has a high
steady-state value while all other nodes have an equal lower steady-state value.
In Section 4.3 we repeatedly observed the node with the highest PageRank
centrality of the three nodes examined having the highest steady-state value
and also driving the dynamics. We use this as motivation for defining a new
centrality measure. We refer to this new centrality measure as logistic centrality
and define it as follows.

Definition 6.1.1. The logistic centrality of any node v in a network N is given
by the steady-state node size of v under the network logistic map of N with
parameter ρ = 1.

6.2 Comparing Logistic Centrality to Established Mea-
sures

We now examine and compare this centrality measure to three well estab-
lished centrality measures, degree centrality, Katz centrality and PageRank cen-
trality, in the context of the three 100 node networks N1, N2 and N3 investigated
in Section 4.3. Recall that PageRank centrality is a variation of Katz central-
ity in which a node derives centrality from its neighbours proportional to their
centrality divided by their degree and was formally defined in Definition 4.3.1.
We define degree centrality and Katz centrality as follows.
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Definition 6.2.1. The degree centrality of any node v in a network N is the
degree of v, the number of links connected to v.

Definition 6.2.2. The Katz centrality of node vi in a network N is given by

cKi = α
∑

j:vj∈N
Aijc

K
j + β, (3.145)

where A is the adjacency matrix of N and α, β are constants. We choose α =
0.95κ−1 where κ is the largest eigenvalue of A. By convention we take β = 1.

The purpose of any centrality measure is to quantify the importance of any
node to the network it is a part of. As such, it is the ranking of nodes under any
centrality measure that is important and not the value given for the centrality
of of any one node by the measure. Keeping this in mind, we examine the
differences and similarities between the ranking of nodes in N1, N2 and N3

under logistic centrality and our established centrality measures.
First, in Table 3.1 we have outlined for which networks our three established

centrality measures agree with our new centrality measure, logistic centrality,
in picking the most and least important nodes in each network. In many cases
these two nodes may be the most important to identify. Where the measures
do not agree with our measure we have provided the alternative ranking (in
order of increasing centrality) for the node given by the established measures
in parentheses. We see that all four measures agree in many cases but there
are differences. Where the centrality measures differ we see that for the most
part the difference in the ranking given is not large. Notably, the Katz centrality
measure and our new measure of centrality agree on the ranking of the most and
least important nodes for all three networks except in one case. The node in N3

ranked least important by logistic centrality is ranked the third least important
by Katz centrality. It is in ranking the node of minimum centrality for this
network that we see most disagreement across all four centrality measures. We
also see that Katz centrality is closest to agreement with logistic centrality in
this case.

Node of Maximum Centrality Node of Minimum Centrality
Degree Katz PageRank Degree Katz PageRank

N1 3 3 3 7 (3) 3 3
N2 7 (99) 3 7 (99) 7 (2) 3 7 (3)
N3 3 3 3 7 (16) 7 (3) 7 (23)

Table 3.1: Agreement of established centrality measures with logistic centrality in
choosing the most and least important nodes for the three 100-node networks, N1,
N2 and N3, described in Section 4.3. Where the established measures do not agree
with logistic centrality the alternative ranking (in order of increasing centrality) for
the node given by the established measures is given in parentheses.

In Table 3.2 we provide the mean ranking difference between logistic cen-
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trality and the three established measures, ∆, given by

∆ =

m∑
i=1

∣∣RLi −ROi ∣∣
m

, (3.146)

where RLi is the ranking from 1 to m of vi in order of increasing logistic cen-
trality and ROi is the ranking from 1 to m of vi in order of increasing centrality
under an alternative established centrality measure. Again we see the Katz cen-
trality measure shows the most agreement with logistic centrality for all three
networks. PageRank centrality shows the largest difference. In fact, although
we have not shown mean ranking differences between the pairs of established
centrality measures here, the mean ranking difference between the Katz central-
ity measure and the logistic centrality measure is the smallest of any pair for all
three networks.

Network Mean Ranking Difference, ∆
Degree Katz PageRank

N1 7.16 0.82 8.98
N2 4.56 0.72 5.46
N3 13.02 2.64 19.98

Table 3.2: Mean ranking difference across all nodes between our established centrality
measures and logistic centrality for the three 100-node networks, N1, N2 and N3,
described in Section 4.3.

Evidence of the similarity in the ranking of nodes given by logistic centrality
and Katz centrality presented in Table 3.1 and Table 3.2 is not entirely unex-
pected. Katz centrality gives a node, vi, in a network, N centrality based on
the number of neighbours it has and the centrality of those neighbours. Logistic
centrality allocates centrality to nodes in much the same way. The logistic cen-
trality of a node, vi, in a network, N , is its steady-state size under the network
logistic map of N with ρ = 1 . This steady-state size is higher for a higher
steady-state value of ri(n),

r∗i = 1 +

∑
j:(vi,vj)∈E

x∗j

m∑
j=1

x∗j

, (3.147)

i.e. if the steady-state size of its neighbours is higher.

7 Conclusion

In this chapter we introduced a new dynamical system on a network to de-
scribe the growth of nodes over time. We call this map the network logistic
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map as it was inspired by the classic logistic map made famous by Lord Robert
May in 1976 [48]. Like the classic logistic map, the archetypal example of how
complex and chaotic behaviour can arise in simple systems, despite being a rel-
atively simple system we observed some very complex and interesting behaviour
during our analysis. This behaviour included some behaviour not seen in the
case of the classic logistic map such as quasiperiodicity.

We observed that the topology of the network had a massive influence on
the behaviour of the system under the network logistic map. We focused our
attention on the special case of a complete network in which all pairs of nodes
are linked. We found that below a certain threshold value of the parameter ρ,

ρc =
m2 − 2m+

√
12m2 − 20m3 + 9m4

2(m− 1)2
> 2 where m is the number of nodes in

the network, there is a single stable fixed point in the system where all nodes
are of equal size. Beyond this threshold the dynamics of the system become far
more complicated and we observed multiple bifurcations, attractors, periodic
orbits and even chaotic behaviour.

In networks with other topologies we also observed a single fixed point at-
tractor below a threshold value of ρ and we hypothesised that this threshold
value is greater than two for all networks. At this fixed point nodes of higher
degree with neighbours of high degree have higher equilibrium sizes. For this
reason we argue that the network logistic map has the potential to provide us
with a new centrality measure and compared it to selected existing centrality
measures.
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Chapter 4 1. Introduction

1 Introduction

In this chapter we turn our attention to the problem of spatial economic
development. Spatial agglomeration of economic activities, unequal growth of
urban centres and unequal growth of industries are major topics of economic
interest. For example, policy makers and economists struggle to fully understand
why economic activity tends to concentrate in one urban centre, such as Dublin
in the Irish context, over others and how this development can be influenced [67,
32]. Policymakers and economists also have a strong interest in developing an
understanding of the mechanisms behind the formation of specialised industrial
clusters, such as Galway’s medtech cluster or Cork’s pharmaceutical cluster, and
in predicting and promoting the emergence of future clusters [66, 31, 67, 22].
In Section 2 we examine Ireland’s economic development since its emergence
from protectionism in the 1950s and introduce the arguments put forward by
economists to explain some important features of spatial economic development.

Recently, network theory and agent-based simulation have been used to
analyse economic dynamics. One of the major limitations of these models is
that the nodes are simply individual entities and do not capture the multiple
attributes that these entities may have because of the interplay between the
socio-economic, political and historical factors in the areas in which they are
located. We believe that the characteristics and dynamics of each node may be
determined by multiple overlapping networks across space and time and by the
links between these networks. In Section 4 we introduce a set of spatial eco-
nomic development models which will help us to describe and analyse uneven
spatial economic dynamics. These models apply some of the ideas which were
developed and introduced in Chapters 3 and 2 with this purpose in mind.

2 Motivating Statistics and Concepts

Before presenting our models of spatial economic development, we first in-
troduce some interesting motivating statistics for the Irish case. Ireland is a
small open economy whose economy has seen significant growth and structural
changes in recent decades. This growth has not been evenly distributed across
the country. Large urban centres such as Dublin, Cork and Galway have seen
the most growth and the establishment of specialised industrial clusters and
it has been a key goal of policymakers to halt the continued concentration of
economic activity and population in the Greater Dublin Area. In this section
we present some official statistics from national and international bodies such as
the Central Statistics Office (CSO), the Higher Education Authority (HEA) and
the United Nations (UN) which help to illustrate the changing composition and
size of the Irish economy. We also introduce some economic concepts regarding
the spatial agglomeration of economic activities.
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2.1 The Evolution of Irish GDP

We first look at the evolution of Ireland’s Gross Domestic Product (GDP)
in recent years. GDP is defined by the Organisation for Economic Co-operation
and Development (OECD) as the standard measure of the value of final goods
and services produced by a country during a period minus the value of imports.
GDP reflects the level of economic activity and productivity in a country and so
is often used as a barometer of economic health. In Figure 4.1 we have plotted
the annual GDP figures from the World Bank [5] for Ireland for the years 1960
to 2012 in current United States Dollars (US$).

Ireland experienced slow economic growth in the post-war 1950s and early
1960s despite the post-war boom in the rest of Western Europe at the time
due to a slow dismantling of a policy of protectionism. Protectionism refers
restricting international trade, often done with the intent of protecting local
businesses and employment from foreign competition, through methods such as
import tariffs, quotas and subsidies or tax cuts for local businesses. It is now
widely accepted that the cost of protectionism policies outweigh the benefits
and protectionism hurts the economy of the country that imposes it [15]. As
a result of its protectionism policies Ireland had an annual growth rate of less
than 2 per cent during 1950s compared around 6 per cent in the rest of Western
Europe where such policies had already been abandoned [8].
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Figure 4.1: Evolution of Irish annual GDP in billions of current US$ between 1960
and 2012. Source: [5].

By the late 1960s and early 1970s Ireland had almost completely emerged
from protectionism. Ireland came to a free-trade agreement with its primary
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trading partner the United Kingdom (UK) in 1966 and together with the UK
and Denmark joined the EU in 1973. Ireland’s entry to the European Union
(EU), at the time known as the European Economic Community (EEC), did not
result in a sudden expansion of the Irish economy. In 1973 the world experienced
the first of the 1970s oil shocks hindering growth. A second oil shock in 1979
ensured Ireland’s growth remained relatively slow.

The early 1980s saw a sharp increase in world interest rates, this along with
a recession in the UK, which reduced Irish exports and the number of Irish
of working age emigrating, further affected Ireland’s economy. Unemployment
rose rapidly forcing up social welfare payments and causing national debt to
spiral out of control and Ireland to enter recession. Throughout the 1980s Ire-
land’s economy also struggled to adapt to the new free market. As the 1980s
continued Walsh, Whelan and Barry [69, 8] argue that there were several forces
working in different directions on the Irish economy. Many firms in interna-
tionally tradeable sectors after the end of protectionism could not adjust to the
new free market and become exporters or compete with imports. They declined
slowly and had not fully left the economy until the beginning of the 1990s and
the so-called Celtic Tiger era. However due to foreign direct investment (FDI),
new foreign firms were entering the Irish economy and indigenous firms sprung
up to supply them. Firms that had traditionally been exporters also fared well.

In the late 1980s and early 1990s Ireland benefited from a series of positive
economic shocks. Changing government policies in taxation and the establish-
ment of social partnership, a process used to negotiate and achieve consensus
on a range of social and economic policy issues such as wage determination,
improved the public finances and bolstered Ireland’s competitiveness. With as-
sistance from the EU Structural Fund infrastructure was also improved further
helping competitiveness. Consumer spending, construction and business invest-
ment all rose and Ireland saw rapid growth. FDI was a particularly important
portion of this business investment. The development of the Single Market in
the late 1980s led to a massive increase in FDI in the EU as a whole. For exam-
ple the amount of investment by US firms in the EU between the early and the
late 1980s doubled while Ireland’s share of these investments quadrupled over
this period [8].

According to Central Statistics Office (CSO) statistics Ireland was the first
country in the EU to officially enter a recession related as the Financial crisis hit
in 2008. Ireland was severely impacted by the global recession and along with
Portugal, Italy, Greece and Spain was one of the worst affected EU member
states. A collapse in the housing industry, whose boom helped fuel the Celtic
Tiger, and a domestic banking crisis forced Ireland into a deep recession and
a bailout from the European Central bank (ECB) and International Monetary
Fund (IMF). Under EU-IMF supervision Ireland put in place austerity measures
in order to control spiraling debt and has begun in recent years to slowly recover.
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2.2 The Evolution of Irish Exports

As a small open economy exports are extremely important for Ireland’s re-
covery and future development. In a speech on October 12 2011 Olli Rehn, at
the time European Commissioner for Economic and Monetary Affairs and the
Euro, who had a key role in Ireland’s bailout, stated that he was confident that
the “process of export-led recovery will succeed in Ireland” [57].
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Figure 4.2: The changing composition of Irish exports by Standard International Trade
Classification between 1963 and 2012. Source: [21].

Ireland’s export sector, like its economy in general, has evolved significantly
since the abandonment of protectionist policies. The composition and the value
of Irish exports have undergone huge changes in recent decades. We present ev-
idence of these changes through statistics from the United Nations Commodity
Trade Statistics Database. The changing composition of Irish exports between
1963 and 2012 is plotted in Figure 4.2. Reading from bottom to top the areas
represent the percentage of total Irish exports in

� 0 - Food and live animals

� 1 - Beverages and tobacco

� 2 - Crude materials, inedible, except fuels

� 3 - Mineral fuels, lubricants and related materials

� 4 - Animal and vegetable oils, fats and waxes
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� 5 - Chemicals and related products

� 6 - Manufactured goods classified chiefly by material

� 7 - Machinery and transport equipment

� 8 - Miscellaneous manufactured articles

� 9 - Commodities and transactions not classified elsewhere.

These product classifications are the classifications given by the Standard
International Trade Classification (SITC). According to the UN [49], the SITC
is used for compiling international trade statistics on all merchandise entering
international trade, and to promote international comparability of international
trade statistics. The commodity groupings of SITC reflect (a) the materials
used in production, (b) the processing stage, (c) market practices and uses of the
products, (d) the importance of the commodities in terms of world trade, and (e)
technological changes. The majority of countries and international organizations
continue to use SITC for various purposes, such as study of long-term trends
in international merchandise trade and aggregation of traded commodities into
classes more suitable for economic analysis of trade.

We have highlighted the three categories of exported product we believe have
undergone the most significant and interesting changes in the Irish context be-
tween 1963 and 2012 in Figure 4.2. Those are: food and live animals, chemicals
and machinery and transport equipment. In the 1960s Ireland’s economy was
largely low tech and had a very large agricultural sector. Agricultural exports
dominated with food and live animals accounting for over 50 per cent of Irish
exports up until the late 1960s. Since then food and live animal’s share of Irish
exports has seen a steady decline up until the early 2000s where the share has
settled at around 10 per cent of Irish exports.

The percentage of total exports attributed to machinery and transport equip-
ment grew steadily from the late 1970s until the early 2000s and it became the
largest contributor to Irish exports during this time. From 2001 on machinery
and transport equipment saw its share of Irish exports decline rapidly and this
decline continued right up until 2012. In the early 1960s Ireland’s chemical
exports were almost non existent, their share of Irish exports grew slowly until
the mid 1990s. At this point the percentage of chemical exports began to grow
rapidly and by 2012 accounted for over 60 per cent of total Irish exports.
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Figure 4.3: The changing value of Irish exports in billions of US$ by Standard Inter-
national Trade Classification between 1963 and 2012. Source: [21].

Figure 4.3 shows the evolution of the US$ value of the same 10 classes of Irish
exports as above, again between the years 1963 and 2012. We have also high-
lighted exports of food and live animals, machinery and transport equipment
and chemicals here. It is notable that while the share of agricultural exports has
declined rapidly since the early 1960s, in US$ terms exports in this area have
seen generally slow but steady growth. This is true even when the figures are
adjusted for inflation. Their declining share of total exports may be attributed
to the far more rapid growth in other areas rather than a decline in the actual
US$ value. US$ exports of machinery and transport equipment overtook ex-
ports of food and live animals in 1983 and continued to grow at a far higher
rate until 2001 reaching a peak US$ value of almost 34 billion in 2001. Since
then this export sector has seen a considerable decline. The value of machinery
and transport equipment sold by Irish exporters fell to around 13.5 billion US$
by the year 2012, less than half its peak value reached in the year 2001. Until
the early 1990s Ireland exported a relatively small amount of chemicals. The
US$ value of chemicals exported did not overtake the US$ value of food and
live animals exported until 1993. During the 1990s and 2000s this sector saw
explosive growth in exports, overtaking machinery and transport equipment as
the largest contributor to Irish exports in 2002 as its US$ value grew from less
than 4 billion in 1990 to a peak of over 78 billion in 2011.

We now examine the evolution of Irish exports in these three classes over
the same period in more detail, taking the finer 2-digit level SITC breakdown
in each case.
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Food and Live Animals: We can see in Figure 4.4 the growth experi-
enced by different categories of Irish food and live animals exports. We have
highlighted the two largest categories in terms of US$ exports in 2012, meat
and meat preparations and dairy products and eggs, and the largest category
in terms of US$ exports in 1963, live animals. Reading from highest to lowest
in 2012 the time series plotted in Figure 4.4 represent the US$ value of Irish
exports in

� 01 - Meat and meat preparations

� 02 - Dairy Products and eggs

� 04 - Cereals and cereals preparations

� 03 - Fish and fish preparations

� 09 - Miscellaneous food preparations

� 00 - Live animals

� 05 - Fruit and vegetables

� 08 - Feed stuff for animals excluding unmilled cereals

� 07 - Coffee, tea, cocoa, spices and manufactures thereof

� 06 - Sugar, sugar preparations and honey.
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Figure 4.4: The evolution of Irish food and live animal exports in billions of US$
broken down by their two-digit SITC classification between 1963 and 2012. Source:
[21].
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In general we see that there has been slow growth in this sector since 1963.
Meat and meat preparations overtook live animals as the subclass with the
largest value of US$ exports in the late 1960s and has remained the top subclass
ever since, excepting a spike in miscellaneous food preparations exports in the
mid 1990s, which is possibly attributable to reporting and classification issues,
and 1984 when it was slightly outstripped by exports of dairy products and
eggs. There has been very little growth in exports in live animals throughout
this period resulting in a fall to the sixth most important subclass by 2012.
Dairy products and eggs exports were larger than exports of live animals for
the first time in 1974 and, excepting the periods described above, have been the
second largest subclass of exports in US$ terms since.

Machinery and Transport Equipment: Figure 4.5 shows the evolution
of Irish exports of different subclasses of machinery and transport equipment
between 1963 and 2012. The two-digit SITC classification breaks this class into
only three different subclasses

� 71 - Machinery, other than electric

� 72 - Electrical machinery, apparatus and appliances

� 73 - Transport equipment.
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Figure 4.5: The evolution of Irish machinery and transport equipment exports in
billions of US$ broken down by their two digit SITC classification between 1963 and
2012. Source: [21].
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We saw in Figure 4.2 and Figure 4.3 that Ireland’s exports of machinery and
transport equipment began to grow quite rapidly during the 1970s, continuing
to grow strongly until the late 1990s and early 2000s before entering a period
of decline. It becomes clear when examining Figure 4.5 that these changes were
driven by changes in exports of machinery other than electric and exports of
electrical machinery, apparatus and appliances with exports of transport equip-
ment exhibiting little change during this period.

Within these categories the bulk of Ireland’s productivity is/was in com-
puter hardware, office machines, data processing equipment etc. This sector
went through a quite dramatic rise and fall in Ireland between the 1970s and
the present day. In 1971 Digital Equipment Corporation, a pioneer in the mini-
computer industry, set up a large manufacturing plant in Ireland. They were
followed by several other leading minicomputer companies as he 1970s con-
tinued. However, as PCs increased in popularity demand for minicomputers
collapsed many of these plants were closed during the 1980s. Apple was the
first company to set up a PC assembly plant in Ireland in 1980. They were fol-
lowed by many other major PC and computer component manufacturers such as
Dell, Intel, IBM, Logitech and the homegrown Horman Electronics. 33 per cent
of PCs sold in Europe in 1999 were manufactured in Ireland and at one stage
roughly 90 per cent of the mice sold in Europe were manufactured in Ireland
[10].

The decline in exports in these subsectors from the late 1990s on was as a
result of firms such as Apple, IBM and Intel shifting relatively low-tech labour-
intensive activities from Ireland to lower wage economies. Of the five micro-
computer companies in 1998, by 2002 only Dell and Apple were still assembling
microcomputers, and Apple’s system assembly operation was seriously down-
sized [10]. Companies such as Logitech who manufactured a large portion of
the mice produced in Ireland and keyboard manufacturers Keytronics, Mitsumi
and Alps also closed their doors. The sector suffered another blow when Dell
closed its manufacturing plant in Ireland in 2009 [23].

Chemicals: Figure 4.6 shows the growth experienced by different categories
of Irish chemicals exports between 1963 and 2012. We have highlighted the two
largest categories in terms of US$ exports in 2012, medicinal and pharmaceutical
products and chemical elements and compounds, in the graph. Reading from
highest to lowest in 2012 the top five time series plotted in Figure 4.6 represent
the US$ value of Irish exports in

� 54 - Medicinal and pharmaceutical products

� 51 - Chemical elements and compounds

� 55 - Perfume materials, toilet & cleansing preparations

� 59 - Chemical materials and products not elsewhere specified

� 58 - Plastic materials etc.
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Figure 4.6: The evolution of Irish food and chemical exports in billions of US$ broken
down by their two digit SITC classification between 1963 and 2012. Source: [21].

Both our highlighted subclasses of chemicals exports have experienced in-
credible growth in recent decades. Until the 1960s there was essentially no
pharmaceutical industry in Ireland [29]. Despite this, due to phenomenal growth
Irish exports of pharmaceutical and medicinal products exceeded 35 billion US$
in 2011. The fine chemicals industry in Ireland began to grow significantly in
the 1970s after the Industrial Development Authority (IDA) began to encourage
inward FDI in the sector [18]. Growth was first seen in exports of chemical ele-
ments and compounds with growth of exports of medicinal and pharmaceutical
products following soon after. More than 120 pharmaceutical companies now
have a presence in Ireland. 13 of the world’s top 15 companies, including Pfizer,
Novartis, AstraZeneca and GlaxoSmithKline, have substantial Irish operations
and 5 of the top 12 medicines globally are manufactured in Ireland [3].

2.3 Ireland’s Changing Economy and the Evolution of Irish
Unemployment

In Figure 4.7 and Figure 4.8 we examine the evolution of two subclasses of
exports from each of our three major classes of interest along with seasonally
adjusted unemployment in Ireland between 1983 and 2012. During the recession
of the 1980s the unemployment rate in Ireland was very high, reaching 17 per
cent in 1986, and remained so up until the early 1990s.
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Figure 4.7: The evolution of selected Irish exports in billions of US$ and the seasonally
adjusted annual average standardised unemployment rate between 1983 and 2012.
Sources: [21] & [56].
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Figure 4.8: Correlations between the volume of selected Irish exports an the seasonally
adjusted annual average standardised unemployment rate between 1983 and 2012.
Sources: [21] & [56].
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The export-driven early Celtic Tiger growth of the 1990s saw an increase
in activity in labour-intensive sectors such as the manufacturing of computer
hardware discussed earlier and repeated sustained falls in unemployment fig-
ures. By the year 2000 the seasonally adjusted average annual unemployment
rate had fallen to 4.3 per cent. Economists consider a rate above 0 per cent the
full-employment unemployment rate, usually averaging between 5 and 6.5 per
cent for OECD countries according to OECD analysis [54], at this rate there is
no demand deficient unemployment, the only unemployment is is caused by the
time taken to find a suitable job in a suitable location. From 2000 to 2007 un-
employment remained stable at around 4.5 per cent, virtually full-employment,
and the economy continued to grow rapidly. However, at this point the nature of
Ireland’s growth had changed from the stable export led growth of the 1990s to
a property price and construction bubble. The boom sustained employment and
output growth until 2007 but Ireland lost wage competitiveness and saw its ex-
port sectors shifting relatively low-tech labour-intensive activities from Ireland
to lower wage economies [36]. When the global financial crisis struck in 2008
Ireland entered a deep recession with many labour intensive industries fueled
by the bubble, particularly in construction and related industries, suffering the
most. From 2008 until 2012 Ireland saw sharp increases in the unemployment
rate, rising to 14.7 per cent in 2012. Despite the economic problems in Ireland
during this period exports of chemicals, especially in the pharmaceutical sector
continued to grow strongly. However, growth in these industries, which are not
particularly labour intensive, did little to halt the rise in unemployment.

Correlation does of course not imply causation. However, looking at the
correlations between the US$ value of different subclasses of Irish exports and
the unemployment rate plotted in Figure 4.8 does help to provide some insight.
The correlations of around −1 between the unemployment rate and the exports
of labour-intensive machinery sectors reflect the fact that the export-driven
growth of the 1990s led to a fall in unemployment while the decline in these
sectors, when not masked by the credit-fueled construction boom of the early to
mid 2000s, along with other factors saw a sharp increase in unemployment. The
correlations closer to 0 in the chemicals sector reflect that this is a high-tech
sector which is not particularly labour intensive and that it did not suffer badly
in the crash. The correlations close to 0 in the agricultural sector are due to
Ireland’s exports of food and live animals remaining relatively stable throughout
Ireland’s shift to a more modern economy and the recessions and booms since.

2.4 Spatial Concentration of Economic Activities

The changing nature, health and composition of the Irish economy affects
society in many different ways. Unemployment is just one of many major issues.
These changes affect different areas more profoundly than others due to the spa-
tial agglomeration of certain economic activities. For example as Ireland opened
and modernised its economy in the 1960s, 1970s and 1980s agricultural sectors
became less and less important, economic activity in urban areas began to grow
far more quickly than in rural areas. Some industries tend to concentrate in
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industrial clusters, the OECD Economic Survey of Ireland 2013 identified three
important industrial clusters in Ireland, medical devices in Galway, pharmaceu-
ticals in Cork and computer hardware and software in Dublin [55]. Another
example of a highly clustered sector in Ireland is the international financial ser-
vices sector which is highly concentrated in the International Financial Services
Centre (IFSC) in Dublin. Positive or negative shocks in any of these industries
would have a major effect on the economy and community of the regions in
which their activity is clustered.

Figure 4.9: Map of Ireland highlighting the locations of medical device research and
manufacturing operations. The number on each node represents the number of op-
eraions in that location. Reproduced from [2]. Map data: ©2015 GeoBasis-DE/BKG
(©2009), Google.

The IFSC is hugely important to the Dublin area. Over 500 firms are lo-
cated in the IFSC, directly employing 32,700 people, contributing 7.4 per cent of
Irish GDP and comprising 5 per cent of all EU 27 cross-border financial services
activity [40]. Similarly the medical devices industry is vital to the economy of
the west of Ireland and particularly to Galway. According to the Irish Medical
Devices Association the medtech sector employs 25,000 people in Ireland which
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is the highest number of people working in the industry per capita in any coun-
try in Europe [39]. Figure 4.9 maps the spatial distribution of firms involved in
the contract manufacturing, research and/or design of medical devices or bring-
ing finished medical device products to market in Ireland. It is immediately
clear that the majority of activity is concentrated around Galway with 16 firms
present, the next largest cluster is in the greater Dublin area where 6 firms are
present.

 29

Figure 3: Location of drug substance operations, 2003 

(a) Locations of Irish drug substance op-
erations.

 30

Figure 5: Location of drug product operations, 2003 

(b) Locations of Irish drug product oper-
ations.

Figure 4.10: Map of Ireland highlighting the locations of pharmaceutical operations
in 2003. Node size is given by total employees. Reproduced from [66].

Some of the most well-known and analysed industrial clustering takes place
in Ireland’s pharmaceutical industry. Figure 4.10 shows the spatial distribu-
tion of firms in the pharmaceutical industry in Ireland, showing its clustered
nature. Clustering is most evident in plants producing drug substances (Fig-
ure 4.10a), the active ingredients responsible for a drugs pharmacological effect,
with a large cluster in Cork and a smaller cluster in Dublin these two counties
had a 74 per cent share of employment in the drug substance sub-sector in 2003
[66]. Operations producing finished products are not as spatially concentrated
(Figure 4.10b). The largest cluster in this case is in Dublin, four counties each
accounted for between 13 and 19 per cent of the total in 2003 [66]. Taking
the pharmaceutical industry as a whole in 2003 Cork and Dublin together ac-
counted for 45 per cent of all employment. As of 2012 almost 25,000 people
are employed directly by the pharmaceutical industry [3], up from 1300 in 1972
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[66]. According to the Irish Pharmaceutical Healthcare Association (IPHA) a
further 25,000 jobs depend on the provision of services to the sector [3].

Particular industries are attracted to certain areas and tend to cluster for
a variety of different reasons. Ireland’s 2002 National Spatial Strategy (NSS)
provides a good summary of many of the factors that lead to the spatial ag-
glomeration of economic activities:

“Business is likely to align itself closely with local strengths, facilities,
talents and skills. This can be facilitated in important ways through
good links between business and third-level institutions. Clusters of
similar or interrelated overseas and Irish-owned businesses will tend
to form and consolidate in particular geographic areas because of the
advantages available locally and the resulting synergies. ” [32]

The facilities, institutions and infrastructure in a particular area are always a
factor for firms in choosing the location for a new operation. For example, for
many firms, and in particular firms in high-tech sectors, links with nearby edu-
cational institutions are important. Many beneficial links between Irish third-
level institutions and industry are clear. Ireland’s Universities and Institutes of
Technology (ITs) provide companies with a pool of highly educated and skilled
potential employees. For example a BPharm/BSc degree programme was re-
cently established by University College Cork (UCC) and the content of the
programme was influenced by the desire to cater for the needs of the local phar-
maceutical cluster after discussions with staff of local pharmaceutical companies
[7] and half of the 25,000 people employed by Ireland’s pharmaceutical industry
hold a third-level qualification [3].

The OECD Economic Survey of Ireland 2013 [55] also identified the spe-
cialised training and research programmes in the medical devices field as a fac-
tor in the growth of Galway’s medical devices industry. Industry/academic
collaborations in terms of research are also highly important. Ireland’s Centres
for Science, Engineering and Technology, supported by Science Foundation Ire-
land (SFI), link scientists and engineers from academia and industry to work on
leading-edge research. In the medical devices sector for example, global lead-
ers Medtronic, who have been manufacturing vascular products such as stents
in Ireland for over 20 years, is involved in several Irish industry/academic col-
laborations, including REMEDI, the Regenerative Medicine Institute based in
National University of Ireland, Galway (NUIG). Another example of indus-
try/academic collaboration in high-tech manufacturing is the Tyndall National
Institute based in UCC. The Tyndall National Institute is a leading centre for
semiconductor research with industry participants including IBM, Sony, Siemens
and Phillips Semiconductor [38].
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Figure 4.11: Map of Ireland highlighting the locations of all Irish universities and
selected colleges. 2012 Undegraduate graduate numbers are indicated for each insti-
tution. Source: [4].
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Figure 4.11 maps the locations of all Irish universities and selected colleges.
The nodes representing the third-level institutions are sized by undergraduate
graduate numbers according to the Higher Education Authority (HEA) in 2012
[4]. More detailed maps which include a breakdown of graduate numbers by
academic area are available for the years 2009-2012 on request. The majority of
graduates in 2012 graduated from universities or colleges in Dublin. University
College Dublin (UCD) had the highest number of graduates among the univer-
sities at 4,013, followed by National University of Ireland Galway (NUIG) at
3839. Dublin City University (DCU) had the lowest number of graduates at
1,556. The largest college in terms of graduate output included in our map was
Mary Immaculate College (MIC) in Limerick. MIC had a graduating class of
697 undergraduates in 2012. The smallest was the National College of Art and
Design (NCAD) with only 273 graduates in 2012.

The synergies to be taken advantage of referred to in the NSS are of-
ten known as agglomeration economies. The idea of agglomeration economies
was first introduced by Marshall in 1890 [46]. In 1937 Hoover divided these
economies into two types: localisation economies and urbanisation economies
[37]. Localisation economies are those introduced by Marshall, advantages that
firms in a set of closely related industries, such as a pooled market for workers
with specialised skills, a growing number of increasingly specialised input sup-
pliers and technological spillovers, gain from being located in the same location,
while urbanisation economies are advantages gained by all firms, regardless of
sector. Galway’s strong ICT sector was a factor in the growth of another similar
high-tech industry in the area in the form of a medical devices cluster [11], this
could be seen as an example of Marshallian localisation economies at work. In
the late 1980s the EU Single Market was being developed, this led to a dou-
bling in the amount of FDI by US firms in the EU between the early and the
late 1980s. Localisation economies have been cited as an important factor in
Ireland quadrupling its share of these investments over the same period [8, 12].
Most industrial clusters in urban areas are also bound to benefit from at least
some level of urbanisation economies in the form of educational institutions and
infrastructure [66].

It has been argued that even if these synergies between similar firms are not
a factor firms may still choose to agglomerate spatially. DeCoster and Strange
[20] argue that even if there are no efficiency reasons for spatial agglomeration,
due to uncertainty about locations in which to invest, investors may imitate the
location decisions of other firms. This happens because if one firm chooses a
specific location for a new operation it signals to other firms that this location is
a good one and as a result financial institutions, who may be required to provide
credit for new investments, and investors view investments in operations in the
same location as safer with a higher probability of success. These demonstration
effects have also been cited as a factor in Ireland’s success in attracting FDI in
recent decades [12]. Surveys of foreign companies in the computer, instrument
engineering, pharmaceutical and chemical sectors have indicated that location
decisions are strongly influenced by the fact that other key market players have
an existing presence in Ireland [9].
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In 2002 the government of Ireland released the NSS, a twenty-year strategic
plan designed to ensure “more balanced social, economic and physical develop-
ment between regions” [32]. Ireland’s development up to 2002 and indeed up
until the present day has been marked by a spatial imbalance. The capital city
Dublin and the Greater Dublin Area (GDA) have grown far quicker than other
areas and as a result has problems with congestion, economic activity and as
a result employment opportunities have become more concentrated in certain
areas, other areas have not benefited to the same extent from Ireland’s growth
and remain economically weak.

The NSS aimed to counteract the concentration of economic activity in the
GDA by stimulating the development of regional centres referred to as gateways
and other urban centres referred to as hubs. The NSS aimed to promote spe-
cialisation by different regions through the formation of specialised industrial
clusters. Policymakers in Ireland have looked to promote the formation of such
clusters since the 1992 Culliton Report [19]. This report recommended the pro-
motion of industrial clusters focused on niches of national competitive advantage
in line with the ideas of Porter [59]. The NSS cited “[s]patial clusters of inter-
national excellence [. . . ] emerging in Ireland” and sought to “strengthen these
areas and increase their number by supporting the formation of self-sustaining
clusters of economic activity”.

The aims of the NSS were very ambitious. Influencing patterns of spatial
economic development and promoting balanced development is an extremely
difficult task. The strategy failed to promote substantial economic growth in
most of the identified gateways and hubs. Only Cork and Galway, driven by
the electronics and medical devices sectors respectively saw the kind of growth
and specialisation envisaged by the NSS. Other areas such as Sligo, Limerick-
Shannon and the Midlands saw little or no benefit [67]. The NSS was scrapped
by Phil Hogan TD, Irish Minister for the Environment, Community and Local
Government, in February 2013 saying the “strategy had failed” due to a lack of
resources [53]. However, lack of resources was not the only reason for the failure
of the NSS. In 2013 van Egeraat and Breathnach called for “more focused iden-
tification of existing regional strengths followed by appropriate support measures
for further development of these strengths” [67]. Balanced spatial growth re-
mains an important issue for Irish policymakers and we believe a novel model of
spatial economic development has the potential to be a useful tool in future pol-
icy decisions aimed at promoting growth and specialisation in underdeveloped
regions.

3 Uses of Networks in Economics

Since the 1990s economists have become increasingly interested in the use
of networks in modelling and analysing economies. A number of influential
publications including Mark Granovetter’s 1985 Economic Action and Social
Structure: The Problem of Embeddedness led to this rising interest in the role
of networks in economics [33]. In his article Grovonettor [33] argued against the
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traditional neoclassical view of economics in which institutions and agents are
viewed as independent. He described this view as an “atomised, undersocialised
conception of human action”, disallowing by any hypothesis “any impact of so-
cial structure and social relations on production, distribution, or consumption”
[33]. At the time of publication he argued that economic behaviour had been
inadequately interpreted because professional economists were “so strongly com-
mitted to atomised theories of action” and most economic behaviour is closely
embedded in social relationships [33].

One particular example we are interested in is the use of networks in devel-
opment economics to analyse and assess inter-industry relatedness. Economists
such as Bryce and Winter [16], Hidalgo et al. [34] and Neffke and Svensson Hen-
ning [50] have used co-occurrence analysis to estimate how industry similarity.
Co-occurrence analysis measures the similarity between two industries by mea-
suring how frequently two industries are found together in the same economic
entity.

Neffke and Svensson Henning’s [50] approach was to construct a measure to
estimate industry similarity which they called revealed relatedness (RR). The
measure derives industry similarity from the co-occurence of products that be-
long to different industries in the portfolios of manufacturing plants. They first
counted the the number of co-occurrences between each pair of industries, then
compared this number to the number of co-occurrences that would be expected
between each pair based on industry level characteristics such as profitability,
employment numbers and numbers of active plants in each industry. The more
often two industries co-occur relative to this baseline, the higher their RR.

Hidalgo et al.’s [34] approach was to examine country level co-occurrences.
They developed a measure of proximity between 775 SITC 4-digit level product
classes based on the number of times that two products have a revealed com-
parative advantage in the same country. A product has a revealed comparative
advantage in a country if that country exports more of that product as a share
of total exports than the average country. Formally a product i has a revealed
comparative advantage in country c if

RCAc,i =

x(c, i)∑
j

x(c, j)∑
d

x(d, i)∑
d,j

x(d, j)

> 1, (4.1)

where x(a, b) represents the exports of product b by country a. The proximity φ
between product i and product j is then given by the minimum of the pairwise
conditional probabilities of a country having a revealed comparative advantage
in one given it exports the other, i.e.

φi,j = min{P (RCAc,i > 1|RCAc,j > 1), P (RCAc,j > 1|RCAc,i > 1)}. (4.2)
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 8 

 
Figure 1. The product space and Leamer clusters. A. Hierarchically clustered proximity 

matrix representing the 775 SITC-4 product classes exported in the 1998-2000 period. B. 

Network representation of the product space. This network was laid out using a force 

spring algorithm and retouched by hand . 

 

Figure 4.12: The product space of Hidalgo et al.
(A) Hierarchically clustered proximity matrix representing the 775 SITC-4 product
classes exported in the 1998-2000 period.
(B) Network representation of the product space. Links are colour coded with their
proximity value. The sizes of the nodes are proportional to world trade, and their
colours are chosen according to the classification introduced by Leamer. Reproduced
from [34]
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Figure 4.12 shows the network of relatedness between products termed the
product space produced by Hidalgo et al.’s analysis. Some products are seen to
be highly connected while other products are disconnected. The distribution of
proximities between product pairs, φi,j , is broad and the product space network
itself is quite sparse, 5 per cent of the elements of the proximity matrix (φ)
are equal to zero, 32 per cent are smaller than 0.1, and 65 per cent take values
below 0.2.

The product space is very inhomogenous. It has a clearly visible core-
periphery structure featuring a dense, highly-connected core and a sparsely
connected periphery. The core group of products is made up of mostly upscale,
high-value products such as metal products, machinery and chemicals while
products from other, mainly lower-income product classes are found in the pe-
riphery. One notably strong, dense peripheral cluster is formed by products in
the garments sector and can be seen on the left of the product space network
diagram in Figure 4.12B. The product clusters shown by the product space net-
work show quite strong agreement to the product classification performed by
Leamer [43] in 1984 based on the relative amount of capital, land, labour or
skills required to produce each product. However, we also see a more detailed
split within many industries and shows links of varying strengths between oth-
ers. For example, the machinery cluster is split in two, one cluster consisting of
heavy machinery and the other consisting of electronics.

Economies grow by upgrading the type of products they produce and export.
Both Neffke et al. and Hidalgo et al. argue that the growth and development
of countries and regions are subject to strong path dependencies [34, 51]. The
future economic development of a country or region is directly linked to the
products already produced in that region and the position of these products in
the product space (or in Neffke et al.’s case the industry space). An economy’s
specialisation in the production of certain goods dictates its future ability to
specialise in other areas with it being most likely that the economy will branch
into industries that are closely related to the preexisting industries in the region
or country. For example a country which has a revealed comparative advantage
in exporting apples will probably have most of the correct conditions required
to begin exporting pears.

This tendency of countries and regions to move to goods close to those they
are currently specialized in may help to explain why some regions grow faster
than others and different areas develop different specialised clusters. This can
lead to certain areas finding it difficult to develop more competitive sophisticated
sectors and failing to converge to the income levels of richer countries or regions.

Hidalgo et al. use a simple analogy involving monkeys moving through a
forest to explain the idea:

“Think of a product as a tree and the set of all products as a forest. A
country is composed of a collection of firms, i.e., of monkeys that live
on different trees and exploit those products. The process of growth
implies moving from a poorer part of the forest, where trees have
little fruit, to better parts of the forest. This implies that monkeys

183



Chapter 4 4. Spatial Models of Economic Development

would have to jump distances, that is, redeploy (human, physical,
and institutional) capital toward goods that are different from those
currently under production. Traditional growth theory assumes there
is always a tree within reach; hence, the structure of this forest is
unimportant. However, if this forest is heterogeneous, with some
dense areas and other more-deserted ones, and if monkeys can jump
only limited distances, then monkeys may be unable to move through
the forest.” [34]

Since it is indeed the case that the “forest”, i.e. the product space, has a
very heterogeneous structure as can be seen in Figure 4.12B, this structure and
a country’s position within it are vital to the future economic development of
countries. These ideas of product/industry relatedness and the path dependency
of regional economic development will be of central importance as we develop
our networks of spatial economic development in the following sections.

4 Spatial Models of Economic Development

Recently network theory and agent-based simulation have been used to anal-
yse economic dynamics. As we stated in the introduction to this chapter (Section
1), one of the major limitations in these models is that the nodes are simply
individual entities and do not capture the multiple attributes that these entities
may have because of the interplay between the socio-economic, political and
historical factors in which they are located. In this section we introduce two
simplified models of spatial economic development based on ideas we believe
could address these issues. The first model, presented and analysed in Section
4.1, describes the growth of a single town or city in a small open economy. The
second model, presented and analysed in Section 4.2, describes growth and de-
velopment in a small country with multiple urban centres and an open economy.

In both cases our approach draws inspiration from the spatial network growth
model of Kaiser et al. [41], presented in Section 1.3, Chapter 2, and our exten-
sions of this model which are presented and analysed later in the same chap-
ter. Recall that in these models we grew large networks from a small existing
networks by adding nodes whose position was not predetermined, rather their
position and the links between them were established over time as the network
developed and were influenced by the existing network. In our models any
growth in the economy of our city or state will be influenced by the structure
and spatial distribution of existing economic activity.

We will also draw inspiration from the product space and industry space
maps of Hidalgo et al. and Neffke et al. discussed in Section 3. Industry
relatedness will have a large influence on the level of demonstration effects and
localisation economies experienced by firms in our model. Only firms that are
closely related will gain advantages, such as a pooled market for workers with
specialised skills, a growing number of increasingly specialised input suppliers
and technological spillovers from being located in the same location. Similarly,
the success of a firm in a new location signals to other firms and investors
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that the location is a good one only if they are in related industries. Rather
than segregate economic activity in our models based on the 775 4-digit level
SITC product classes investigated by Hidalgo et al., in our simple model we
will consider 19 sectors. The proximities between these sectors will be based
on a product space analysis by staff of the World Bank for the 16th Annual
Conference on Global Economic Analysis [44]. These sectors are listed in Table
4.1 and their proximities are shown in Table 4.2.

Key Sector

1 Agriculture, Forestry & Hunting
2 Fishing & Fish Farming
3 Extractive Industries
4 Food and Tobacco
5 Textiles, Clothing & Leather
6 Other Manufacturing
7 Refining of Petroleum & Other Energy Products
8 Chemicals
9 Mechanical, Metallurgical & Electrical Manufacturing
10 Production and Distribution of Electricity & Water
11 Construction
12 Trade and Repair Services
13 Hotels and Restaurants
14 Transportation Services
15 Mail and Telecommunications
16 Finance and Insurance
17 Business Services
18 Government Services
19 Other Services (Non-finance)

Table 4.1: Industry Sectors.

Figure 4.13 gives a network representation of this sector space. The dia-
gram was produced using GEPHI [13] and shows all links between all pairs of
sectors with proximities greater than 0.25. Nodes are colour-coded by sector
and links between node pairs are coloured using a mix of the two node colours.
Links are weighted by their proximity value and this is graphically represented
by link thickness. Again we see a core-periphery structure with a strong agri-
culture/food cluster in the centre and a strong manufacturing cluster to the
left of the diagram. The peripheral nodes are mainly in the services industry
with the node representing the financial services sector (16) being the least well
connected.
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Figure 4.13: Network representation of the sector space showing all links with a prox-
imity greater than 0.25. Links are weighted by their proximity value and coloured
with a mix of the colours of the nodes they connect.
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4.1 Spatial Network Model 1: A Single Urban Centre

In this section we introduce our first economic spatial network model which
describes the growth and development of a single urban centre or isolated in-
dustrial cluster over time. We wish to model the changing sectoral composition
and spatial distribution of economic activity in the given urban centre through
the evolution of the relative sizes of firms in different sectors in the area, the
entry of firms establishing new operations in the area and the exits of existing
firms.

Our model is built on seven core concepts:

1. Firms considering establishing a new operation in the given urban centre
or industrial cluster have taken into account the potential urbanisation
economies available as a result of basing their new operation there.

2. Firms take into account the structure and composition of the existing
economy in the given urban centre when evaluating a location for a new
operation. New operations are established only if there are localisation
economies available and/or the success of existing operations in the area
signals to investors that the chosen location is a good one (demonstration
effects).

3. The smaller the spatial distance between the chosen location for a new
firm and an existing firm the more likely that both firms will benefit from
localisation economies as a result of being located in the same area. This
smaller spatial distance will also make it more likely that the existing firm
will signal to the new firm that its chosen location is a good one. Firms
are also more likely to benefit from localisation economies or be influenced
by demonstration effect signals from firms in similar industry sectors.

4. Firms who take advantage of localisation economies and are established
in a good location have the potential to grow larger.

5. Firms periodically reevaluate their links to the local economy, looking to
take advantage of more synergies.

6. Firms grow towards an optimum size based on their ever changing envi-
ronment.

7. Firms shut down their operations and exit the area if it becomes undesir-
able.
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Chapter 4 4. Spatial Models of Economic Development

In our model we will segregate economic activities into the nineteen sectors
listed in Table 4.1. In order to quantify the likelihood firms will benefit from
localisation economies or be influenced by demonstration effect signals from
firms in other sectors (concept (3) above) we introduce a new metric, the product
distance. The product distance between two firms, fi and fj , denoted dP (fi, fj),
is a measure of how different two firms are in terms of their industrial activities
and is determined by what sectors the two firms’ activities are in.

The examples in this chapter use product distances between sectors based
on the proximities between sectors from the product space analysis by staff of
the World Bank for the 16th Annual Conference on Global Economic Analysis
given in Table 4.2 [44]. If fi and fj are firms where fi’s activities are in sector
a and fj ’s activities are in sector b then we take

dP (fi, fj) = dP (a, b) = log(φa,b). (4.3)

These product distances are shown in Table 4.3.

4.1.1 Spatial Network Representation of the Economy

In this model the local economy is described by a single spatial network layer
called the industry space layer. The industry space layer, NI = (VI , EI), is a
spatial network representing the spatial distribution of firms in various industry
sectors in, and in the vicinity of, an urban centre. Each node in the industry
space layer f ∈ VI represents a firm. Two firms fi and fj in the industry
space network are linked, i.e. (fi, fj) ∈ EI , if they benefit from localisation
economies as a result of being based close to one another or if one firm was
influenced to establish their operation in the area by the demonstration effects
associated with the success of the other. Links are weighted according to how
similar the industrial activities of the two firms are. Pairs of firms in similar
sectors establish strong links while pairs of firms in relatively unrelated sectors
establish weak links.

The growth and evolution of the local economy is described by the growth
and evolution of the industry space layer. This spatial network can grow and
evolve in two ways:

1. Individual firms, represented by individual nodes, grow towards an opti-
mum size based on the ever changing structure and composition of the
local economy. Firms whose location is favourable and manage to take
advantage of significant localisation economies will have a larger optimum
size than other firms.

2. New firms may establish new operations in the area or existing firms may
leave, firms may take advantage of more synergies by establishing new
connections with other firms while other connections may be lost. This
type of growth and evolution is described by the addition or removal of
nodes and links to or from the industry space network. The probabilities
of adding or removing nodes and links at a given point in time are based
on the structure of the industry space at that time.
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4.1.2 The Growth of an Individual Firm

The growth of individual firms in the industry space network is governed by
a discrete time evolution operator known as a map. This map is based on the
network logistic map introduced and analysed in Chapter 3. For each firm in
the industry space fi ∈ V we consider the evolution of

xi(n) =
si(n)

Si
, (4.4)

where si(n) is the size of fi at time n and Si > 0 is a constant which scales the
optimum size of the firm based on its sector. For an industry space network
with m firms, for all i ∈ {1, 2, . . . ,m}, we set

xi(n+ 1) = ri(n)xi(n) (1− xi(n)) . (4.5)

We then let the control function for our map ri(n) depend on the weighted
degree of fi at time n. This means that each individual firm’s control function
depends on the level of localisation economies experienced by the firm and the
strength of the signal that the firm is located in a ‘good’ location. Formally, we
set

ri(n) = 1 + ρwi(n) = 1 + ρ


∑

j:(fi,fj)∈EI

li,jxj(n)

m∑
j=1

xj(n)

 (4.6)

where ρ > 0, xi(n) is the size of fi at time n, li,j is the weight of the link
between fi and fj and wi(n) is the normalised weighted degree of fi at time n.

4.1.3 Entry and Exit of Firms

We draw on the ideas of the spatial network development algorithms intro-
duced in Chapter 2 to model the entry of firms to the area, the exit of existing
firms and the evolution of links between firms in similar industries. We begin
with some initial industry space network at the centre of a bounded space (in
our examples this space will be the unit square) and proceed as follows:

1. A potential new firm’s sector is chosen from a suitable probability distribu-
tion.

2. The location under consideration by the potential new firm is chosen from a
uniform distribution on the unit square.

3. The potential new firm fi is influenced by signals that this location is a good
one by each existing firm fe or recognises available localisation economies
associated with choosing a location near to fe, i.e. fi and fe form a link,
with probability

β(βi + βe)

[
(1− L) + L

(
ln(1 + x̄e(n))

ln(2)

)]
e−αT (αi+αe)dE(fi,fe)e−αP dP (fi,fe),

(4.7)
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where dE(fi, fe) is the Euclidean distance between fi and fe. The parameter
β is a positive constant which scales the probability of any such link forming.
The parameters αT and αP are also positive constants that scale the overall
importance of spatial distance and product distance to the formation of links
between firms respectively. The parameters αi and αe reflect how important
spatial distance is to the formation of potential links for the two individual
firms, and βi and βe scale the probability of links forming for each firm.
The values of these parameters are based on the firms’ sectors. x̄e(n) is
the normalised size of fe at the time of the addition of fi to the industry
space network and L is a constant such that 0 ≤ L ≤ 1. If L 6= 0 firms are
more likely to form links with larger firms, i.e. the demonstration effects and
localisation economies associated with larger firms are stronger.

The link formed between the two firms is given a weight li,e based on the
product distance between the two firms, it is chosen from the uniform distri-
bution on the interval (0, βmφa,b) where a and b are the sectors in which the
firms fi and fe operate and βm = min{βi, βe}.

4. The potential new firm is established if and only if it forms a connection with
at least one existing firm. If no connections are formed it is discarded.

5. Each time a new firm is established previously established links between all
other firms are reevaluated. Weak links between firms are likely to only
benefit the firms for a limited period of time. The weight lλ,γ of each link
between a pair of existing firms fλ, fγ is compared to a threshold chosen
from a uniform distribution on the interval (0, τ) where 0 ≤ τ ≤ 1 and is
removed if the weight falls below this threshold. If at the end of this process
any firm is entirely disconnected from the industry space it exits the area,
i.e. it closes its operation in that location.

6. We allow firms to periodically attempt to increase their links to the local
economy and take advantage of more synergies. Every T timesteps we allow
connections to form between any pair of existing firms fλ, fγ with probability

B(βλ+βγ)

[
(1− L) + L

(
ln(1 + x̄λ(n) + +x̄γ(n))

ln(2)

)]
e−AT (αλ+αγ)dE(fλ,fγ)e−AP dP (fλ,fγ).

(4.8)
The parameters B, AT and AP are, like β, αT and αP involved in the com-
putation of P1, positive constants which scale the probability of links forming
between pairs of firms.

7. We update individual firm sizes according to equation (4.5) over G timesteps
as each firm grows towards its optimum size based on its changing environ-
ment and position within the wider economy.

8. We repeat this process until the desired number of firms, M , are added.
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4.1.4 Some Examples

In this section we present some examples showing the growth and evolu-
tion of firms and their relationships in different urban centres under varying
conditions. Our first example shows the growth of a city of 250 firms whose
industry space network is shown in Figure 4.15. Nodes are coloured by firm sec-
tor according to the table in Figure 4.14 and their size is given by relative firm
size. The city has quite a diverse industry space with a strong manufacturing
base to the west of the city where several mechanical, metallurgical and electri-
cal manufacturing firms are based (blue nodes) alongside other manufacturing
firms (red nodes). There is also a concentration of chemicals firms in the east
of the city (purple nodes) where two distinct chemical industrial clusters are
evident. These clusters are strongly connected, with firms benefiting from sig-
nificant localisation economies and a desirable location. The advantages gained
by operations located in these clusters have allowed them to grow towards a
large optimum size.

Ab)&)Hotels)and)Restaurants

AW)&)Busines)Services

A8)&)Government)Services

A9)&)Other)Services)6Non&financeF

AA)&)Construction

Ax)&)Trade)and)Repair)Services

AL)&)Transportation)Services

A0)&)Mail)and)Telecommunications

AD)&)Finance)and)InsuranceD)&)Other)Manufacturing

W)&)Refining)of)Petroleum)5)Other)Energy)Products

9)&)MechanicalP)Metallurgical)5)Electrical)Manufacturing

8)&)Chemicals

x)&)Fishing)5)Fish)Farming

A)&)Agriculture)Forestry)5)Hunting

b)&)Extractive)Industries

L)&)Food)and)Tobacco

0)&)TextilesP)Clothing)5)Leather

A,)&)Production)5)Distribution)of)Electricity)5)Water

Figure 4.14: Sector colour codes.

Eighteen of the nineteen sectors listed in Figure 4.14 are represented. As
is the case with most Irish urban areas, there is no activity in the refining of
petroleum and other energy products. Economic activity in the city centre is
dominated by trade and repair services (orange nodes), hotels and restaurants
(pink nodes) and transportation services (indigo nodes). We see two small
fishing operations (aqua nodes) on the eastern outskirts of the city and one small
agricultural operation (dark green node) located on the northern outskirts of
the city. Services operations are widely distributed throughout the city and in
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particular there is quite a strong other services (including professional, technical
and scientific services) sector, with 22 operations present (light grey nodes).

Figure 4.15: Network representation of the diverse industry space layer of a city with
250 firms.

194



Chapter 4 4. Spatial Models of Economic Development

Figure 4.16 shows the industry space network of the city shown in Figure
4.15 after adding 250 firms according to the algorithm presented in Section 4.1.3.
Nodes in the industry space network representing firms are once again coloured
by sector according to the table given in Figure 4.14, while node size is given by
the relative size of the firm at the end of the simulation. 48 operations closed
during the simulation period after becoming disconnected from the industry
space. The locations of these operations are highlighted by white ghost nodes.
In general we see that the strongest links have been formed between firms in
the same sector or in similar sectors. We also note that in each sector the
firm with the strongest links to the largest firms, i.e. the firm with the most
desirable location taking advantage of the highest level of localisation economies,
is generally the largest firm in that sector.

Examining Figure 4.16 in more detail we can observe many interesting fea-
tures of the city’s overall growth in terms of both the sectoral composition and
the spatial distribution of its economic activities. For example we can see that
the city’s strong manufacturing base has continued to grow with much of this
growth being concentrated near the existing operations in the west of the city.
Many new operations have been established in both the mechanical, metallur-
gical and electrical manufacturing sector and the other manufacturing sector in
this area with strong links to the existing operations.

Some chemicals firms have also been encouraged through demonstration ef-
fects and available localisation economies to establish new operations nearby.
Most new chemicals operations, however, have been established near the two ex-
isting chemicals clusters in the east of the city where these effects are stronger.
The cluster in the south east, which was initially smaller in terms of both firm
size and number of firms, has seen particularly impressive growth. Firm num-
bers in the area have more than doubled from five firms to eleven firms. One
would expect individual operations in this cluster to begin to rival operations in
the northeastern cluster in terms of size in the future by establishing more links
within the cluster and with the wider industry space increasing their optimum
size and leading to growth.

We also see the emergence of a small cluster of three new firms in the other
services sector (light grey nodes) strategically located approximately half way
between the two large chemicals clusters. Recall that the other services sector,
which includes technical and scientific services, is closely related to the chemicals
sector according to our product distance metric based on the World Bank prod-
uct space analysis (see Figure 4.13 and Table 4.3). In our model firms in more
closely related sectors are more likely to influence eachother’s location choices
through demonstration effects and to benefit from localisation economies related
to being based close to one another. For example in this case we could argue
that scientific services sector firms and chemicals firms located in the same area
are likely to have the opportunity to take advantage of potential input-output
linkages. The location of this particular other services cluster allows the three
firms in the other services sector to benefit from localisation economies related
to being based close to eachother and close to firms in both chemicals clusters.
Indeed we see that all three firms are connected and have also formed strong
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links with multiple firms in both clusters.

Figure 4.16: Network representation of the industry space layer of the city shown in
Figure 4.15 after adding 250 firms according to the algorithm presented in Section
4.1.3.
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Our next examples investigate the effects of varying the importance of prod-
uct distance during link formation, i.e. varying αP and AP , on the growth and
evolution of an isolated cluster of firms. For simplicity in our examples we set
AP = αP . We consider the growth of three different clusters of nineteen firms,
network representations of the industry space networks of each of these clusters
are shown in Figure 4.17. Our examples represent three extremes in terms of the
initial sectoral composition of the clusters and each has an identical, randomly
generated, initial spatial distribution of firms.

The first cluster, NC
I , is a homogenous cluster of nineteen firms in the other

manufacturing sector, a sector at the core of our sector space with strong links
to many other sectors (see Figure 4.13 and Table 4.2). The homogeneity of
the cluster has allowed strong link to form between firms as they benefit from
the localisation economies associated with being based close to one another and
the favourable location. The second, ND

I , is a diverse cluster of nineteen firms
with one representative from each of the nineteen sectors we consider in our
model. This cluster is quite sparse in terms of links between firms. Due to
the heterogenous nature of their activities, many pairs of firms in this cluster do
not benefit from one another through localisation economies or otherwise despite
being based in close spatial proximity. The final cluster, NP

I , is a homogenous
cluster of nineteen firms in the finance and insurance sector, a sector which is
on the periphery of our sector space with only weak links to the other eighteen
sectors (see Figure 4.13 and Table 4.2). This cluster is again strongly connected
due to its homogenous nature.

Choosing three different values of αP , we allow each of these clusters to
grow and evolve adding 19 firms according to the algorithm presented in Section
4.1.3. For our first example we choose a moderate value of αP , αP = 2.3, i.e.
the similarity between sectors of two firms is moderately important during link
formation. This value was also used in our previous example in this section
when examining the growth of a city with 250 firms. Network representations
of the industry space networks of each of the three clusters shown in Figure 4.17
after adding 19 firms according to the algorithm presented in Section 4.1.3 with
αP = 2.3 are shown in Figure 4.18. We observe different features in the growth
and evolution of each of the clusters.

The first cluster, NC
I , which began as a homogenous cluster of nineteen

firms in the other manufacturing sector, sees slow diversification over time while
continuing to expand its existing activities in the other manufacturing sector,
establishing five new other manufacturing plants. This initial diversification
is towards sectors which are closely related to the other manufacturing sector.
The first operation established in the cluster with activities outside the other
manufacturing sector is in the textiles, clothing and leather sector. This sector
has strong links to the other manufacturing sector. According to our product
distance metric it is the joint second closest sector to the manufacturing sector
level with the food and tobacco sector and behind the mechanical, metallurgical
and electrical manufacturing sector with a product distance of 0.4463 between
the two sectors. The establishment of this operation and the existing other man-
ufacturing sector operations encourages the establishment of more operations in
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the textiles clothing and leather sector. Four of the nineteen firms added during
the simulation were in this sector, three of which survived with one exiting after
only forming weak links with the existing cluster.

(a) NC
I : Network representation of an ini-

tial industry space network composed of
19 connected firms in the other manufac-
turing sector.

(b) ND
I : Network representation of an

initial industry space network composed
of 19 connected firms, one in each of the
19 sectors listed in Table 4.1.

(c) NP
I : Network representation of an ini-

tial industry space network composed of
19 connected firms in the finance and in-
surance sector.

Figure 4.17: Network representations of three initial 19-firm industry space networks.

Other surviving new operations were also in sectors closely related to the
other manufacturing sector including two in the most closely related mechani-
cal, metallurgical and electrical manufacturing sector and two in the food and
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tobacco sector. Three of the new operations exited the cluster before the nine-
teenth was added. As previously mentioned one of these was in the textiles,
clothing and leather sector, the other two were in sectors only distantly related
to the other manufacturing sector, the hotels and restaurants sector and the
other services sector with product distances of 1.1087 and 0.7765 to the other
manufacturing sector respectively. These new operations formed weak links with
the existing industry space at the outset and failed to strengthen their position
before being removed.

The second cluster, ND
I , which began as a very diverse cluster with each of

the nineteen sectors represented by one of the nineteen firms saw a move to-
wards specialisation in a few key sectors. Firms in some of the more peripheral
sectors, such as the finance and insurance and business services sectors, which
had only weak links to the cluster at the outset, closed their operations as this
process of specialisation took place. Newly established operations on the other
hand were concentrated in the closely related other manufacturing, mechanical,
metallurgical and electrical manufacturing and chemicals sectors. Seven of the
sixteen surviving new firms were in one of these three sectors. There was also
strong growth in the other services sector with three new firms being estab-
lished, perhaps benefiting from input-output linkages with the strongly growing
manufacturing sector.

The final cluster, NP
I , which began as a homogenous cluster of nineteen

firms in the finance and insurance sector, saw very little diversification over
the course of the simulation. As the finance and insurance sector is on the
periphery of our sector space with only weak links to the other eighteen sectors,
firms in other sectors were not strongly encouraged to locate in the cluster due
to weak demonstration effect signals and the very limited potential localisation
economies available. Only four of the nineteen new operations established were
in sectors other than the finance and insurance sector and only three of those
four firms survived. In fact, these three new firms did not even maintain a
connection to the original industry space network. The original link between
the three firms and the finance and insurance cluster was weak and short-lived
and by the end of the simulation there were two separate components in the
industry space network of the cluster. One of these components was composed of
the original nineteen finance and insurance firms and the fourteen surviving new
finance and insurance firms added during the simulation, the other, located to
the northeast of the cluster was composed of the two mechanical, metallurgical
and electrical manufacturing firms and a textiles, clothing and leather firm.
Over time these firms have the potential to attract new firms in closely related
sectors and to slowly begin to rival the dominant finance and insurance sector.
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(a) Network representation of the indus-
try space layer NC

I shown in Figure 4.17a
after adding 19 firms according to the al-
gorithm presented in Section 4.1.3 with
αP = 2.3.

(b) Network representation of the indus-
try space layer of ND

I shown in Figure
4.17b after adding 19 firms according to
the algorithm presented in Section 4.1.3
with αP = 2.3.

(c) Network representation of the indus-
try space layer of NP

I shown in Figure
4.17c after adding 19 firms according to
the algorithm presented in Section 4.1.3
with αP = 2.3.

Figure 4.18: Network diagrams of the three 19-firm industry space networks shown in
Figure 4.17 after adding 19 firms according to the algorithm presented in Section 4.1.3
with αP = 2.3.

For our second example we set αP = 0, meaning that product distance is not
considered as a factor during link formation, in this case only the spatial distance
between two firms influences the probability of a link forming between them.
Network representations of the industry space networks of each of the three
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clusters shown in Figure 4.17 after adding 19 firms according to the algorithm
presented in Section 4.1.3 with αP = 0 are shown in Figure 4.19.

(a) Network representation of the indus-
try space layer NC

I shown in Figure 4.17a
after adding 19 firms according to the al-
gorithm presented in Section 4.1.3 with
αP = 0. (One firm which exited the clus-
ter not pictured at this level of zoom.)

(b) Network representation of the indus-
try space layer of ND

I shown in Figure
4.17b after adding 19 firms according to
the algorithm presented in Section 4.1.3
with αP = 0.

(c) Network representation of the indus-
try space layer of NP

I shown in Figure
4.17c after adding 19 firms according to
the algorithm presented in Section 4.1.3
with αP = 0.

Figure 4.19: Network diagrams of the three 19-firm industry space networks shown in
Figure 4.17 after adding 19 firms according to the algorithm presented in Section 4.1.3
with αP = 0.
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In all three cases we see that for this value of αP more firms exited the
cluster during the course of the simulation than was the case for our moderate
value. With αP = 0 there are low barriers to entry for firms in every sector,
firms in sectors not well suited to the area are more likely to be established
after forming weak links at the outset and quickly exit the area after failing to
improve their situation. This could correspond to the situation where firms in
all sectors are set up without due consideration of the sectoral composition of
the existing local economy, leading to poor decisions and many failed startups.

This effect is most pronounced in the case of NP
I , new firms are quick to

be established with αP = 0 but are likely to form only weak links with the
existing firms in the peripheral finance and insurance sector. These links are
later removed as they fall below the required threshold and the firms exit the
area once more. Only firms added which were also in the finance and insurance
sector or in the somewhat closely related government services sector survived
until the end of the simulation in this case. The effect is less pronounced in
the case of ND

I , where each firm added has the potential to form a link to a
firm in a sector identical to or closely related to its own sector as each of the
nineteen sectors are represented from the outset. However, despite this we still
see many new firms exiting before the end of the simulation as they are added
after only forming weak links. The effect is least pronounced in the case of NC

I .
In this case the existing nineteen firms in the other manufacturing sector have
the potential to form strong links with new firms in most sectors as the sector is
at the core of our sector space and is closely related to many other sectors. As a
result, despite not considering the sectoral composition of the existing economy
during their establishment, many new firms manage to form at least one strong
link and survive to the end of the simulation.

As in the αP = 2.3 case we again see the beginning of a process of diversifi-
cation for NC

I towards sectors closely related to the other manufacturing sector.
Three of the surviving fifteen new operations are in the chemicals sector while
two are in the other services sector. We also see evidence of specialisation in
ND
I again, with a move towards sectors at the core of our sector space, closely

related to many other sectors. By the end of the simulation three of the sur-
viving 27 firms were in the agriculture forestry and hunting sector and three in
the mechanical, metallurgical and electrical manufacturing sector. Finally, we
again see some slight diversification in the case of NP

I . However, hampered by
the peripheral nature of the existing economic activity in the area, startups in
sectors other than finance and insurance find it difficult to form the necessary
strong links with the local industry space needed to survive and soon exit once
more. As a result the only other sector present in the cluster by the end of the
simulation is the government services sector with two representatives.

For our final example we set αP = 5 corresponding to the case where product
distance is an extremely important factor during link formation for firms in all
nineteen sectors. Network representations of the industry space networks of each
of the three initial clusters shown in Figure 4.17 after adding 19 firms according
to the algorithm presented in Section 4.1.3 with αP = 5 are shown in Figure
4.20.
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(a) Network representation of the indus-
try space layer NC

I shown in Figure 4.17a
after adding 19 firms according to the al-
gorithm presented in Section 4.1.3 with
αP = 5.

(b) Network representation of the indus-
try space layer of ND

I shown in Figure
4.17b after adding 19 firms according to
the algorithm presented in Section 4.1.3
with αP = 5.

(c) Network representation of the indus-
try space layer of NP

I shown in Figure
4.17c after adding 19 firms according to
the algorithm presented in Section 4.1.3
with αP = 5. (One firm which exited the
cluster not picured at this level of zoom.)

Figure 4.20: Network diagrams of the three 19-firm industry space networks shown in
Figure 4.17 after adding 19 firms according to the algorithm presented in Section 4.1.3
with αP = 5.

For this high value of αP we observe less diversification for both NC
I and

NP
I during the course of the simulation than was seen for either the moderate

αP = 2.3 case or the extreme αP = 0 case. In fact, in the case of NP
I , a
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homogenous cluster of firms in the peripheral finance and insurance sector, we
see no diversification. All nineteen of the firms added during the simulation,
including one which exited before the end were also in this sector. The peripheral
nature of this sector in terms of our sector space made it very difficult for
this cluster to attract firms in other sectors for this value of αP . In the case
of NC

I we see some diversification towards firms closely related to the other
manufacturing sector which is at the core of our sector space. However, this
process of diversification is slower than for the other two values of αP examined.
Only six of the surviving firms at the end of the simulation are in sectors other
than the manufacturing sector in the αP = 5 case compared to eleven in the
αp = 2.3 case and fifteen in the αP = 0 case. We also see evidence of a
stronger tendency towards specialisation in key areas in the case of ND

I . At the
end of the simulation fourteen of the 34 surviving firms were in the chemicals
sector (5 firms), the finance and insurance sector (5 firms) and the mechanical,
metallurgical and electrical manufacturing sector (4 firms).

In all three cases we see that, for this value of αP , less firms exited the
cluster during the course of the simulation than was the case for our moderate
value. With αP = 5 there are high barriers to entry for firms in every sector,
firms in sectors not well suited to the area are not likely to be established
at the outset and only firms which have the potential to form strong links to
the existing industry space are added. This corresponds to the situation where
firms in all sectors are only established if the sectoral composition of the existing
local economy gives strong evidence that they are likely to survive and have the
potential to benefit from significant localisation economies.

4.2 Spatial Network Model 2: A Small Open Economy

Our second model extends the ideas of our first model in an attempt to model
the growth and development of a small open economy composed of multiple
towns and cities over time. As before, we wish to model the changing sectoral
composition and spatial distribution of economic activity which is driven by
the evolution of the relative sizes of firms in different sectors in the small open
economy, the entry of firms establishing new operations and the exits of existing
firms.

The model is built on seven core concepts which are closely related to those
associated with our model describing the growth and development of a single
urban centre:

1. Firms looking to establish a new operation in the country take into account
the any urbanisation economies available and are more likely to consider
locating a new operation in an area where more urbanisation economies
can be taken advantage of.

2. Firms take into account the structure and composition of the existing econ-
omy in the vicinity of a potential location when evaluating its potential.
New operations are established only if there are localisation economies
available and/or the success of existing operations in the area signals to
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the investors that the chosen location is a good one (demonstration ef-
fects).

3. The smaller the spatial distance between the chosen location for the new
firm and an existing firm the more likely that both firms will benefit from
localisation economies as a result of being located in the same area and
that the existing firm will signal to the new firm that the chosen location
is a good one. Internal transport infrastructure such as highways or rail-
ways effectively reduce the spatial distance between the areas they service.
Firms are also more likely to benefit from localisation economies or be in-
fluenced by demonstration effect signals from firms in similar industries.

4. Firms who take advantage of localisation economies and urbanisation
economies and have a good location have the potential to grow larger.
Increased worldwide demand for products or services in a firm’s sector
also increase the firm’s potential size.

5. Firms periodically reevaluate their links to the local economy, looking to
take advantage of more synergies.

6. Firms grow towards an optimum size based on their ever changing envi-
ronment.

7. Firms shut down their operations and exit an area if it becomes undesir-
able.

4.2.1 Travel Distance

In order to take into account the effects of the presence of internal trans-
port infrastructure on the relationships between firms and institutions in our
small open economy we introduce a new metric, the travel distance. The travel
distance gives us the effective distance between two entities taking into account
the efficiencies gained by using high quality internal transport infrastructure. In
the examples we present only road infrastrucure is considered. We assume that
the roads in the space are of varying quality and split them into two categories,
the primary road network, consisting of national routes and motorways, and the
regular road network, consisting of all other roads. We take travel along the
regular road network as the base level of efficiency for travelling from one point
to another and assume that travelling along the primary road network is more
efficient.

Before formally defining the travel distance between two nodes in our model,
let us first introduce the road distance which measures the effective distance
between two points along the road network using at least one primary road.
The road distance between two nodes in our model f and g is given by

dR(f, g) = dE(f,Rf ) + ξdr(Rf , Rg) + dE(Rg, g) (4.9)

where Rf and Rg are the closest points to f and g on the primary road network
respectively, ξ < 1 and dr(Rf , Rg) is the shortest distance along the primary
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road network between Rf and Rg. We assume that agents will use the primary
road network to travel between two points only if it reduces the effective distance
between them. The travel distance, dT (f, g), between any two nodes in our
model f and g is then given by

dT (f, g) = min{dE(f, g), dR(f, g)}, (4.10)

where dE(f, g) is the Euclidean distance and dR(f, g) is the road distance be-
tween f and g.

motorway
railway line
airport
airbase

port

Figure 4.21: Map of Ireland’s motorway network and other important transport in-
frastructure. [65]

206



Chapter 4 4. Spatial Models of Economic Development

The structure and layout of a country’s internal transport links can be an
important factor in the pattern of its spatial economic development. In many
countries certain areas are served far better by national transport infrastructure
than others, with the capital often being favoured. Ireland is a good example of
this, the country’s motorway network is composed of radial system of motorways
linking the capital city Dublin with other cities and large urban areas, as can be
seen from the map in Figure 4.21. Ireland’s rail network also emanates radially
from Dublin. For the examples later in this section we use the Irish motorway
network as inspiration for the layout of our road network.

4.2.2 Spatial Network Representation of the Economy

In this model the wider economy is described by a multiple overlapping
spatial network layers. These layers represent the spatial distribution of firms in
the economy and the spatial distribution of sources of urbanisation economies
and important infrastructure. For simplicity we will consider only one layer
representing sources of urbanisation economies and important infrastructure,
the skill space layer.

The skill space spatial network layer, NS = (VS , ES), is a spatial network
which represents the spatial distribution of third-level educational institutions
in the small open economy. Each node in the skill space layer h ∈ VS represents
a third-level institution and has a graduate output vector oh(n) composed of
the graduate output of the institution in ten disciplines listed in Table 4.4. We
assume that graduates and researchers from different disciplines have different
skills and research in different disciplines gives results which are more relevant
to certain industry sectors than others. We assign each firm fi ∈ Vi a discipline-
relevance vector di, which gives a weight between 0 and 1 to each discipline
based on its importance to firms in that sector.

Discipline

Science
Social Science, Business and Law

Humanities and Arts
Education

Broad Programmes
Combined
Services

Health and Welfare
Agriculture and Veterinary

Engineering, Manufacturing and Construction

Table 4.4: Academic Disciplines.

Again, we are most interested by the growth and evolution of the industry
space layer, NI = (VI , EI), a spatial network representing the spatial distribu-
tion of firms in various industry sectors throughout the economy and the links
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between them. The growth and evolution of the local economy is described by
the growth and evolution of the industry space layer. This spatial network can
grow and evolve in two ways:

1. Individual firms, represented by individual nodes, grow towards an opti-
mum size based on the ever changing structure and composition of the
wider economy. Firms whose location is favourable and manage to take
advantage of significant localisation economies will have a larger optimum
size than other firms. Significant urbanisation economies will also boost
a firm’s optimum size. In this simplified model we will specifically con-
sider urbanisation economies associated with third-level institutions such
as those discussed in Section 2.4. Proximity to a third-level institution
with activity in relevant disciplines in terms of graduate output and re-
search is beneficial to a firm. (We assume that the level of graduate output
in each discipline in an institution is proportional to its research activity
in the same discipline.)

2. New firms may establish new operations in the area or existing firms may
leave, firms may take advantage of more synergies by establishing new
connections with other firms while other connections may be lost. This
type of growth and evolution is described by the addition or removal of
nodes and links to or from the industry space network. The probabilities
of adding or removing nodes and links at a given point in time are based
on the structure of both the industry space and skill space at that time.

4.2.3 The Growth of an Individual Firm

The growth of individual firms in the industry space network in this model
is also governed by a map based on the network logistic map. For each firm in
the industry space fi ∈ V we again consider the evolution of

xi(n) =
si(n)

Si
, (4.11)

where si(n) is the size of fi at time n and Si > 0 is a constant which scales the
optimum size of the firm based on its sector. For an industry space network
with m firms, for all i ∈ {1, 2, . . . ,m}, we set

xi(n+ 1) = ri(n)xi(n) (1− xi(n)) . (4.12)

We then let the control function for our map ri(n) depend on three factors:

1. The level of localisation economies experienced by the firm and the strength
of the signal from other nearby firms in similar industries that the firm is
located in a ‘good’ location.

2. The level of benefit gained from urbanisation economies in the form of
educational institutions.
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3. The level of worldwide demand for products or services in the firm’s sector.

We set
ri(n) = λlr

l
i(n) + λsr

s
i (n) + λyr

y
i (n), (4.13)

where

rli(n) = 1 + ρlwi(n) = 1 + ρl


∑

j:(fi,fj)∈EI

li,jxj(n)

m∑
j=1

xj(n)

 (4.14)

represents the level of localisation economies,

rsi (n) = 1 + ρs


∑

j:hj∈VS

(di · oj)e−αSdT (fi,hj)

∑
j:hj∈VS

1 · oj

 , (4.15)

represents the level of urbanisation economies and

ryi (n) = 1 + ρyY (n) (4.16)

represents worldwide demand for products or services in the firm’s sector. Here
ρl, ρs and ρy are positive constants and λl, λs and λy are positive such that
λl + λs + λy = 1, which reflect the relative importance of each of the three
factors to the firm fi based on its sector.

4.2.4 Entry and Exit of Firms

We again draw on the ideas of the spatial network development algorithms
introduced in Chapter 2 to model the entry of firms, the exit of existing firms
and the evolution of links between firms in similar industries. We begin with
some initial industry space network in our small open economy and proceed as
follows:

1. A potential new firm’s sector is chosen from a suitable probability distribu-
tion.

2. The location under consideration by the potential new firm is chosen from
a probability distribution generated by the skill space spatial network layer.
Firms will consider locations for new operations close to third-level institu-
tions with activity in relevant disciplines. For our examples we use a uniform-
plus-truncated-Gaussian mixture distribution on our bounded space. For
each new firm we define a uniform-plus-truncated-Gaussian mixture distri-
bution with probability density function

p(x) = Ω0u(x) +
∑
h∈VS

Ωhph(x). (4.17)
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The weights Ω0 and Ωh depend on the graduate output o of the institution h
and the firm’s sector. These weights are scaled such that

∑
j Ωj = 1. u(x) is

the probability density function of a uniform distribution on the space, while
ph(x) is the probability density function of a truncated Gaussian mixture on
the space with mean µh given by the spatial location of h and covariance
matrix Σh = σ2I where σ2 depends on the firm’s sector.

3. The potential new firm fi is influenced by signals that this location is a good
one by each existing firm fe or recognises available localisation economies
associated with choosing a location near to fe, i.e. fi and fe form a link,
with probability

β(βi + βe)

[
(1− L) + L

(
ln(1 + x̄e(n))

ln(2)

)]
e−αT (αi+αe)dT (fi,fe)e−αP dP (fi,fe).

(4.18)
Here the parameter β is a positive constant which scales the probability of
any such link forming. The parameters αT and αP are also positive constants,
these scale the overall importance of spatial distance and product distance
to the formation of links between firms respectively. The parameters αi and
αe reflect how important spatial distance is to the formation of potential
links for the two individual firms and βi and βe scale the probability of links
forming for each firm. The values of these parameters are based on the firms’
sectors. x̄e(n) is the normalised size of fe at the time of the addition of fi to
the industry space network and L is a constant such that 0 ≤ L ≤ 1. If L 6= 0
firms are more likely to form links with larger firms, i.e. the demonstration
effects and localisation economies associated with larger firms are stronger.

The link formed between the two firms is given a weight li,e based on the
product distance between the two firms, it is chosen from the uniform distri-
bution on the interval (0, βmφa,b) where a and b are the sectors in which the
firms fi and fe operate and βm = min{βi, βe}.

4. The potential new firm is established if and only if it forms a connection with
at least one existing firm. If no connections are formed it is discarded.

5. Each time a new firm is established previously established links between all
other firms are reevaluated. Weak links between firms are likely to only
benefit the firms for a limited period of time. The weight lλ,γ of each link
between a pair of existing firms fλ, fγ is compared to a threshold chosen
from a uniform distribution on the interval (0, τ) where 0 ≤ τ ≤ 1 and is
removed if the weight falls below this threshold. If at the end of this process
any firm is entirely disconnected from the industry space it exits the area,
i.e. it closes its operation in that location.

6. We allow firms to periodically attempt to increase their links to the local
economy and take advantage of more synergies. Every T timesteps we allow
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connections to form between any pair of existing firms fλ, fγ with probability

B(βλ+βγ)

[
(1− L) + L

(
ln(1 + x̄λ(n) + +x̄γ(n))

ln(2)

)]
e−AT (αλ+αγ)dT (fλ,fγ)e−AP dP (fλ,fγ).

(4.19)
The parameters B, AT and AP are, like β, αT and αP involved in the com-
putation of P1, positive constants which scale the probability of links forming
between pairs of firms.

7. We update individual firm sizes according to equation (4.12) over G timesteps
as each firm grows towards its optimum size based on its changing environ-
ment and position within the wider economy.

8. We repeat this process until the desired number of firms, M , are added.

4.2.5 An Example

In this section we present an example showing the growth and evolution of a
small open economy over time in terms of the sectoral composition and spatial
distribution of firms operating within its borders and their relationships. A map
highlighting the layout of the country’s primary road network (in blue) and the
locations of third-level institutions (in pink) is shown in Figure 4.22 while a
map highlighting the initial spatial and sectoral distribution of firms is shown
in Figure 4.23.

The map in Figure 4.22 shows that the small open economy being modelled
has a radial primary road network with roads emanating from its largest urban
centre, perhaps the capital city, located in the east of the country. These roads
connect other major urban centres, such as the second largest city located in
the south and two small cities in the west of the country, to the capital city.
Some smaller urban centres are not serviced by the country’s primary road
network including two towns in the north west of the country. This situation is
very similar to the situation in Ireland which is mapped in Figure 4.21, where
the motorway network has a radial layout with motorways emanating from the
capital city Dublin in the east of the country.

The layout of third-level institutions in our examples was also inspired by
the Irish case. Two large third-level institutions with a combined output of 4700
graduates per year are located in the capital in the east while most of the other
large urban centres in the country are also home to a third-level institution.
The largest of these other third-level institutions produces 3900 graduates per
year and is located in the city directly to the west of the capital. One small
town in the north west also hosts a small third-level institution producing 1000
graduates per year.
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Figure 4.22: Map detailing the layout of infrastructure and firms in the small open
economy. Third-level institutions are shown in pink and are scaled by their graduate
output, the primary road network is shown in blue and firm locations are shown in
grey.
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The map in Figure 4.23 shows the distribution of the 615 firms initially
present in our small open economy. As in the examples in Section 4.1.4 each node
represents a firm and nodes are coloured by sector according to the colour codes
given in Figure 4.14. Examining this map we can see that the country under
consideration has a strong agricultural base with a widespread distribution of
agriculture, forestry and hunting firms (dark green nodes) and ten urban centres
of varying size and sectoral composition. In terms of firm numbers the trade
and repair services sector (orange nodes), which includes both wholesale and
retail trade, is quite naturally the leading sector, accounting for 19.22 per cent
of firms, followed by the hotels and restaurants sector (pink nodes) accounting
for 11.95 per cent of firms.

Some of the urban centres have strong industrial clusters of firms from one or
more closely related sectors or display noticeable specialities in a few key sectors.
For example, the economy of the most northerly small town in the northwest,
which has no third-level institution and is isolated from the country’s primary
road network, is dominated by the trade and repair sector and the hotels and
restaurant sector. Perhaps this town, supported by its isolation and the natural
beauty of surrounding areas, relies on the tourist industry to drive its economy.
The town in the south west which also has no third-level institution and is
isolated from the primary road network is home to firms mainly in the food
and tobacco sector. The economies of the country’s larger towns and cities also
display interesting sectoral compositions. For example, the capital city in the
east, due to historical factors and supported by strong infrastructure, is strong
in many areas. Notably it has a particularly strong finance and insurance sector
with many large finance and insurance firms clustered in the city centre, no
other city in the country is home to such a cluster. The second largest city
in the south has a very strong chemicals sector concentrated near the northern
fringe of the city (purple nodes) and the city directly to the west of the capital
is home to several large mechanical, metallurgical and electrical manufacturing
firms (blue nodes).

Figure 4.24 maps the industry space network of the small open economy
shown in Figure 4.23 after adding 585 firms according to the algorithm presented
in Section 4.2.4. Nodes in the industry space network representing firms are
once again coloured according to their sector (see Figure 4.14), while node size
is given by the relative size of the firm at the end of the simulation. 142 different
firms closed their operations in the small open economy during the simulation
period and the locations of these operations are marked by white ghost nodes.
In terms of the general growth of the industry space we can immediately see
that the strongest links between nodes have been formed between firms in the
same sector or in similar sectors and that the longest links have been formed
between nodes in separate urban centres connected by a primary road. We can
also see that the majority of the new firms established during the simulation
are located in, or in the vicinity of, existing urban centres.
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Figure 4.23: Network representation of the industry space layer of a small open econ-
omy with 615 firms.
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Two notable exceptions to this are firms in the agriculture, forestry and
hunting sector (dark green nodes) and the fishing and fish farming sector (aqua
nodes). New firms in these sectors were established in rural areas more sparsely
populated by other firms. These more remote locations are a result of two
factors, the distribution from which locations for potential new firms in these
two sectors are chosen and the potential of firms in these sectors to form links
with distant. First, the high values of Ωo and σ2 in the uniform-plus-truncated-
Gaussian mixture distributions from which we choose potential locations for a
new firm fγ in one of these sectors result in a more uniform spread of potential
new locations for firms in these sectors. Second, the low values of αγ associated
with potential new firms fγ in these sectors allow them to form links with other
firms over long spatial distances.

Examining Figure 4.24 in more detail we can observe many interesting fea-
tures of the country’s overall growth in terms of both the sectoral composition
and the spatial distribution of its economic activities. Towns and cities with
large third-level institutions well connected by the primary road network to the
rest of the country displayed the most growth.

The Capital City: In particular, the capital city in the east, home to
two third-level institutions and connected to all of the other major cities in
the country by the primary road network, saw strong growth in several sec-
tors. The presence of two third-level institutions in this city help it to attract
firms, especially those in more skill based sectors, to consider it as a poten-
tial location. When evaluating these potential locations investors are likely to
be be encouraged by the demonstration effects and the potential localisation
economies associated with being located close to strong existing firms to es-
tablish a new operation in the city. Since this city has a very diverse existing
economy with strong firms in almost every sector this is true for firms in all
sectors. The country’s radial primary road network which emanates from the
city makes it more feasible for new firms to form links with distant firms in rural
areas and other towns and cities aswell as making it easier to form links with
firms close to the network within the city itself.

The capital continued to experience strong growth in the finance and insur-
ance sector. Thirteen new firms in this sector were established in the city during
the course of the simulation with only three closing their operations during the
same period. Growth in this sector in the capital far outstripped its growth in
the rest of the country. Only nine new finance and insurance firms were estab-
lished outside the capital during the simulation, five of these along with three
of the initial finance and insurance firms based outside the capital had closed
their operations by the end of the simulation.

Another area which saw particularly strong growth in the capital is the
chemicals sector. At the outset the chemicals sector was not one of the standout
sectors in the capital’s economy. Despite its size only six firms were based in
the capital (purple nodes), one of which was the smallest chemicals firm in the
country, at the time. In contrast to this the second largest city in the south,
which was far smaller in terms of firm numbers, was home to nine chemicals
firms at the outset including the largest chemicals firm in the country.
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Figure 4.24: Network representation of the industry space layer of the small open econ-
omy shown in Figure 4.23 after adding 585 firms according to the algorithm presented
in Section 4.2.4.
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However, during the course of the simulation the capital experienced explo-
sive growth in this sector due to the favourable conditions for firms the sector.
Chemicals firm numbers in the capital more than tripled during the course of the
simulation, fourteen new chemicals operations were opened in the city and there
were no closures in this sector during the same period. One of the new opera-
tions also grew to become the largest chemicals firm in the country by the end of
the simulation period. These firms were drawn to choose the city as a potential
location by the presence of the two third level institutions outputting graduates
and performing research in relevant disciplines. In fact, much of this growth
was concentrated near to the larger of the city’s two third-level institutions in
the south of the city. 46 per cent of this institution’s 3300 graduates graduate in
either science or engineering, manufacturing and construction, two disciplines
which, according to the parameters chosen for this simulation, are particularly
relevant to firms in the chemicals sector. A smaller cluster of three chemicals
firms was also established in the north east of the city close to the city’s second
third-level institution, 29 per cent of this institutions 1100 graduates were in
either science or engineering, manufacturing and construction.

Figure 4.25: Magnified view of the industry space of the capital city at the end of the
simulation period.

Many of the chemicals firms considering potential locations for new opera-

217



Chapter 4 4. Spatial Models of Economic Development

tions in the capital were reassured it was indeed a good location through demon-
stration effects associated with successful existing firms in related sectors such
as the mechanical, metallurgical and electrical manufacturing sector or those
associated with previously established chemicals firms. These firms and other
may also have recognised potential localisation economies associated with being
based close to such firms.

The Second City: The chemicals sector in the second largest city in the
south of the country also continued to grow with ten new chemicals firms es-
tablishing operations in the area during the simulation period. The success of
the chemicals sector in the city can be clearly seen in Figure 4.26. These firms
were taking advantage of the urbanisation economies associated with the local
third-level institution, from which 48 per cent of the 3500 graduates were in
either science or engineering, manufacturing and construction, and the localisa-
tion economies associated with being based in a city in which many successful
chemicals firms had already been established. Eight of these new firms were
successful and grew to be among the leading chemicals firms in the country
by the end of the simulation while the other two closed their operations. The
continued success of the city’s chemicals sector was an important factor in the
growth of other sectors within the city including the other manufacturing sector
and the other services sector which includes technical and scientific services.
These two sectors are both closely related to the chemicals sector closely related
to the chemicals sector according to our product distance metric based on the
World Bank product space analysis (see Figure 4.13 and Table 4.3). Firms in
these three sectors are likely to benefit from being based in the same location
through factors such as technological spillovers and input output linkages.

Figure 4.26: Magnified view of the industry space of the second city at the end of the
simulation period.

The Western Cities: The city directly to the west of the capital city in
the east grew strongly, attracting many firms in ’smart economy’, in particular
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firms in the chemicals sector (purple nodes), the other services sector (light grey
nodes) and the mechanical, metallurgical and electrical manufacturing sector
(blue nodes). The dominance of these sectors in the city’s economy at the end
of the simulation period is clearly visible in the map of its industry space shown
in Figure 4.27. According to the parameters we have chosen for our model for
such ’smart economy’ sectors being based close to a third-level institution which
focuses on relevant disciplines is of major importance. As this city is home to
the largest third-level institution in the country producing 3900 graduates each
year it was well placed to attract investors in these sectors to consider it as a
potential location for new operations.

Since these sectors are closely related according to our product distance
metric, the city’s strengths in sectors such as the mechanical, metallurgical and
electrical manufacturing sector at the outset and growing strengths in all three
sectors during the simulation period made it possible for firms considering the
city to form strong links with existing related firms and establish themselves.
Firms in these sectors were reassured through demonstration effect signals from
the existing firms that the location was a good one and were further encouraged
to locate in the city in order to take advantage of a pooled market for workers
with specialised skills, input-output linkages and technological spillovers.

Figure 4.27: Magnified view of the industry space of the city directly to the west of
the capital city at the end of the simulation period.

The city also experienced significant growth in the mail and telecommuni-
cations sector. Notably this growth included an entirely new industrial cluster
on the north eastern outskirts of the city where three interconnected mail and
telecommunications firms (red-orange nodes) were established during the simu-
lation period. Two of the firms in this cluster also have links to a small second
cluster growing to the west of the city. Firms in this cluster have taken advan-
tage of its location next to the primary road network to form links with related
firms in the city centre and in the small town in the midlands.

During the simulation period an important manufacturing cluster formed
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near the third-level institution on the southern fringes of the city in the south
west of the country as can be seen in Figure 4.28. Five new mechanical, metal-
lurgical and electrical manufacturing firms and three new other manufacturing
firms were established in the area during this time. These firms grew to be-
come some of the largest in the city, their strategic location allowed them to
take advantage of the localisation economies associated with being clustered to-
gether and the urbanisation economies associated with being based close to the
third-level institution.

The business services sector was also an important growth area for the city’s
economy. Eight successful new firms in the business services sector (yellow-gold
nodes) were established in the area during the simulation period. The city’s
third-level institution was a major factor in attracting these firms to the area.
35 per cent of this institution’s 2600 graduates graduate in either social science,
business and law or services, two disciplines which, according to our model, are
the most relevant to firms in the business services sector. These firms benefited
from the city’s location forming links not only with other firms within the city
but also with firms in the neighbouring cities closely situated to its north and
south.

Figure 4.28: Magnified view of the industry space of the city to the south west of the
capital city at the end of the simulation period.

Small Towns and Rural Areas: Smaller towns and rural areas saw
less growth with firms in general preferring to locate in major urban centres
where they could take advantage of more potential localisation and urbanisa-
tion economies. There was also a significantly lower density of links in the north
west region in general with less interactions between firms over medium to long
distances due to the lack of service by the primary road network in the area.

The country’s most northerly town experienced slow growth working to its
strengths by continuing to expand in the sectors related to the tourist industry.
Figure 4.29 allows us a closer look at the town’s industry space. Six of the
seven new firms established in the area which were still open at the end of the

220



Chapter 4 4. Spatial Models of Economic Development

simulation period were in sectors likely to rely directly on tourism. Three of
these new firms were in the hotel and restaurant sector (pink nodes), two in the
trade and repair services sector (orange nodes) and one in the transportation
services sector (indigo node). The other firm to establish a successful operation
in the town during the period was a business services firm which established
strong links with firms in both the hotel and restaurant sector and the trade
and repair services sector perhaps benefiting from input-output linkages with
these firms.

Figure 4.29: Magnified view of the industry space of the country’s most northerly
town at the end of the simulation period.

The town home to a third-level institution in the north west experienced the
most significant growth of all the towns in the country during the simulation
period. Much of this success in attracting new firms can be attributed to the
presence of the small third-level institution. As can be seen in Figure 4.30 the
town was successful in attracting firms in more skill-based sectors including
two in the mechanical, metallurgical and electrical manufacturing sector (blue
nodes) and two in the other manufacturing sector (red nodes). The existing
cluster of three firms in the other manufacturing sector was also an important
factor in this growth, three of these new firms formed links with firms in the
cluster. The towns proximity to the city in the west was also a factor with the
mechanical, metallurgical and electrical manufacturing in the south of the town
forming an important link with a firm based there.

The town also saw growth in other areas. A new firm in the food and tobacco
sector (lime green node) was established in the south east of the town and grew
to be a major player in the local economy with significant links to two other
manufacturing firms and several nearby firms in the agriculture, forestry and
hunting sector, likely taking advantage of input-output linkages with the latter.
Two new firms in the trade and repair services sector and one in the hotel and
restaurant sector opened their doors for business for the first time during the
simulation period while a third government services operation was established in
the town with strong links to the existing two operations. Finally, two firms in
the extractive industries sector (dark brown nodes) were also established nearby.
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Figure 4.30: Magnified view of the industry space of the town home to a third-level
institution in the north west of the country at the end of the simulation period.

Figure 4.31 shows the industry space of the town in the south west at the
end of the simulation. Only five new operations were established in this town
during the simulation period, a town which was dominated by firms in the food
and tobacco sector (lime green nodes) at the outset. One of these firms, located
in the town centre, was in the textiles, clothing and leather sector (brown node),
a sector closely related to the food and tobacco sector according to our product
distance metric. This firm formed strong links with a nearby firm in the food
and tobacco sector and the existing textiles, clothing and leather firm in the
town.

Figure 4.31: Magnified view of the town in the south west of the country at the end
of the simulation period.

A transport services (indigo node) firm opened an operation to the west of
the city forming strong links with the three existing operations in this sector
located in the town, a new government services operation (cyan node) was
established in the north of the city with a strong link to the existing operation
and a mail and telecommunications firm (red-orange node) opened in the south.
The only other firm to establish an operation in the town during the period was

222



Chapter 4 4. Spatial Models of Economic Development

a construction firm. This firm has no links with firms in the town itself, instead
taking advantage of the towns proximity to the city just to the north it has two
strong links to firms there.

The town in the far south east of the country did not prosper during the
simulation period. The town saw the closure of an existing finance and insurance
firm in the north of the town, marked by a white node in Figure 4.32, and only
one of the new firms established in the town was still open at the end of the
period. This firm was a trade and repair services firm located in the west of the
town. The town’s distance from all of the country’s third-level institutions made
it difficult for it to attract firms in many sectors to consider it as a potential
location for a new operation. The town’s sectoral composition did not make
it a particularly attractive location for those sectors who were more likely to
consider it as a potential location for new firms in terms of demonstration effect
signals and localisation economies. This is in contrast to the country’s most
northerly town where, despite similar isolation, specialising in sectors for which
close proximity to a third-level institutions is not vitally important related to
the tourism industry allowed it to grow.

Figure 4.32: Magnified view of the industry space of the town in the far south east of
the country at the end of the simulation period.

The town just south of the capital had similar problems also finding it dif-
ficult to attract new firms to set up in the area. However, its proximity to the
primary road network and the capital helped it to be slightly more successful.
A map of its industry space is shown in Figure 4.33. None of the firms based in
the town at the beginning of the simulation period closed down while five new
firms were established, two of which stayed open throughout the period and
grew to become the two largest firms in the town. Both of these firms relied on
links to firms in other urban centres in order to be successful. One of the firms,
a mail and telecommunications firm (red-orange node) in the south of the town,
took advantage of the town’s location next to the primary road to the capital
to form a strong link with a firm on the capital’s southern outskirts. The new
construction firm (dark grey node) in the west formed a link with a distant firm
near the country’s second city in the south of the country.
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Figure 4.33: Magnified view of the industry space of the town south of the capital at
the end of the simulation period.

The town in the midlands grew slowly, stretching along the primary road
running through the heart of the town. The road, along with the town’s location
between the capital and the quickly growing city in the west, was a major factor
in its growth. The town’s chemical plant closed down during the simulation
period however eight new operations were established in the area during the
same period with five of those surviving until the end of the simulation. The
largest growth sector for the town was the clothing, textiles and leather sector
(brown nodes). Three new clothing, textiles and leather firms were opened,
relying heavily on the primary road network for their success. Two of these
firms chose locations to the west of the town and formed strong links to firms
in the city in the west, the other chose a location to the east and made a strong
link to a firm in the capital. The new business services firm (yellow-gold node)
in the north of the town and the construction firm in the south also formed
links with firms in other large urban centres with the support of the primary
road network.

Figure 4.34: Magnified view of the industry space of the town in the midlands at the
end of the simulation period.

Overall we saw that the spatial dynamics of economic growth and develop-
ment in the small open economy were very uneven over the simulation period.
Urban centres grew at different rates with the success of different areas in at-
tracting new firms and the success of existing firms depending on a number of
different factors including the existing sectoral composition of the local economy
or access to nearby infrastructure and the interplay between those factors. As
we only considered one source of urbanisation economies - proximity to third-
level institutions, towns without a third-level institution grew very slowly. If
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other infrastructure and institutions were taken into account such disadvantages
are unlikely to have such a profound effect. We also saw that towns and cities
tended to develop specialities in certain sectors or strengthen existing ones,
these specialities varied from urban centre to urban centre depending on the
attributes associated with its spatial location. In particular, a region, city or
town was more likely to develop a speciality in an sector related to the existing
strengths of its local economy in terms of the product distance metric and that
could be catered to if necessary by a nearby third-level institution with activity
in relevant disciplines.

5 Conclusions

Uneven spatial and sectoral economic dynamics are areas of considerable in-
terest for policymakers. Our model provides a novel new approach to modelling
such dynamics with the potential to give policymakers an insight into how to
solve and analyse problems related to such uneven dynamics. For example our
approach has the potential to provide promising insight into how it may be
possible to promote balanced spatial growth in a country by stimulating growth
in certain regions and sectors through policy measures. It could also perhaps
provide in advance an insight into a country or city’s likely future growth path
in terms of spatial and sectoral distribution helping policymakers to provide for
future for infrastructure requirements in advance.

In the Irish case for example the “Expert Group on Future Skills Needs
(EGFSN) has the task of advising Government on future skills requirements and
associated labour market issues that impact on national potential for enterprise
and employment growth”, it pledges to “discharge a central role in ensuring that
labour market needs for skilled workers are anticipated and provided for” [26].
Insights into the likely future of the sectoral composition and spatial distribu-
tion of Ireland’s economy would certainly be of great interest to such groups.
The promotion of growth outside the Greater Dublin Area to correct spatial im-
balances in the Irish economy has been a major issue in Irish politics in recent
decades. In 2002 the government of Ireland released the NSS, a twenty-year
strategic plan designed to ensure “more balanced social, economic and physical
development between regions” [32]. The NSS aimed to promote specialisation
by different regions through the formation of specialised industrial clusters cit-
ing “[s]patial clusters of international excellence [. . . ] emerging in Ireland” and
seeking to “strengthen these areas and increase their number by supporting the
formation of self-sustaining clusters of economic activity” . However, the strat-
egy was unsuccessful and was scrapped in February 2013 and the issue of spatial
imbalance in Ireland remains an important one.

In 2013 van Egeraat et al. called for “more focused identification of existing
regional strengths followed by appropriate support measures for further develop-
ment of these strengths” [67] while in May 2014 Jan O’ Sullivan TD, Minister
of State at the Department of the Environment, Community and Local Govern-
ment announced that the government intended to finalise and put in place a new
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national planning framework to replace the NSS by the end of 2015 [58]. The
novel approach based on dynamic spatial networks presented in this chapter has
the potential to help inform decisions within a framework such as this one. Our
approach allows us to account for and to incorporate the multiple attributes
associated with a given location. In our model the establishment of new firms
and the closure or growth of existing firms is dependent on the structure of
existing networks and transport links i.e. the interplay between socio-economic,
political and historical factors in a given location are extremely important as we
set out to address. Our examples have shown us that this approach is capable of
producing interesting features of spatial and sectoral economic dynamics similar
to features seen in the real world such as the unequal growth of urban centres,
the unequal growth of economic sectors, the birth of new clusters of firms in
similar sectors and the strengthening of existing clusters.

However, our model is far from perfect and any future work would look to
address its shortcomings. The model has many parameters whose values are
difficult to approximate, especially without access to the appropriate data, and
requires detailed data regarding initial conditions in order to be useful. For ex-
ample, for reliable results in a real world situation an accurate product distance
measure and accurate data regarding firm size, sector and location would be
very important. We feel that with access to the necessary data these problems
could certainly be solved. Other issues arise from the fact that the model pre-
sented is extremely simplified. For example, the model neglects to account for
any negative affects for a firm associated with being based close to other firms
including competition for custom, employees or even higher land prices. A more
comprehensive model would incorporate such effects to prevent the advantages
of being based in a large city over a smaller one being overstated. Another
issue arises from the fact it considers only third-level educational institutions
as sources of urbanisation economies. A more accurate model would account
for the impact of other important infrastructure such as ports, airports and
power grids. Despite these issues we feel our approach is very promising. The
framework of our model allows us to be adaptable and overcome such problems
by adding extra overlapping dynamic spatial network layers and modifying re-
lationships to represent and account for the features of the economy that we
consider to be most important or wish to investigate.
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