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Networks

“The important question is to explain how the interaction of a
great number of people, each possessing only limited knowledge,
will bring about an order that could only be achieved by deliberate
direction taken by somebody who has the combined knowledge of
all these individuals”.

-Friedrich A. Hayek (1979)

Richie Burke Evolving networks, an introduction



Dynamic networks
Numerics

Network control

Applications

The study of large systems of interacting agents has found
application in many diverse fields such as

social networks

ecology

neuroscience

unmanned air-vehicle control

consensus problems
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Mathematical networks

A network is a weighted graph, that is, a set of elements called
nodes or vertices, which may be connected to one another via
relational links (edges). To each node we assign a state si and to
each edge a weight (or gain), σi ,j .

si sj

sksl

sm

sn

σj,i

σi,j
σk,j

σl,k

σi,k
σn,k

σn,m
σm,n

We want our states and gains to evolve until consensus is achieved.
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The evolving states and gains could be exemplified by

hyperlinks between webpages (gains) emerging when websites
(nodes) share a common theme (state).

influence between fish in a shoal (gains) when one fish (node)
changes position (state).

friendships (gains) growing or deteriorating as people (nodes)
cheer or vex one another.
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Consensus

Consensus occurs when our node states evolve to a common value.
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Differential equations

The state and gain evolutions are governed by a system of coupled
differential equations. The general form being:

dsi
dt︸︷︷︸

state evolution

= ξ(σi ,j , si , sj)︸ ︷︷ ︸
influence of gains and other nodes

.

dσi ,j
dt︸ ︷︷ ︸

gain evolution

= ψ(si , sj)︸ ︷︷ ︸
state dependence

.

Let’s now consider a particular evolution model.
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Switch protocol

The switch protocol model allows the gains between nodes to grow
until a certain proscribed threshold is reached, whereupon the
gains (effectively) lock into that value. The states meanwhile, pull
each other (via the gains) until a consensus is attained,

i.e. the
network nodes are all doing the same thing.

Focussing on the gain evolutions, the switch protocol gains evolve
according to

dσi ,j
dt

=

{
αh(si , sj)e

−βh(si ,sj ) if σi ,j < τ,
0 if σi ,j ≥ τ.

(1)

where α and β are rate parameters, h is some norm of the states
and τ is the threshold where we want the gains to cease evolving.
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The switch protocol gains grow and level off when the respective
states come together. Notice the gains are capped by the threshold
parameter τ . Here τ = 0.6
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Simulations

We generate networks using Matlab and investigate the evolutions
of the states, gains and various features of the systems at
consensus.
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Gain evolutions
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The maximum gain velocity for the
switch protocol is capped at α

βe .
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Bimodal gain distributions are often
observed for localised systems.
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Reduced order approximation

We have built a qualitative envelope to track the convergence of
our large systems.
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