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Multistability: Definition

Consider a dynamical system

x ∈ Rn : ẋ = f (x) (1)

We say that the system is multi-stable if it has more than one attractor:

Stable equilibrium point

Limit cycle

Limit torus

Strange attractor

We say that the system is K -stable if it has exactly K attractors.
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Multistability: Examples

2-stable (or bistable) systems are very common:
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Multistability: Supercritical pitchfork bifurcation

The simplest bistable system is:

ẋ = −x3 + bx (2)

0 if b ≤ 0 {0,+
√
b,−
√
b} if b > 0 (3)
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Multistable networks: Coupled cubic systems

Consider a Network with N nodes,

each of which has an internal dynamics described by (2), connected with a
linear coupling σ according to a given structure,
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Multistable networks: Coupled cubic systems

The dynamics of each node is given by

ẋi = −x3i + bxi + σ

N∑
j 6=i

aij(xj − xi ) (4)

where

aij =

{
1 if there is and edge between the nodes i and j

0 otherwise
(5)

Key question

How many global equilibrium points does the network have for any value
of b and σ?
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Multistable networks: Analysis of a simple network

The simplest case is with only two nodes:

whose dynamics is given by

ẋ1 = −x31 + bx1 + σ(x2 − x1)

ẋ2 = −x32 + bx2 + σ(x1 − x2)
(6)

According to the value of b and σ we can have 1,3,5, or 9 equilibrium
points, for all of which we have a closed solution.
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Multistable networks: Analysis of a simple network
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Multistable networks: Analysis of complex networks

When we consider complex networks, there are several issues we must deal
with:

For N ≥ 3 there are no closed solutions,

Solutions vary considerably depending on the structure of the network,

The dimension of the system explodes rapidly (there are up to 3N

equilibrium points, for N nodes).

We can not proceed either analytically or numerically. What do we do?
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Multistable networks: Analysis of complex networks

Take a network and get rid of all the edges (σ = 0),

Assuming b > 0 for each node there are exactly three equibrium points:

√
b stable

−
√
b stable

0 unstable

(7)

Roberto Galizia (NUIG) Postgraduates group talk January 25, 2018 11 / 18



Multistable networks: Analysis of complex networks

Take a network and get rid of all the edges (σ = 0),

Assuming b > 0 for each node there are exactly three equibrium points:

√
b stable

−
√
b stable

0 unstable

(7)

Roberto Galizia (NUIG) Postgraduates group talk January 25, 2018 11 / 18



Multistable networks: Analysis of complex networks

Take a network and get rid of all the edges (σ = 0),

Assuming b > 0 for each node there are exactly three equibrium points:

√
b stable

−
√
b stable

0 unstable

(7)

Roberto Galizia (NUIG) Postgraduates group talk January 25, 2018 11 / 18



Multistable networks: Analysis of complex networks

Global equilibria are therefore

{−
√
b, 0,
√
b} × {−

√
b, 0,
√
b} × . . .× {−

√
b, 0,
√
b} (8)

I.E. 3N equilibrium points that can be classified thanks to the analogy with
an hypercube

2N stable nodes (±1,±1, . . . ,±1)

2N−m
(N
m

)
saddles with m unstable manifolds xi = 0 for m components

1 unstable node (0, 0, . . . , 0)
(9)

Bifurcation points for each of these equilibria can be found using a
continuation method, that allows to follow branches of solution in the
augmented space {x, σ} ∈ RN+1.
Matlab toolbox Computational Continuation Core (or CoCo) has been
used to determine the minimum value of σ that guarantees 2-stability, for
networks with 2 to 9 nodes and a given topology.
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Multistable networks: Results

Complete network
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Multistable networks: Results

Line network
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Multistable networks: Results

Circle network
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Multistable networks: Results

Star network
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Forthcoming research

Classification of topologies

Generalization of the results to any structure

Detection of sub-regions of interest

Control of the network
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