Analysis of multistable networks

Roberto Galizia
National University of Ireland Galway
R.GALIZIA1@nuigalway.ie
January 25, 2018

Overview

(1) Multistability

- Definition
- Examples
- Supercritical pitchfork bifurcation
(2) Multistable networks
- Coupled cubic systems
- Analysis of a simple network
- Analysis of complex networks
- Results
(3) Forthcoming research

Multistability: Definition

Consider a dynamical system

$$
\begin{equation*}
\mathbf{x} \in \mathbb{R}^{n}: \dot{\mathbf{x}}=f(\mathbf{x}) \tag{1}
\end{equation*}
$$

Multistability: Definition

Consider a dynamical system

$$
\begin{equation*}
\mathbf{x} \in \mathbb{R}^{n}: \dot{\mathbf{x}}=f(\mathbf{x}) \tag{1}
\end{equation*}
$$

We say that the system is multi-stable if it has more than one attractor:

- Stable equilibrium point
- Limit cycle
- Limit torus
- Strange attractor

Multistability: Definition

Consider a dynamical system

$$
\begin{equation*}
\mathbf{x} \in \mathbb{R}^{n}: \dot{\mathbf{x}}=f(\mathbf{x}) \tag{1}
\end{equation*}
$$

We say that the system is multi-stable if it has more than one attractor:

- Stable equilibrium point
- Limit cycle
- Limit torus
- Strange attractor

We say that the system is K-stable if it has exactly K attractors.

Multistability: Examples

2-stable (or bistable) systems are very common:

Multistability: Supercritical pitchfork bifurcation

The simplest bistable system is:

$$
\begin{equation*}
\dot{x}=-x^{3}+b x \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
0 \text { if } b \leq 0 \quad\{0,+\sqrt{b},-\sqrt{b}\} \text { if } b>0 \tag{3}
\end{equation*}
$$

Multistable networks: Coupled cubic systems

Consider a Network with N nodes,

each of which has an internal dynamics described by (2), connected with a linear coupling σ according to a given structure,

Multistable networks: Coupled cubic systems

The dynamics of each node is given by

$$
\begin{equation*}
\dot{x}_{i}=-x_{i}^{3}+b x_{i}+\sigma \sum_{j \neq i}^{N} a_{i j}\left(x_{j}-x_{i}\right) \tag{4}
\end{equation*}
$$

where

$$
a_{i j}= \begin{cases}1 & \text { if there is and edge between the nodes } i \text { and } j \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

Multistable networks: Coupled cubic systems

The dynamics of each node is given by

$$
\begin{equation*}
\dot{x}_{i}=-x_{i}^{3}+b x_{i}+\sigma \sum_{j \neq i}^{N} a_{i j}\left(x_{j}-x_{i}\right) \tag{4}
\end{equation*}
$$

where

$$
a_{i j}= \begin{cases}1 & \text { if there is and edge between the nodes } i \text { and } j \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

Key question

How many global equilibrium points does the network have for any value of b and σ ?

Multistable networks: Analysis of a simple network

The simplest case is with only two nodes:

whose dynamics is given by

$$
\begin{align*}
& \dot{x}_{1}=-x_{1}^{3}+b x_{1}+\sigma\left(x_{2}-x_{1}\right) \\
& \dot{x}_{2}=-x_{2}^{3}+b x_{2}+\sigma\left(x_{1}-x_{2}\right) \tag{6}
\end{align*}
$$

Multistable networks: Analysis of a simple network

The simplest case is with only two nodes:

whose dynamics is given by

$$
\begin{align*}
& \dot{x}_{1}=-x_{1}^{3}+b x_{1}+\sigma\left(x_{2}-x_{1}\right) \\
& \dot{x}_{2}=-x_{2}^{3}+b x_{2}+\sigma\left(x_{1}-x_{2}\right) \tag{6}
\end{align*}
$$

According to the value of b and σ we can have 1,3,5, or 9 equilibrium points, for all of which we have a closed solution.

Multistable networks: Analysis of a simple network

Multistable networks: Analysis of complex networks

When we consider complex networks, there are several issues we must deal with:

Multistable networks: Analysis of complex networks

When we consider complex networks, there are several issues we must deal with:

- For $N \geq 3$ there are no closed solutions,

Multistable networks: Analysis of complex networks

When we consider complex networks, there are several issues we must deal with:

- For $N \geq 3$ there are no closed solutions,
- Solutions vary considerably depending on the structure of the network,

Multistable networks: Analysis of complex networks

When we consider complex networks, there are several issues we must deal with:

- For $N \geq 3$ there are no closed solutions,
- Solutions vary considerably depending on the structure of the network,
- The dimension of the system explodes rapidly (there are up to 3^{N} equilibrium points, for N nodes).

Multistable networks: Analysis of complex networks

When we consider complex networks, there are several issues we must deal with:

- For $N \geq 3$ there are no closed solutions,
- Solutions vary considerably depending on the structure of the network,
- The dimension of the system explodes rapidly (there are up to 3^{N} equilibrium points, for N nodes).

We can not proceed either analytically or numerically. What do we do?

Multistable networks: Analysis of complex networks

Take a network and get rid of all the edges $(\sigma=0)$,

Multistable networks: Analysis of complex networks

Take a network and get rid of all the edges $(\sigma=0)$,

Multistable networks: Analysis of complex networks

Take a network and get rid of all the edges $(\sigma=0)$,

Assuming $b>0$ for each node there are exactly three equibrium points:

$$
\begin{array}{ll}
\sqrt{b} & \text { stable } \\
-\sqrt{b} & \text { stable } \tag{7}\\
0 & \text { unstable }
\end{array}
$$

Multistable networks: Analysis of complex networks

Global equilibria are therefore

$$
\begin{equation*}
\{-\sqrt{b}, 0, \sqrt{b}\} \times\{-\sqrt{b}, 0, \sqrt{b}\} \times \ldots \times\{-\sqrt{b}, 0, \sqrt{b}\} \tag{8}
\end{equation*}
$$

Multistable networks: Analysis of complex networks

Global equilibria are therefore

$$
\begin{equation*}
\{-\sqrt{b}, 0, \sqrt{b}\} \times\{-\sqrt{b}, 0, \sqrt{b}\} \times \ldots \times\{-\sqrt{b}, 0, \sqrt{b}\} \tag{8}
\end{equation*}
$$

I.E. 3^{N} equilibrium points that can be classified thanks to the analogy with an hypercube

stable nodes
saddles with m unstable manifolds unstable node
$(\pm 1, \pm 1, \ldots, \pm 1)$
$x_{i}=0$ for m components
$(0,0, \ldots, 0)$

Multistable networks: Analysis of complex networks

Global equilibria are therefore

$$
\begin{equation*}
\{-\sqrt{b}, 0, \sqrt{b}\} \times\{-\sqrt{b}, 0, \sqrt{b}\} \times \ldots \times\{-\sqrt{b}, 0, \sqrt{b}\} \tag{8}
\end{equation*}
$$

I.E. 3^{N} equilibrium points that can be classified thanks to the analogy with an hypercube
$2^{N-m}\binom{N}{m}$
stable nodes
saddles with m unstable manifolds
unstable node
$(\pm 1, \pm 1, \ldots, \pm 1)$
$x_{i}=0$ for m components
$(0,0, \ldots, 0)$

Bifurcation points for each of these equilibria can be found using a continuation method, that allows to follow branches of solution in the augmented space $\{\mathbf{x}, \sigma\} \in \mathbb{R}^{N+1}$.

Multistable networks: Analysis of complex networks

Global equilibria are therefore

$$
\begin{equation*}
\{-\sqrt{b}, 0, \sqrt{b}\} \times\{-\sqrt{b}, 0, \sqrt{b}\} \times \ldots \times\{-\sqrt{b}, 0, \sqrt{b}\} \tag{8}
\end{equation*}
$$

I.E. 3^{N} equilibrium points that can be classified thanks to the analogy with an hypercube
$2^{N-m}\binom{N}{m}$ stable nodes
saddles with m unstable manifolds unstable node

$$
(\pm 1, \pm 1, \ldots, \pm 1)
$$

$x_{i}=0$ for m components $(0,0, \ldots, 0)$

Bifurcation points for each of these equilibria can be found using a continuation method, that allows to follow branches of solution in the augmented space $\{\mathbf{x}, \sigma\} \in \mathbb{R}^{N+1}$.
Matlab toolbox Computational Continuation Core (or CoCo) has been used to determine the minimum value of σ that guarantees 2-stability, for networks with 2 to 9 nodes and a given topology,

Multistable networks: Results

Complete network

Multistable networks: Results

Line network

Multistable networks: Results

Circle network

Multistable networks: Results

Star network

Star

Forthcoming research

- Classification of topologies
- Generalization of the results to any structure
- Detection of sub-regions of interest
- Control of the network

References

回 Harry Dankowicz and Frank Schilder (2013)
Recipes for Continuation
ISBN 978-1-61-1972-56-6
SIAM
Frank C. Hoppensteadt and Eugene M. Izhikevich (1997)
Weakly Connected Neural Networks
ISBN 0-387-9948-8
Springer
回 M. Newman (2010)
Networks: An Introduction
OUP Oxford

