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LQR optimal control

Let us consider a continuous time linear system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

with a given initial condition x(0) = x0.

Let us define a cost functional

J =

∫ +∞

0
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Mu(t) (2)

then, the optimal controller that minimizes it is given by the the feedback
control law

u(t) = −Kx(t) (3)

K = R−1(BTP + MT ) (4)

and the matrix P given by the positive solution of the Riccati equation

ATP + PA− (PB + M)R−1(BTP + MT ) + Q = 0 (5)
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ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

with a given initial condition x(0) = x0. Let us define a cost functional

J =

∫ +∞

0
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Mu(t) (2)

then, the optimal controller that minimizes it is given by the the feedback
control law

u(t) = −Kx(t) (3)

K = R−1(BTP + MT ) (4)

and the matrix P given by the positive solution of the Riccati equation

ATP + PA− (PB + M)R−1(BTP + MT ) + Q = 0 (5)

Roberto Galizia (NUIG) Postgraduates group talk March 22, 2017 3 / 14



LQR optimal control

Let us consider a continuous time linear system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

with a given initial condition x(0) = x0. Let us define a cost functional

J =

∫ +∞

0
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Mu(t) (2)

then, the optimal controller that minimizes it is given by the the feedback
control law

u(t) = −Kx(t) (3)

K = R−1(BTP + MT ) (4)

and the matrix P given by the positive solution of the Riccati equation

ATP + PA− (PB + M)R−1(BTP + MT ) + Q = 0 (5)

Roberto Galizia (NUIG) Postgraduates group talk March 22, 2017 3 / 14



LQR optimal control

Let us consider a continuous time linear system
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Network description

Consider a thermal system

x is the internal temperature
w is the external temperature
u is the thermal power

The dynamical model can then be found through heat balance.{
Cẋ = k(w − x) + u

y = x
(6)

where C is the thermal conductivity and k is the heat transfer coefficient.
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Network description

Consider now an undirected complex network of N nodes.

Defining the Adjacency matrix

{Adj}ij = aij =

{
1 if there is an edge between i and j

0 otherwise
(7)

the dynamics of a generic node is given by{
ẋi = k

C

∑N
j=1 aij(xj − xi ) + 1

C ui

yi = xi
i = 1, · · · ,N (8)
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Network description

Introducing the Laplacian matrix

{L}ij =


ki if i = j

−1 if i 6= j ∧ there is an edge between i and j

0 otherwise

(9)

where ki is the degree of the node i , i.e. the number of edges connected
to i ,

defining the vectors

x =

x1...
xN

 u =

u1...
uN

 y =

y1...
yN

 (10)

the global differential equation that describes the dynamics of the network
is {

ẋ = − k
C Lx + 1

C Iu

y = x
(11)
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Centralized control

Given an initial condition

x(0) =
[
x01 · · · x0N

]T
(12)

defining the matrix A and B

A = − k
C L ∈ RN×N B = 1

C I ∈ RN×N (13)

the differential equation (11) can be rewritten as

ẋ = Ax + Bu (14)

Assuming that the desired state is constant

xd =
[
xd1 · · · xdN

]T
(15)

we want the state x to converge to xd .
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Centralized control

Let us introduce the error ε = x− xd

ε̇ = ẋ = Ax + Bu = Aε+ Bu + Axd (16)

By choosing a control action

u = ũ− BT (BBT )−1Axd (17)

the dynamics of the error is given by the linear system

ε̇ = Aε+ Bũ (18)

then the choice
ũ = −Kε (19)

where K is calculated as in (4), minimizes the cost functional

J =

∫ +∞

0
εTQε+ ũTRũ (20)
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Decentralized control

Why decentralize the control?

The centralized controller is optimal and easy to implement but it
must be set by a unique global processor which has knoledge of the
whole network, i.e. it must communicate with all the nodes and must
calculate online the Laplacian matrix.

If each node has is own processor and it is able to compute its own con-
trol action it reasonable to assume that the only available informations
are local, i.e. about the node itself and its neighbours.

The controller is not optimal anymore, but the computation can be
spread all over the nodes.

Adding/removing a node does not affect the whole network but only a
small subset of nodes.
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Decentralized control

Assume then that each node is aware only of itself and its neighbours
zi = {{xi} ∩ xj∀j : aij = 1},

we have a set of N star sub-networks.

And the model for each node is

ẋi =
k

C

∑
j :xj∈zi

(xj − xi ) +
1

C
ui (21)
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Decentralized control

Considering the Laplacian matrix Li of the i − th sub-network, the
dynamics can be rewritten in matrix form as

żi = − k

C
Lizi +

1

C
biui (22)

where bi is a vector with one only 1 at the position i and all 0 elsewhere.

Defining the local error εi = {{(xi − xdi )} ∪ (xj − xdj )∀j : aij = 1}
Let

Ai = − k

C
Li and Bi =

1

C
bi (23)

The control action can be chosen, as the LQR solution of the subnetwork,

ui = −BT
i (BiB

T
i )−1Aixdi −Kiεi (24)

whit Ki calculated with (4), minimizing the cost functional

Ji =

∫ +∞

0
εTi Qεi + ru2i (25)
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Results and comparison

With xdi = 25 ∀i , both the controllers complete the task

and as it was expected, the centralized control performs better
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Forthcoming research

What’s next?

Study the stability of the controlled system

Find out which mechanisms can lead to instability

... and moreover

Induce structural changes by varying critical parameters

Generalize the analysis to more complicated systems
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