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Introduction

We know from experience that inflating a rubber balloon is difficult in the
beginning, but then it becomes easier. Finally, it becomes difficult again as
the balloon approaches rupture. This is reflected in Osborne’s 1909
experimental results (left).
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He also tested a monkey bladder (right). In this case, the pressure-stretch
curve exhibits monotonic increasing, exponential-like behaviour.
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Modelling

I Spherical shell made of an incompressible isotropic hyperelastic
material

I Shell is subject to internal pressure P.
I Assume purely radial deformation, r = r(R), where r and R denote

the deformed and undeformed radial distances, respectively.

We find that the deformation gradient, F = ∂x/∂X, is given by

F = diag(dr/dR, r/R, r/R), (1)

where x and X are the deformed and undeformed positions of a material
particle, respectively.

From this, the principal stretches (the square roots of the eigenvalues of
B = FFT ) are thus λ1 = dr/dR (radial stretch) and λ2 = λ3 = r/R ≡ λ
(circumferential stretch).
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Using the incompressibility condition, det F = λ1λ2λ3 = 1, we have

dr
dR =

R2

r2 . (2)

Letting A, B and a, b denote the inner radius and outer radius of the shell
in the reference and current configurations, respectively, and solving (2)
eventually leads to

1− λa
3 =

R3

A3 (1− λ
3) =

B3

A3 (1− λb
3), (3)

where λa = a/A and λb = b/B.
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By spherical symmetry, the only non-zero components of the Cauchy stress
tensor T are t1 = T11 (radial stress) and t2 = T22 = T33 (hoop stress).

For incompressible isotropic hyperelastic materials, these are given by
given by

t1 = λ1
∂W
∂λ1
− p and t2 = λ2

∂W
∂λ2
− p, (4)

where W = W (λ1, λ2, λ3) = W (λ−2, λ, λ) is the strain energy density
function and p is a an arbitrary scalar.

For mechanical equilibrium, the equation of motion is

div T = 0, (5)

where div denotes the divergence operator in the current configuration
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The only non-trivial component of (5) is

dt1
dr =

2
r (t2 − t1). (6)

Introducing the auxiliary function Ŵ (λ) = W (λ−2, λ, λ) and performing
some manipulations, we find

dt1
dλ =

Ŵ ′(λ)

1− λ3 . (7)

Because the shell is subject to internal pressure P, the boundary
conditions are t1(λa) = −P and t1(λb) = 0. Integrating (7) and imposing
the boundary conditions, we find that

t1(λ) =
∫ λ

λb

Ŵ ′(s)
1− s3 ds and P =

∫ λb

λa

Ŵ ′(λ)

1− λ3 dλ, (8)

where s is a dummy variable.
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Now, introducing the thickness parameter δ = (B − A)/A and noting from
(3) that

λb =

(
1− 1− λ3

a
(1 + δ)3

)
, (9)

we can expand P in terms of δ to find

P = δ
Ŵ ′(λ)

λ2 +
δ2

2λ4

[
λ3 − 2
λ

Ŵ ′(λ)− (λ3 − 1)Ŵ ′′(λ)

]
+ O(δ3). (10)

Hence, for thin shells, P can be approximated by

P = δ
Ŵ ′(λ)

λ2 . (11)
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Laplace’s Law

Also, expanding P/t2 to first order in δ leads to

P
t2

=
2
λ3 δ. (12)

The hoop stress is equal to the surface tension T divided by the deformed
thickness of the shell. Combining both of these facts, we recover the
classical membrane relation:

T =
Pr
2 , (13)

where r is the radius of the shell. This is sometimes called Laplace’s Law.
Similarly, it can be shown for a cylinder that

T = Pr . (14)
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Models

We consider the Mooney strain energy density function:

Wn = c1(λ
n
1 + λn

2 + λn
3 − 3) + c2(λ

n
1λ

n
2 + λn

2λ
n
3 + λn

3λ
n
1 − 3), (15)

and the Gent-Gent model

WGG = −c1Jmln
(

1− λ2
1 + λ2

2 + λ2
3 − 3

Jm

)
+c2ln

(
λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

3

)
,

(16)
where n,c1, c2,Jm are positive constants. The Mooney-Rivlin model is
given by (15) with n = 2. The Gent model is given by (16) with c2 = 0.
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Pressure-stretch curves for the Mooney-Rivlin model
Pressure-stretch curves (from (11)) for various values of the parameter
c ′ = c2/c1

P
MR

Three types of behaviour may occur:
I A monotonic increasing curve
I A limit-point instability, i.e. a maximum in the curve
I An inflation-jump instability, i.e. a sudden jump in radius for a small

increase in pressure (see green curve)
Based on experimental data, the latter two are required to model rubber.
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Instability analysis for the Mooney model

We found explicit conditions on the parameters for the shell to have a
limit-point instability by solving the equations

dP/dλ = 0, d2P/dλ2 = 0. (17)

These conditions are 1.5 < n < 3 and c ′ < c ′cr with

c ′cr =
(−2n − 3)

(
−7n2−3n

√
5n2−9+9

2n2−9n+9

)−1/3
− (n − 3)

(
−7n2−3n

√
5n2−9+9

2n2−9n+9

)2/3

(2n − 3)
(
−7n2−3n

√
5n2−9+9

2n2−9n+9

)
+ n + 3

,

and the corresponding critical value of the circumferential stretch:

λcr =

(
−7 n2 + 3

√
5 n4 − 9 n2 − 9

2 n2 − 9 n + 9

) 1
3n

.
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Curve fitting
We also fitted the theoretical model to the experimental data.
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The Gent model provided the best fit for the rubber balloon, while the
Mooney model provided the best fit for the bladder. However, the bladder
is highly anisotropic so this model may be inadequate.
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