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Residual stresses

Many biological structures experience a state of stress even if no
external load is being applied. This is called residual stress.

Can be demonstrated by cutting a cylindrical section of the structure
radially. It will open up, revealing that they were under
circumferential residual stresses

(c)

Left: slice of an Irish Ash tree; Middle: a green chilli pepper; Right:
Equatorial slice of rat heart (taken from [1]).
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Opening angle method

When the cylindrical section is cut open, it goes from a state of
residual stress to a state of (approximately) zero stress.

The opening angle of the sector gives a measure of the residual
stress.

Residual stresses can then be modelled by running a backwards
simulation of this scenario.
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Two-layer model

We let {R,Θ,Z} and {r , θ, z} denote the cylindrical coordinate systems in
which the geometries of the (undeformed) circular sector and the closed
tube, respectively, are delimited.

The circular sector of opening angle α0 consists of a stiff inner layer
(coating) (A ≤ R ≤ B) and a softer outer layer (substrate)
(B ≤ R ≤ C ).

The deformation is then described by the mapping

r = r(R), θ = kΘ, z = λzZ , (1)

where

k =
2π

2π − α0
> 1 (2)

is a measure of the opening angle and λz ≥ 1 is the uniform axial stretch.
We let a = r(A), b = r(B), c = r(C ).
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Two-layer model

In the absence of body forces, the only non-trivial equation of
equilibrium is

∂σrr
∂r

(l)

+
σ
(l)
rr − σ(l)θθ

r
= 0 (l = s, c), (3)

where the radial and circumferential stresses are given by

σ
(l)
rr = −q(l) + λ1

∂W (l)

∂λ1
, σ

(l)
θθ = −q(l) + λ2

∂W (l)

∂λ2
, (4)

respectively, where q(l) is an arbitrary scalar, the λi are principal stretches.
Here s and c refer to the the outer layer and the inner layer, respectively.

For the boundary conditions we prescribe an internal pressure P, along
with perfect bonding at the interface and a traction free outer face:

σ
(c)
rr (a) = −P, σ

(s)
rr (b) = σ

(c)
rr (b), σ

(s)
rr (c) = 0. (5)
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Two-layer model

For convenience, we introduce the quantities,

x ≡ kλz
r2

R2
, xa ≡ kλz

a2

A2
, xb ≡ kλz

b2

B2
, xc ≡ kλz

c2

C 2
, (6)

This allows us to transform the strain energy densities W (l)(λ1, λ2, λ3)
into a function of a single variable, Ŵ (l)(x). Making this transformation,
integrating the equilibrium equation and applying the boundary conditions,
we find that the inflating pressure P is

P =

∫ xb

xa

Ŵ
(c)
,x (x)

1− x
dx +

∫ xc

xb

Ŵ
(s)
,x (x)

1− x
dx (l = s, c). (7)

For a given axial stretch λz , internal pressure P and strain energy densities
Ŵ (l)(x), the new geometry can be determined by solving the above
equation along with

xb(εB + 1) = εB + xa, xc(εC + 1) = εC + xa. (8)

where εB = B2/A2 − 1 and εC = C 2/A2 − 1.
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Instability

However, the previously discussed deformation may not be stable. Here we
study the stability of a coated sector closed into a pressurized cylinder. We
signal the onset of instability by the existence of small-amplitude
wrinkles, solutions to the incremental equations of equilibrium. We seek
decaying sinusoidal solutions.
It can be shown that the wrinkles exist when the following boundary value
problem is solved for z(l) = z(l)(x), (l = s, c), the 2× 2 Hermitian surface
impedance matrix [3].

(i) Initial condition: z(c)(xa) = 0;

(ii) Numerical integration of the differential matrix Riccati equation

d

dx
z(l) =

1

2x(1− x)

[
z(l)G

(l)
2 z(l) + i

(
G

(l)
1

)†
z(l) − iz(l)G

(l)
1 + G

(l)
3

]
,

(9)
in the coating (l = c), from xa to xb;

(iii) Interfacial condition: z(c)(xb) = z(s)(xb);
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(iv) Numerical integration of the differential Riccati matrix equation (9) in
the substrate (l = s), from xb to xc ; and

(v) Target condition: det z(s)(xc) = 0.

In Eq.(9), † denotes the Hermitian transpose and the Stroh sub-matrices
have components [2],

G1 =

[
i −n

−n(1− σ) −i(1− σ)

]
, G2 =

[
0 0
0 1/α

]
, G3 =

[
κ11 iκ12
−iκ12 iκ22

]
,

(10)
where the superscript “(l)” is understood, n denotes the wrinkling mode
(number of wrinkles), and

κ11 = 2β + 2α(1− σ) + n2[γ − α(1− σ)2],

κ12 = n(2β + γ + α(1− σ2),

κ22 = γ − α(1− σ)2 + 2n2(β + α(1− σ). (11)

Here, in general,

α =
2xŴ,x(x)

k2x2 − 1
, γ = k2x2α, β = 2x2Ŵ,xx(x)+xŴ,x(x)−α, σ = σrr/α.

(12)
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Algorithm

For given reference geometry and material pa-
rameters, we can find the critical opening an-
gle, αcr = α0, at which wrinkles form when
the sector is closed into an intact tube, i.e.,
the value of α0 when the target condition is
reached. Essentially, we implement the steps
(i)-(iv) and iterate over α0 until the target
condition (v) is reached.
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Experimental and numerical results

(a) Tensile tests for red silicone and black urethane. Curve-fitting to
the Mooney-Rivlin models.
(b), (c) Sectors made of black urethane substrate and red silicone
coating, with opening angles 120◦ and 240◦. No wrinkles form in
the former case, while six form in the latter case.

Implementing the algorithm for the dimensions and material parameters of
this sector, we find that the critical opening angle is 201◦ (with n = 4).

R. Mangan 10 / 13



Experimental and numerical results

Next we perform the stability analysis using the dimensions and material
parameters of a rabbit carotid artery, for varying pressure. We find that
the critical opening angle for P = 0 is αcr = 52◦, significantly less than the
recorded opening angle for the rabbit artery, 160◦. We also find that the
critical opening angle increases rapidly as the pressure increases.
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Experimental and numerical results

Thus, our theory predicts that, (i) buckling should occur in the artery in
the zero pressure state, and (ii) this buckling can be eliminated quickly by
applying an internal pressure. This is in line with experiments on a rat’s
pulmonary artery.

Rat pulmonary artery at three different
states: (A) Intact with low internal pres-
sure of 15 mmHg and smooth inter-
nal surface; (B) Intact with no pressure
and buckled internal face; (C) Cut open
(taken from [5]).
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