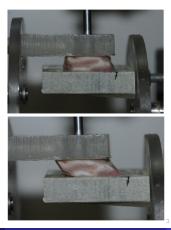
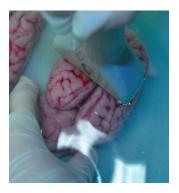
Guided waves in pre-stressed hyperelastic plates and tubes

Guo-Yang Li¹, Qiong He², **Robert Mangan**³, Guoqiang Xu¹, Chi Mo¹, Jianwen Luo², Michel Destrade³, Yanping Cao¹

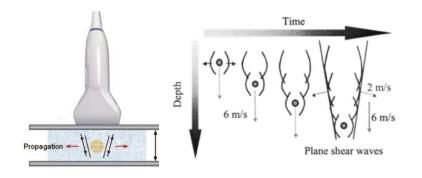
¹Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, PR China

²Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China

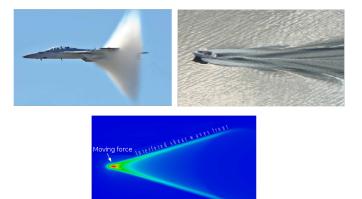

³School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Ireland


Mechanical properties of biological tissues

- Useful for diagnostics or for simulations (e.g. stents, head impacts)
- Found from **mechanical tests**, treating tissues as an engineering material.
- Destructive, can't be applied in vivo

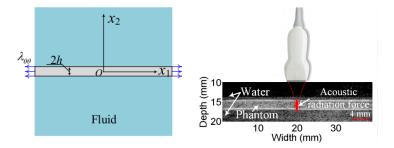

Mechanical properties of biological tissues

- Alternatively, use non-destructive acoustic waves
- Speed of the wave depends on the material properties
 - Measure wave speed to infer mechanical properties
- Can apply in vivo

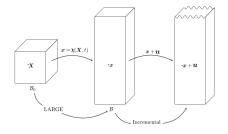


Generating waves

- Probe generates a real-time ultrasound image
- Also generates a low frequency shear wave by focusing acoustic beam
- The wave is seen in the ultrasound field and its speed is measured



Elastic Cherenkov effect



Three similar wave phenomena observed when the velocity of the excitation source is greater than the velocities of the resulting waves in the media.

Now we consider **guided waves** (generated using Verasonics device) in a **stretched** polyvinyl alcohol (PVA) cryogel plate immersed in water.

Model wave propagation in solid as small "incremental" deformation superimposed on a large deformation.

Equations of motion:

$$abla \cdot \mathbf{\Sigma} =
ho \ddot{\mathbf{u}}$$
 (solid)

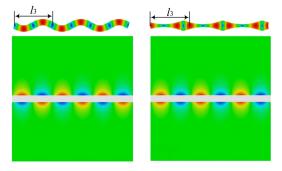
where
$$oldsymbol{\Sigma} = oldsymbol{\mathcal{A}_0}
abla oldsymbol{u}$$
 and $oldsymbol{\mathcal{A}_0} = rac{\partial^2 W}{\partial oldsymbol{\mathsf{F}} \partial oldsymbol{\mathsf{F}}}$,

$$\nabla(\kappa\nabla\cdot\mathbf{u}^{\mathsf{F}})=\rho^{\mathsf{F}}\ddot{\mathbf{u}}^{\mathsf{F}},\qquad (\mathsf{fluid})$$

where $c_{\rho} = \sqrt{\kappa/\rho^F}$ is the speed of sound in the fluid.

Seeking a wave solution $e^{skx_2}e^{ik(x_1-ct)}$, and imposing continuity of stress and displacements across the fluid-solid interfaces, we find both symmetric and anti-symmetric solutions.

For the anti-symmetric mode, the dispersion equation reads

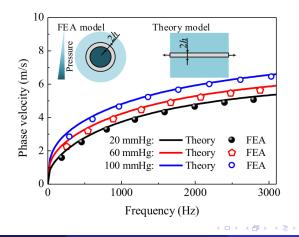

$$\gamma s_1(1+s_2^2)^2 anh(s_1kh) - \gamma s_2(1+s_2^2)^2 anh(s_2kh) + \frac{\rho^F c^2}{\sqrt{1-\frac{c^2}{c_p^2}}}(s_1^2-s_2^2) = 0.$$

When the plate is not stretched, we recover the equation [3]

$$\left(2 - \frac{\rho c^2}{\mu_0}\right)^2 \tanh(kh_0) - 4\sqrt{1 - \frac{\rho c^2}{\mu_0}} \tanh\left(\sqrt{1 - \frac{\rho c^2}{\mu_0}}kh_0\right) + \frac{\rho \rho_F c^4}{\mu_0^2 \sqrt{1 - \frac{c^2}{c_\rho^2}}} = 0,$$

where μ_0 is the shear modulus.

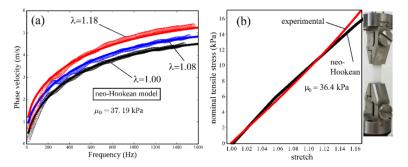
Finite element simulations



Anti-symmetric and symmetric modes

∃ >

Finite element simulations


- For large radius-to-thickness ratio, FE simulation of waves in a tube agree with theoretical **plate** model.
 - Can use plate theory for tubes (e.g. arteries)

Curve fitting

Determine material parameters by fitting the theoretical curves to the experimental data. For example, the **neo-Hookean model** was used:

$$W = \frac{\mu_0}{2}(I_1 - 3). \tag{1}$$

(a) dispersion curves at various stretches, (b) stress response in destructive tensile test

- Bercoff, J., Tanter, M., & Fink, M. (2004). Sonic boom in soft materials: The elastic Cerenkov effect. Applied Physics Letters, 84(12), 2202-2204.
- Li, Guo-Yang, et al. (2016). Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled softmaterials. (submitted)
- Osborne, M. F. M., & Hart, S. D. (1945). Transmission, reflection, and guiding of an exponential pulse by a steel plate in water. I. Theory. The Journal of the Acoustical Society of America, 17(1), 1-18.