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Motivation

The analysis and modelling of flocks/swarms has found wide
application in areas such as

biology/ecology

civil engineering/crowd control

fisheries

robotics/unmanned aerial
vehicles

We shall investigate swarming models from the perspective of
hybrid multi-agent control/consensus.
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Broadly speaking, consensus occurs when the many agents adjust
their positions/velocities in relation to one another and reach some
“agreement” such as a formation in space.
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models have been developed to simulate the complex choreography
of flocking animals.
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Flocking models

The modelling of flocks has been an active area of applied
mathematics for the past twenty years. Numerous mathematical
models have been developed to simulate the complex choreography
of flocking animals.
Various metrics have been proposed to measure substructures in
networks, ideas like modularity, cliques, cycles and reachability
spaces have been tailored by graph theorists and computer
scientists to search through large data structures and evince
connected components in efficient ways.
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differential equations. The general form being:
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Differential equations

The state and gain evolutions are governed by a system of coupled
differential equations. The general form being:

ṡi = f(si )
︸︷︷︸

independent kinematics

+
∑

j 6=i

ζ(σi ,j , si , sj ,Ωi )

︸ ︷︷ ︸

local influence

+ η(si , sj)
︸ ︷︷ ︸

global influence

(1)
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Differential equations

The state and gain evolutions are governed by a system of coupled
differential equations. The general form being:

ṡi = f(si )
︸︷︷︸

independent kinematics

+
∑

j 6=i

ζ(σi ,j , si , sj ,Ωi )

︸ ︷︷ ︸

local influence

+ η(si , sj)
︸ ︷︷ ︸

global influence

(1)

σ̇i ,j = ξ(si , sj ,Ωi ) (2)

where Ωi is the local neighbourhood of agent i containing n

members and ξ is some function of the respective states.
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Gain based models

We aim to tailor equations (1) and (2) to effect flocking in a multi
agent model.
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We aim to tailor equations (1) and (2) to effect flocking in a multi
agent model. We define a target function to be used in the state
kinematics as follows

∆i ,j = si − sj =

(
xi − xj
yi − yj

)
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We aim to tailor equations (1) and (2) to effect flocking in a multi
agent model. We define a target function to be used in the state
kinematics as follows

∆i ,j = si − sj =

(
xi − xj
yi − yj

)

Hereafter we shall define the norm ‖ · ‖ as the square of the
euclidean. To be explicit

‖∆i ,j‖ = (xi − xj)
2 + (yi − yj)

2

ψi ,j = ‖∆i ,j‖ − d2
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Particular form

The meso-attraction/micro-repulsion for the state kinematics is
included via the following switch function

zi ,j =

{
σi ,j if ψi ,j ≥ 0,
b otherwise.

For a positive boost constant b.

Richie Burke Fnding Flocks



Flocking
Generalised dynamics

Mathematical networks
Finding flocks

Particular form

The meso-attraction/micro-repulsion for the state kinematics is
included via the following switch function

zi ,j =

{
σi ,j if ψi ,j ≥ 0,
b otherwise.

For a positive boost constant b.
Now neglecting the independent kinematics of each agent
f(si ) = 0, further ignoring the global influence η(si , sj) = 0 and
setting the local influence ζ(σi ,j , si , sj) = zi ,jψi ,jΘi ,j the state
kinematics generalised by equation (1) reduces to

ṡi =
∑

j 6=i

zi ,jψi ,jΘi ,j (3)
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Gain evolutions

The gain evolutions suggested by equation (2) are constructed by
choosing a gain threshold switch τ and incorporating a growth
factor α and a decay factor β should the corresponding states lie
within or without the local group of n.
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Gain evolutions

The gain evolutions suggested by equation (2) are constructed by
choosing a gain threshold switch τ and incorporating a growth
factor α and a decay factor β should the corresponding states lie
within or without the local group of n. For simplicity (and to
reduce the possibility of chattering in the gain evolutions) the
gains will not be driven by an explicit state dependence. Hence our
gains will evolve according to

σ̇i ,j = gi ,j (4)

where

gi ,j =







α if ‖∆i ,j‖ ∈ Ωi , σi ,j < τ
−β if ‖∆i ,j‖ /∈ Ωi , σi ,j > 0
0 otherwise.
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Networks

We shall couch our discussion in the language of complex network

theory. A network is a weighted graph, that is, a set of elements
called nodes or vertices, which may be connected to one another
via relational links (edges). To each node we assign a state and to
each edge a weight (or gain), σi ,j .
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Networks

We shall couch our discussion in the language of complex network

theory. A network is a weighted graph, that is, a set of elements
called nodes or vertices, which may be connected to one another
via relational links (edges). To each node we assign a state and to
each edge a weight (or gain), σi ,j .

i j

kl

m

n

σj,i

σi,j σk,j

σl,k

σi,k
σn,k

σn,m
σm,n
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Networks

We shall couch our discussion in the language of complex network

theory. A network is a weighted graph, that is, a set of elements
called nodes or vertices, which may be connected to one another
via relational links (edges). To each node we assign a state and to
each edge a weight (or gain), σi ,j .

i j

kl

m

n

σj,i

σi,j σk,j

σl,k

σi,k
σn,k

σn,m
σm,n

We want our states and gains to evolve until some “configuration”
or consensus is achieved.Richie Burke Fnding Flocks
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We shall work with 2 different definitions for a flock.

radial filling

quasi-lattices

A radial filling defines a flock to have occurred when every agent
lies within a minimal circular distance (subject to separation rules).
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Defining a flock

We shall work with 2 different definitions for a flock.

radial filling

quasi-lattices

A radial filling defines a flock to have occurred when every agent
lies within a minimal circular distance (subject to separation rules).

For a configuration of n nodes, we consider a square lattice of
l = (2n − 1)2 − 1 nodes centred around a target location. Next we
measure the number of nodes within this lattice (or within a radius
of d

√
2l).
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Adjacency matrices

We shall manipulate the adjacency matrix to glean information
about connected components in our spatial networks. Connected
nodes represent agents in close proximity whereas disconnected
nodes represent agents farther apart than our flocking target
distance.
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Adjacency matrices

We shall manipulate the adjacency matrix to glean information
about connected components in our spatial networks. Connected
nodes represent agents in close proximity whereas disconnected
nodes represent agents farther apart than our flocking target
distance.
Consider a finite symmetric graph G(V,E) with n vertices vi ∈ V

and c edges ei ,j ∈ E . The adjacency matrix A describes the 2c
arcs (or c edges). Where

A ∋ ai ,j , ai ,j =







0 if i = j ,
1 if ei ,j ∈ E

0 otherwise.
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Reflexive adjacency

Let S ∋ si ,j be A+ 2In, the reflexive adjacency containing self

loops on each node, hence

si ,j =







2 if i = j ,
1 if ei ,j ∈ E

0 otherwise.
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Reflexive adjacency

Let S ∋ si ,j be A+ 2In, the reflexive adjacency containing self

loops on each node, hence

si ,j =







2 if i = j ,
1 if ei ,j ∈ E

0 otherwise.

Now Sc catalogues the number of distinct walks of length c from
each node vi to vj , ∀vi , vj ∈ V . It follows that for a given row k in
Sc , if column l is non-zero then ek,l ∈ E , otherwise vk and vl
belong to different components.
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