Building Sparse Graphs by Inductive Operations

Qays Shakir

National University of Ireland, Galway Middle Technical University

2-2-2018

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Qays Shakir

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ● ⊇ ● のへぐ

Qays Shakir

Inductive construction for building graphs.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Qays Shakir

Inductive construction for building graphs.Sparsity and Tightness of a Graph.

◆□ > ◆□ > ◆三 > ◆三 > ・三 の < ⊙

Qays Shakir

- Inductive construction for building graphs.
- Sparsity and Tightness of a Graph.
- Some Inductive operations.

Qays Shakir

- Inductive construction for building graphs.
- Sparsity and Tightness of a Graph.
- Some Inductive operations.
- Some well-known characterisations of sparse graphs.

Qays Shakir

Inductive Construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

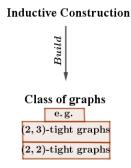
Qays Shakir

Inductive Construction

Class of graphs

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

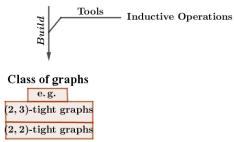
Qays Shakir



◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

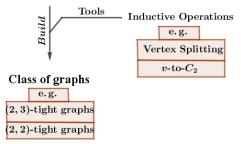
Qays Shakir

Inductive Construction

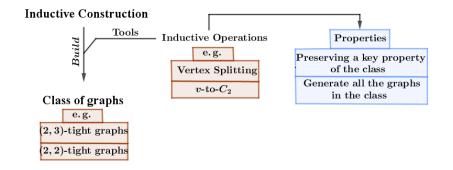


Qays Shakir

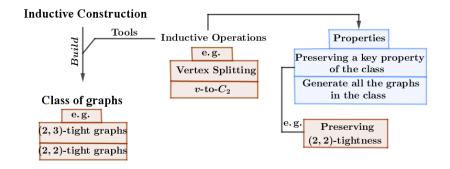
Inductive Construction



Qays Shakir



Qays Shakir



Qays Shakir

Sparsity and Tightness of a Graph

Let G = (V, E) be a graph and k, l be two positive integers such that $k \ge 1$ and $l \le k$. Then

◆□ > ◆□ > ◆三 > ◆三 > ・三 の < ⊙

Qays Shakir

Sparsity and Tightness of a Graph

Let G = (V, E) be a graph and k, l be two positive integers such that $k \ge 1$ and $l \le k$. Then

G is called a (k, l)-sparse if for every non-empty subgraph $H = (V_H, E_H)$ of G then $|E_H| \le k|V_H| - l$. If $k + 1 \le l \le 2k - 1$ and G satisfies the above condition, then G should has at least two vertices to be (k, l)-sparse

Qays Shakir

Sparsity and Tightness of a Graph

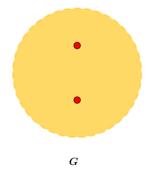
Let G = (V, E) be a graph and k, l be two positive integers such that $k \ge 1$ and $l \le k$. Then

G is called a (k, l)-sparse if for every non-empty subgraph H = (V_H, E_H) of G then |E_H| ≤ k|V_H| − l. If k + 1 ≤ l ≤ 2k − 1 and G satisfies the above condition, then G should has at least two vertices to be (k, l)-sparse

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

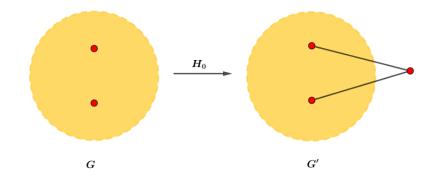
G is called
$$(k, l)$$
-tight if G is (k, l) -sparse and $|E| = k|V| - l$.

Qays Shakir

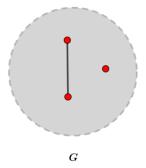


◆□ → ◆□ → ◆目 → ▲目 → ● ● ● ● ●

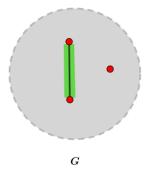
Qays Shakir



Qays Shakir



Qays Shakir



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ つへの

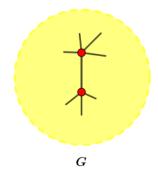
Qays Shakir



◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

Qays Shakir

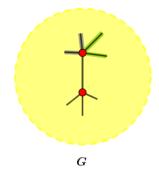
Some Inductive operations Vertex Splitting Operation



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Qays Shakir

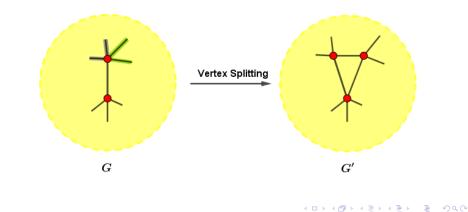
Some Inductive operations Vertex Splitting Operation



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

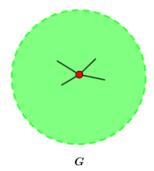
Qays Shakir

Some Inductive operations Vertex Splitting Operation



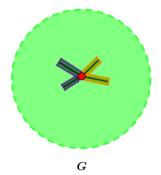
Qays Shakir

Some Inductive operations v-to- C_2 Operation



Qays Shakir

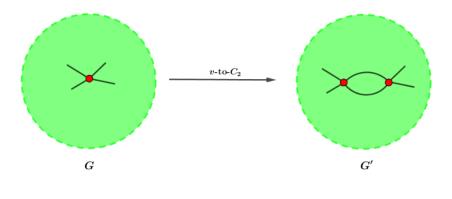
Some Inductive operations v-to- C_2 Operation



◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

Qays Shakir

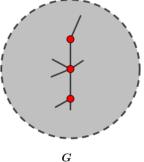
Some Inductive operations v-to- C_2 Operation



◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ●

Qays Shakir

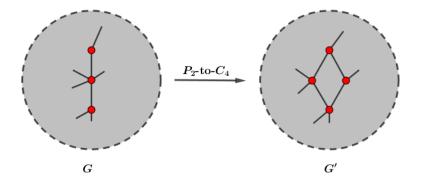
Some Inductive operations P_2 -to- C_4 Operation



◆□ → ◆□ → ◆目 → ▲目 → ● ● ● ● ●

Qays Shakir

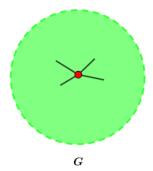
Some Inductive operations P_2 -to- C_4 Operation



・

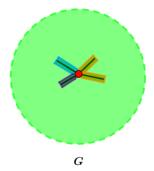
Qays Shakir

Some Inductive operations v-to- K_4 Operation



Qays Shakir

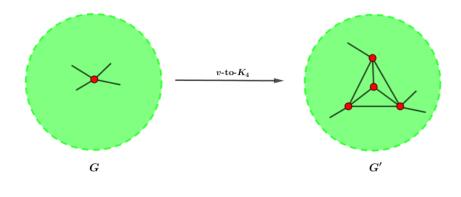
Some Inductive operations v-to- K_4 Operation



◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

Qays Shakir

Some Inductive operations v-to- K_4 Operation



Qays Shakir

Some well-known characterisations of sparse graphs

A graph is (k, k)-sparse if and only if *G* is the union of *k* edge-disjoint spanning trees

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Qays Shakir

Some well-known characterisations of sparse graphs

- A graph is (k, k)-sparse if and only if *G* is the union of *k* edge-disjoint spanning trees
- A graph *G* is a plane Laman ((2,3)-tight) graph if and only if it can be obtained from an edge by plane vertex splitting operations.

References

- 1. Fekete, Z., Jordan, T., Whiteley, W., An inductive construction for plane laman graphs via vertex splitting, ESA (2004).
- A. Nixon, E. Ross, One brick at a time: a survey of inductive constructions in rigidity theory, Rigidity and symmetry, 22, 303-324, (2014).
- C. S. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal London Mathematical Society, 36:445–450, (1961).