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Bar-joint Frameworks

Framework

A framework F in Rd is a pair (G ,P) where G = (V ,E ) is a graph and P
is a map (usually called realisation or configuration)

P : V → Rd where P(i) = pi

such that pi 6= pj whenever ij ∈ E .



An intuitive view of degrees of freedom

A single point in two dimensional space (plane) can be moved to any
position in the plane using only horizontal and vertical translation.



An intuitive view of degrees of freedom

A single point in two dimensional space (plane) can be moved to any
position in the plane using only horizontal and vertical translation.
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A single point in two dimensional space (plane) can be moved to any
position in the plane using only horizontal and vertical translation.
So the degree of freedom of a point in a plane is 2.
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a bar?
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An intuitive view of degrees of freedom

The bar and the two joints ( points) can move horizontally, vertically and
it can be rotated. So the degree of freedom of the whole object ( single
bar) is 3



Infinitesimal Rigidity

Infinitesimal motion

Let F = (G , p) be a framework in Rd . An infinitesimal motion of
F = (G , p) is a function q : V −→ Rd such that

〈p(vi )− p(vj)〉.〈q(vi )− q(vj)〉 = o for all edges {vi , vj} ∈ E (G )

Infinitesimal rigidity

A framework F = (G , p) is infinitesimally rigid if it is not admit any
infinitesimal motion



Rigidity Matrix

Let framework F = (G , p) be a d-dimensional framework. The rigidity
matrix R(G , p) of F is a |E | × d |V | matrix whose rows are indexed by the
edges of G and whose columns are indexed by the vertices of G such that :

Theorem

A framework F = (G , p) is infinitesimally rigid in Rd with n = |V | ≥ d if

and and only if rank(R) = nd − d(d+1)
2



Rigidity matrix



Degree of freedom via the rigidity Matrix

Total degrees of freedom

Total degrees of freedom of F=
dim(the space of the solution space of Rqt = 0)

Internal degrees of freedom

Internal degrees of freedom of the framework =
dim(Space of infinitesimal motions)− dim(Space of trivial motion)



Degrees of freedom in three spaces
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Grid bracing problem

An m × n grid is a framework F = (G , p) where P : V → R2.

Degree of freedom of a grid

A degree of freedom of a grid is the number of braces required to rigidify it

Degree of freedom of a grid

The degree of freedom of a grid is m + n − 1



Grid bracing problem; The brace graph

The brace graph contains a vertex for each row and each column of the
cell grid. The vertices will encode the bracing of the unit grid as follows: If
the cell in row ri and column cj is braced, the vertices of the brace graph
labeled ri and cj are joint by an edge.
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Grid bracing problem; removing a brace
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