Degrees of Freedom in Rigidity Theory

Qays Shakir ${ }^{1,2}$

1. Natiaonal University of Ireland, Galway
2. Middle Techincal University

24 March 2017

Bar-joint Frameworks

Framework

A framework \mathcal{F} in \mathbb{R}^{d} is a pair (G, P) where $G=(V, E)$ is a graph and P is a map (usually called realisation or configuration)

$$
P: V \rightarrow \mathbb{R}^{d} \text { where } P(i)=p_{i}
$$

such that $p_{i} \neq p_{j}$ whenever $i j \in E$.

An intuitive view of degrees of freedom

A single point in two dimensional space (plane) can be moved to any position in the plane using only horizontal and vertical translation.

An intuitive view of degrees of freedom

A single point in two dimensional space（plane）can be moved to any position in the plane using only horizontal and vertical translation．

An intuitive view of degrees of freedom

A single point in two dimensional space（plane）can be moved to any position in the plane using only horizontal and vertical translation． So the degree of freedom of a point in a plane is 2 ．

An intuitive view of degrees of freedom

Consider two points in a plane. The total number of degree of freedom is 4.

An intuitive view of degrees of freedom

Consider two points in a plane. The total number of degree of freedom is 4.

An intuitive view of degrees of freedom

Consider two points in a plane. The total number of degree of freedom is 4.

An intuitive view of degrees of freedom

What can happened to the degree of freedom if the two points linked with a bar?

An intuitive view of degrees of freedom

What can happened to the degree of freedom if the two points linked with a bar?

An intuitive view of degrees of freedom

The bar and the two joints (points) can move horizontally

An intuitive view of degrees of freedom

The bar and the two joints (points) can move horizontally, vertically

An intuitive view of degrees of freedom

The bar and the two joints (points) can move horizontally, vertically and it can be rotated.

An intuitive view of degrees of freedom

The bar and the two joints (points) can move horizontally, vertically and it can be rotated. So the degree of freedom of the whole object is 3

An intuitive view of degrees of freedom

The bar and the two joints (points) can move horizontally, vertically and it can be rotated. So the degree of freedom of the whole object (single bar) is 3

Infinitesimal Rigidity

Infinitesimal motion

Let $\mathcal{F}=(G, p)$ be a framework in \mathbb{R}^{d}. An infinitesimal motion of $\mathcal{F}=(G, p)$ is a function $q: V \longrightarrow \mathbb{R}^{d}$ such that

$$
\left\langle p\left(v_{i}\right)-p\left(v_{j}\right)\right\rangle \cdot\left\langle q\left(v_{i}\right)-q\left(v_{j}\right)\right\rangle=o \text { for all edges }\left\{v_{i}, v_{j}\right\} \in E(G)
$$

Infinitesimal rigidity

A framework $\mathcal{F}=(G, p)$ is infinitesimally rigid if it is not admit any infinitesimal motion

Rigidity Matrix

Let framework $\mathcal{F}=(G, p)$ be a d-dimensional framework. The rigidity matrix $R(G, p)$ of \mathcal{F} is a $|E| \times d|V|$ matrix whose rows are indexed by the edges of G and whose columns are indexed by the vertices of G such that:

$$
R=\{i, j\}\left(\begin{array}{ccccccc}
1 & \ldots & i & \ldots & j & \ldots & n \\
\vdots & \ddots & \vdots & \ldots & \vdots & \ddots & \vdots \\
0 & \ldots & \left(p_{i}-p_{j}\right) & \ldots & \left(p_{j}-p_{i}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots & \ldots & \vdots & \ddots & \vdots
\end{array}\right)
$$

Theorem

A framework $\mathcal{F}=(G, p)$ is infinitesimally rigid in \mathbb{R}^{d} with $n=|V| \geq d$ if and and only if $\operatorname{rank}(R)=n d-\frac{d(d+1)}{2}$

Rigidity matrix

Degree of freedom via the rigidity Matrix

```
Total degrees of freedom
Total degrees of freedom of }\mathcal{F}
dim(the space of the solution space of Rq}\mp@subsup{q}{}{t}=0\mathrm{ )
```


Internal degrees of freedom

Internal degrees of freedom of the framework $=$ dim (Space of infinitesimal motions) - dim(Space of trivial motion)

Degrees of freedom in three spaces

Degrees of freedom in three spaces

Degrees of freedom in three spaces

Degrees of freedom in three spaces

Bar and joint framework

1-dim

1

3

$3+n$

Degrees of freedom in three spaces

Grid bracing problem

An $m \times n$ grid is a framework $\mathcal{F}=(G, p)$ where $P: V \rightarrow \mathbb{R}^{2}$.

Degree of freedom of a grid
A degree of freedom of a grid is the number of braces required to rigidify it
Degree of freedom of a grid
The degree of freedom of a grid is $m+n-1$

Grid bracing problem; The brace graph

The brace graph contains a vertex for each row and each column of the cell grid. The vertices will encode the bracing of the unit grid as follows: If the cell in row r_{i} and column c_{j} is braced, the vertices of the brace graph labeled r_{i} and c_{j} are joint by an edge.

Grid bracing problem

Grid bracing problem

Grid bracing problem

$\begin{array}{cccc} & r_{1} & r_{2} & \\ & & & \\ & & & \\ & & & \\ c_{1} & c_{2} & c_{3} & c_{4}\end{array}$

Grid bracing problem

Grid bracing problem

${ }^{-}$

Grid bracing problem

Grid bracing problem

Grid bracing problem

Grid bracing problem；removing a brace

Grid bracing problem；removing a brace

Grid bracing problem；removing a brace

Grid bracing problem; removing a brace

Grid bracing problem; removing a brace

Grid bracing problem; removing a brace

Grid bracing problem

Grid bracing problem

Grid bracing problem

Grid bracing problem

References

E J. Graver, Counting on Frameworks: Mathematics to Aid the Design of Rigid Structures, The Mathematical Association of America, Washington, 2001. Series B.
國 L. Asimow and B. Roth, (1978). Rigidity of graphs, Trans. Amer. Math. Soc. 245, 279289.
(i. Lovasz, Combinatorial problems ans exercises. North-Holland Publishing Co. Amsterdam, 1979.

