

Self-Stress in Rigidity Theory

Qays Shakir

Modeling Group

National University of Ireland, Galway Meddle Technical University

October 25, 2017

Qays Shakir (NUIG) Self-Stress October 25, 2017 1/10

Bar and joint Framework

Framework

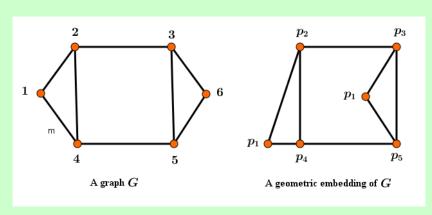
A framework is a pair $\mathcal{F} = (G, p)$, where G = (V, E) is a simple graph and p is a map $p : V \longrightarrow \mathbb{R}^d$

 Qays Shakir (NUIG)
 Self-Stress
 October 25, 2017
 2 / 10

Bar and joint Framework

Framework

A framework is a pair $\mathcal{F} = (G, p)$, where G = (V, E) is a simple graph and p is a map $p : V \longrightarrow \mathbb{R}^d$



 Qays Shakir (NUIG)
 Self-Stress
 October 25, 2017
 2 / 10

Infinitesmal rigidity

Given $\mathcal{F}=(G,p)$ with |V|=n and $p=(p_1,...,p_n)$. An infinitesimal flex $q=(q_1,...,q_n)\in\mathbb{R}^{dn}$ is a vector satisfying $\langle p(i)-p(j)\rangle.\langle q(i)-q(j)\rangle=o$ for all edges $ij\in$.

 \mathcal{F} is infinitesimally rigid if there are no non-trivial infinitesimal flexes.

3 / 10

Infinitesmal rigidity

Given $\mathcal{F}=(G,p)$ with |V|=n and $p=(p_1,...,p_n)$. An infinitesimal flex $q=(q_1,...,q_n)\in\mathbb{R}^{dn}$ is a vector satisfying $\langle p(i)-p(j)\rangle.\langle q(i)-q(j)\rangle=o$ for all edges $ij\in$.

 \mathcal{F} is infinitesimally rigid if there are no non-trivial infinitesimal flexes.

Rigidity Matrix

$$R_{G}(p) = \begin{pmatrix} \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots \\ 0 & \dots & (p_{i} - p_{j}) & \dots & (p_{j} - p_{i}) & \dots & 0 \\ \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots \end{pmatrix}$$

Stress

Stress

Let $\mathcal{F}=(G,p)$ be a framework. A stress of the framework \mathcal{F} is an assignment $\omega: E \to \mathbb{R}$ with $\omega_{ii}=\omega_{ii}$.

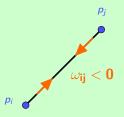
4 / 10

Qays Shakir (NUIG) Self-Stress October 25, 2017

Stress

Stress

Let $\mathcal{F} = (G, p)$ be a framework. A stress of the framework \mathcal{F} is an assignment $\omega : E \to \mathbb{R}$ with $\omega_{ij} = \omega_{ji}$.



Self-Stress Definition

Self-stress

Let $\mathcal{F}=(G,p)$ be a framework. A stress ω of the framework \mathcal{F} is called a self-stress if for each vertex $i\in V$ the following equilibrium condition is satisfied

$$\sum_{j:ij\in E}\omega_{ij}(p_i-p_j)=0$$

Qays Shakir (NUIG) Self-Stress October 25, 2017 5 / 10

Self-Stress Definition

Self-stress

Let $\mathcal{F}=(G,p)$ be a framework. A stress ω of the framework \mathcal{F} is called a self-stress if for each vertex $i\in V$ the following equilibrium condition is satisfied

$$\sum_{j:ij\in E}\omega_{ij}(p_i-p_j)=0$$

Zero Self-Stress

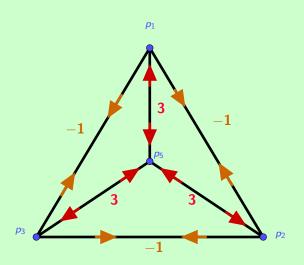
A stress ω is called trivial or zero self-stress if $\omega_i j = 0$ for all $ij \in E$.

4 D > 4 D > 4 E > 4 E > E 990

5 / 10

Qays Shakir (NUIG) Self-Stress October 25, 2017

An Example of Self-Stress



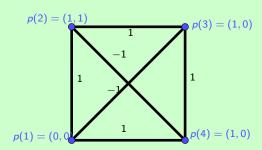
Stress matrix

Stress matrix

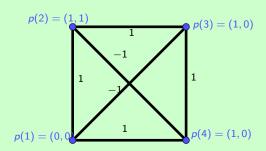
Let $\mathcal{F}=(G,p)$ be a framework and $\omega=(...,\omega_{ij},...)$ be a self-stress of \mathcal{F} . The stress matrix of \mathcal{F} associated with ω is a symmetric matrix of size $|V|\times |V|$ with rows and columns indexed by vertices in V such that

$$\Omega_{ij} = \left\{ egin{array}{ll} -\omega_{ij} & ij \in E \ \\ \displaystyle \sum_{k \in V: ik \in E} \omega_{ik} & i = j \ \\ o & \textit{Otherwise} \end{array}
ight.$$

Qays Shakir (NUIG) Self-Stress October 25, 2017 7 / 10



Qays Shakir (NUIG) Self-Stress October 25, 2017 8 / 10



$$\Omega = egin{bmatrix} 1 & -1 & 1 & -1 \ -1 & 1 & -1 & 1 \ 1 & -1 & 1 & -1 \ -1 & 1 & -1 & 1 \end{bmatrix}$$

Qays Shakir (NUIG)

Self Stress and Rigidity Matrix

Observation

A stress ω is a self-stress if and only if in the left null space of the rigidity matrix, i.e. $\omega R_G(p) = 0$.

Qays Shakir (NUIG) Self-Stress October 25, 2017 9 / 10

Self Stress and Rigidity Matrix

Observation

A stress ω is a self-stress if and only if in the left null space of the rigidity matrix, i.e. $\omega R_G(p) = 0$.

Independent framework

A framework $\mathcal{F} = (G, p)$ is called Independent framework if the rigidity matrix $R_G(p)$ has independent rows. Equivalently, there is only the zero self-stress.

9 / 10

Self Stress and Rigidity Matrix

Observation

A stress ω is a self-stress if and only if in the left null space of the rigidity matrix, i.e. $\omega R_G(p) = 0$.

Independent framework

A framework $\mathcal{F} = (G, p)$ is called Independent framework if the rigidity matrix $R_G(p)$ has independent rows. Equivalently, there is only the zero self-stress.

Isostatic framework

A framework $\mathcal{F} = (G, p)$ is called an isostatic if it is infinitesimal rigid and independent.

9 / 10

Qays Shakir (NUIG) Self-Stress October 25, 2017

References

- W. Whiteley. Vertex splitting in isostatic frameworks. Struc. Top., 16:23 -30, 1989.
- A. Y. Alfakih. On bar frameworks, stress matrices and semidefinite programming. Math. Program., 129(1, Ser. B):113–128, 2011.
- 3 S. J. Gortler, A. D. Healy, and D. P. Thurston. Characterizing generic global rigidity. Amer. J. Math., 132(4):897–939, 2010.

Qays Shakir (NUIG) Self-Stress October 25, 2017 10 / 10