

Mathematical Modelling

Paul Greaney

6 November 2015

Outline

Last time

- Biology
- 2 Experiments
- Experimental Results
- Some Modelling Assumptions
- Modelling Uptake

Today:

- Compartment Model
- Parameter Estimation
- Modelling Results
- Future Work

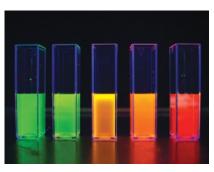


Figure: Various sizes of QDs

Gun'ko group, TCD

Some Modelling Assumptions


- Four states: healthy, apoptotic, necrotic, dead.
- Healthy cells can enter apoptosis or necrosis.
- Cells in apoptosis or necrosis can die.
- No reversibility.
- Rate at which cells leave healthy state depends on QD concentration.

Uptake model: saturation concentration c_s and current intracellular concentration c(t) with

$$c(t) = c_s(1 - e^{-k_c t}).$$
 (1)

Model Schematic

Model Equations

Assuming $k_a(c)$ and $k_n(c)$ are linear in c we have

$$\frac{dA(t)}{dt} = k_{a1}c_s(1 - e^{-k_c t})H(t) - k_{ad}A(t),$$
 (2)

$$\frac{dN(t)}{dt} = k_{n1}c_{s}(1 - e^{-k_{c}t})H(t) - k_{nd}N(t), \tag{3}$$

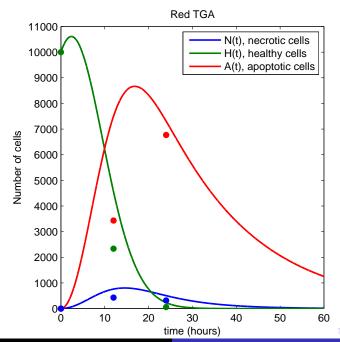
$$\frac{dH(t)}{dt} = (k_m - k_{a1}c_s(1 - e^{-k_ct}) - k_{n1}c_s(1 - e^{-k_ct}))H(t), \quad (4)$$

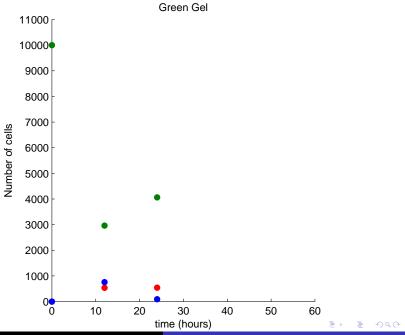
$$\frac{dD(t)}{dt} = k_{ad}A(t) + k_{nd}N(t). \tag{5}$$

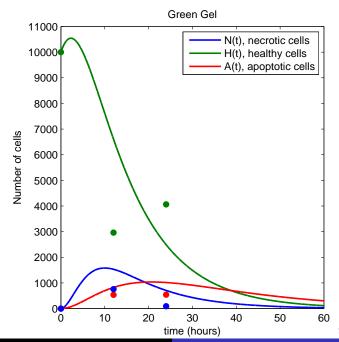
Here k_m is the rate of cell division. Initial conditions:

$$H(t = 0) = H_0, A(t = 0) = N(t = 0) = D(t = 0) = 0.$$

Estimation


For each type of QDs, need to estimate k_{a1} , k_{n1} , c_s , k_c , k_{ad} , k_{nd} , k_m .


- Apoptosis takes from 6-24 hours $\implies k_{ad} \approx 0.05 hr^{-1}$.
- ullet Doubling time for RAW 264.7 is \sim 12 hours


$$\implies k_m \approx \frac{\ln 2}{12} \approx 0.05 hr^{-1}$$

- Treat $k_{a1}c_s$, $k_{n1}c_s$ as single parameters (only appear as products).
- Remains to estimate $k_{a1}c_s$, $k_{n1}c_s$, k_c , k_{nd} for each type.

Future Work

- Need further information on uptake;
 - timescale and saturation concentration not measured;
 - differ for each type;
 - Insufficient number of time points;
- Linear assumption of transition rates probably too simple
- Stage of the cell cycle may have an effect on uptake

References

Olga Gladkovskaya, Paul Greaney, Yurii K. Gun'ko, Gerard M. O'Connor, Martin Meere and Yury Rochev.

An experimental and theoretical assessment of quantum dot cytotoxicity.

Toxicology Research, 2015, 4, 1409-1415