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Endocytosis

Zhang et al., Physical Principles of Nanoparticle Cellular Endocytosis, ACS Nano, 9, 8655.
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Receptor-mediated Endocytosis
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Membrane Modelling

Separation of lengthscales: lateral
dimensions greatly exceed
thickness.

Parameterisation of surface: 2D
coordinate system {u1, u2} with
map

r = X(u1, u2) =

X (u1, u2)
Y (u1, u2)
Z (u1, u2)


Tangent vectors

ea =
∂X

∂ua
= ∂aX, a ∈ {1, 2}

span local tangent plane to surface
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A Minimal Model

Consider an infinite rod, bending rigidity κ, in contact with a disc
of radius a, contact energy w per unit length.

a

 
s=0

(s)
= =0

.

Require membrane to be flat far away from disc: BCs are

lim
s→∞

θ(s) = lim
s→∞

θ̇(s) = 0. (1)

Amount of stretching in bound part of membrane: (length of
portion of rod in flat configuration) - (length in the wrapped
configuration) = 2αa− 2a sin(α). This gives the contact energy

Econtact = 2αa
( κ

2a2
− w

)
+ 2aσ(α− sin(α)).
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A Minimal Model

Amount of stretching in free part of the membrane is difference
between length of curved piece & flat piece, ds − dx , so
contribution of stretching to energy of free membrane is∫ s=∞

s=0
σ(ds − dx) =

∫ ∞
0

σ

(
1− dx

ds

)
ds =

∫ ∞
0

σ(1− cos(θ))ds,

and combining this with usual expression for bending energy gives
energy of free portion

Efree = 2

∫ s=∞

s=0

[
σ(1− cos(θ)) +

1

2
κ

(
dθ

ds

)2
]
ds. (2)
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A Minimal Model

Thus the total energy is

Etotal =2αa
( κ

2a2
− w

)
+

2aσ(α− sin(α)) + 2

∫ s=∞

s=0

[
σ(1− cos(θ)) +

1

2
κ

(
dθ

ds

)2
]
ds

=

∫ s=∞

s=0
(κθ̇2 + 2σ(1− cos(θ)) + C θ̇)ds,

for constant C .
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A Minimal Model

Define the Lagrangian

L(θ, θ̇) = κθ̇2 + 2σ(1− cos(θ)) + C θ̇,

from which we obtain the Euler-Lagrange equation

θ̈ − σ

κ
sin(θ) = 0. (3)

Solving this subject to the boundary conditions gives∫
dθ√

1− cos(θ)
=

√
2σ

κ
s + E , (4)

where E is an arbitrary constant.
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A Minimal Model

Integrating and imposing θ(s = 0) = α gives

θ(s) = 2 cos−1(tanh(tanh−1(cos(α/2))−
√
σ/κs)),

and the profile of the free part of the membrane can now be
calculated using

(x(s), y(s)) =

(
a sin(α) +

∫ s

0
cos(θ(s))ds,−a cos(α) +

∫ s

0
sin(θ(s))ds

)
.

where we have specified the coordinates of the first point of
contact for a given degree of wrapping α by

(x(0), y(0)) = (a sin(α),−a cos(α)).
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A Minimal Model
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Figure: Membrane profiles for various values of wrapping angle α
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