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Introduction

Mature red blood cell has a
biconcave shape
Adding water to plasma
causes swelling
Becomes ellipsoidal,
eventually spherical
Initial formation is reverse
of this process
Sphere buckles under
excess of internal pressure
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The Free Energy

Jenkins (1977): Only free energy function compatible with
fluidity of surface and unaffected by rigid rotations depends at
most on h and k .
Simplest form for free energy density of a surface is

w(h, k) = ch2 + c1k (1)

where h and k are mean and total curvatures of the surface.
Total energy is

W =

∫
A

w dA (2)
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The Free Energy

Considering variations in the energy and associated quantities,
gives the normal equilibrium equation

2h(d̄ + c(h2 − k)) + c∂a(gab∂bh) = −p̄, (3)

where gab is the inverse of gab, the first fundamental form; d is
a constant; and p̄ is the difference between exterior and interior
pressure.
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Axisymmetric Deformations

Material parameters:
Azimuthal angle θ
Arc length S from axis of
symmetry on sphere.
Arc length on deformed
surface is s = s(S)

φ = φ(S) is the angle
between the tangent to a
line θ = constant and the
axis of symmetry.
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Axisymmetric Deformations

X = r(S)(cos(θ)̂i + sin(θ)̂j) + z(S)k̂ (4)

Tangent vectors

eθ = ∂θX = r(− sin(θ)̂i + cos(θ)̂j), (5)

eS = ∂SX = ṡ
(

sin(φ))
(

cos(θ)̂i + sin(θ)̂j
)

+ cos(φ)k̂
)
, (6)

with unit normal

n =
eθ × eS

|eθ × eS|
= cos(θ) cos(φ)̂i + sin(θ) cos(φ)̂j− sin(φ)k̂. (7)
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Calculating gab (with components ea · eb) and the second
fundamental form kab (with components −∂an · eb) allows us to
calculate the curvatures

k = det ka
b = det(kbcgca)

=

∣∣∣∣ − cosφ
r 0
0 r

R φ̇

∣∣∣∣
= φ̇

cosφ
R

, (8)

h =
1
2

ka
a

=
1
2

(k1
1 + k2

2 )

=
1
2

(
r
R
φ̇− cosφ

r

)
. (9)
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Axisymmetric Deformations

Eliminating k , introducing transverse shear q = ḣ r2

sin2(S)
gives

ḣ =
sin2(S)

r2 q. (10)

q̇ = −2h
[
d + h2 +

cosφ
r

(
2h +

cos(φ)

r

)]
− p. (11)

φ̇ =
2 sin(S)

r
h +

sin(S)

r2 cos(φ), (12)

ṙ =
sin(S)

r
sin(φ), (13)

ż =
sin(S)

r
cos(φ), (14)

(15)

q(0) = q(π) = 0, φ(0) =
π

2
, φ(π) = −π

2
, r(0) = 0, z

(π
2

)
= 0,

(16)
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Linearization

We expand r ∼ r0(S) + εr1(S) etc. to give

ḧ1 + cot(S)ḣ1 + ph1 = 2d1, (17)
ṙ1 = φ1 sin(S)− r1 cot(S), (18)

ż1 = φ1 cos(S)− r1, (19)

φ̇1 = 2h1 − φ1 cot(S), (20)

with

ḣ1(0) = ḣ1(π) = φ1(0) = φ1(π) = r1(0) = z1

(π
2

)
= 0. (21)
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Solutions

Solutions for h1 compatible with the boundary conditions are
h1 = Pl(cos(S)), with p = l(l + 1), l = 2,3, . . . .
For l = 2 we have p = 6 so

h1 =
1
2

(3 cos2(S)− 1), (22)

φ1 = sin(S) cos(S), (23)

r1 =
1
4

sin3(S), (24)

z1 =
1

16
cos(S) +

5
48

cos(3S); (25)

we add these to the known quantities h0, φ0, r0, z0 for the
sphere, . . .
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Figure: Cross sections of the axisymmetric deformation for p = 6.0
(spherical), 6.5,7.0,7.5,7.9; deformation increases with pressure
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