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Introduction

In this talk we will briefly outline genus one Zhu Recursion on
vertex operator algebras (VOSA).
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Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple (V ,Y (, ), 1, ω)
consisting of the following data:

A vector space V

A map Y (, ) : V → End(V )[[z , z−1]]:

Y (u, z) =
∑
n∈Z

u(n)z−n−1

for u ∈ V

A vacuum vector 1 ∈ V

A Virasoro vector ω ∈ V
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Vertex Operator Super Algebras

This data consists of the following axioms:

Each vector v ∈ V has a parity p(v) ∈ Z2. We can then write
V = V0̄ ⊕ V1̄

For all u, v in V , we have:

(z − w)N [Y (u, z),Y (v ,w)] = 0

where [, ] is the commutator defined by:

[Y (u, z),Y (v ,w)] = Y (u, z)Y (v ,w)−(−1)p(u)p(v)Y (v ,w)Y (u, z)

Y (1, z) = IdV

Y (u, z)1 = u + O(z)
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VOSAs continued

Y (ω, z) =
∑

n∈Z L(n)z−n−1 where the L(n) operators satisfy
the Virasoro Lie algebra:

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nc

where c is a constant known as the central charge.

The L(0) operator induces a grading on V , i.e.

V =
⊕
r∈R

Vr

where Vr is defined to be

{v ∈ V : L(0)v = rv , r ∈ R}

and dim(V ) <∞. r is known as the weight of the vector
wt(v).

Y (L(−1)v , z) = d
dzY (v , z)
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Modular forms and Elliptic functions

We now define modular forms. A modular form is a function f (τ)
on the upper-half complex plane H which:

is holomorphic on H and at infinity

satisfies the transformation law

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (z)

where a, b, c , d ,∈ Z and ad − bc = 1, for some non-negative
integer k (called the weight of the form)

has a Fourier expansion

f (τ) =
∞∑
n=0

a(n)qn

where q = exp(2πiτ). This converges for |q| < 1 (i.e.
=(τ) > 0)
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Modular forms contd.

We can rephrase the second axiom as

f (τ + 1) = f (z)

f (−1/τ) = τk f (z)

as the transformation τ → aτ+b
cτ+d is an action of SL(2,Z) on

H, and that group is generated by the matrices(
1 1
0 1

)
and

(
0 −1
1 0

)
The examples of interest here are the Eisenstein series

Ek(τ) = −Bk

k!
+

2

(k − 1)!

∞∑
n=0

σk−1(n)qn

where q is as before, Bk is a Bernoulli number and σk−1(n) is
the divisor function σk−1(n) =

∑
d |n d

k−1.
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Elliptic Functions

The Ek also have an alternative series representation:

Ek(τ) = −Bk

k!
+

2

(k − 1)!

∑
r≥1

rk−1qr

1− qr

Following on from the Ek above we define elliptic Weierstrass
functions:

Pn(z , τ) =
1

zn
+
∑
n≥k

(
k − 1

n − 1

)
Ek(τ)zk−n

Note that there is no contribution from the odd k cases as then
the Ek are trivial forms.
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Twisted Functions

We can add additional parameters to these functions, which now
become twisted Eisentein series and elliptic functions:

Pn

[
θ
φ

]
(z , τ) =

1

zn
+ (−1)n

∞∑
k=2

(
k − 1

n − 1

)
Ek

[
θ
φ

]
(τ)zk−n

where

Ek

[
θ
φ

]
(τ) = −Bk(λ)

k!
+

1

(k − 1)!

′∑
r≥0

(r + λ)k−1θ−1qr+λ

1− θ−1qr+λ

+
(−1)k

(k − 1)!

∑
r≥1

(r − λ)k−1θqr−λ

1− θqr−λ

where φ, θ ∈ U(1), φ = exp(2πiλ). Note that if we set θ, φ = 1
then Ek

[
θ
φ

]
(τ) becomes the classical Eisenstein series Ek .

Mike Welby Genus One Zhu Recursion for Vertex Operator Superalgebras



n-point Functions for VOAs

We now define an n-point function for a VOA by:

Z
(1)
V (v1, z1; . . . ; vn, zn; τ)

= Tr
(
Y
(
q
L(0)
1 v1, q1

)
· · ·Y

(
q
L(0)
n vn, qn

)
qL(0)−c/24

)
where qi = exp(zi ) =

∑
n≥0

zni
n! is a formal series in zi .
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Zhu Recursion

Zhu developed a recursion formula relating genus one n-point
functions to (n − 1)-point functions:

Z
(1)
V (v , z ; v1, z1; . . . ; vn, zn; τ)

= TrV

(
o(v)Y (q

L(0)
1 v1, q1) · · ·Y (q

L(0)
n vn, qn)qL(0)−c/24

)
+

n∑
k=2

∑
j≥0

P1+j(z − zk , τ) · Z (1)
V (v1, z1; . . . ; v [j ]vk , zk ; . . . ; vn, zn; τ)

(1)

where o(v) = v(wt − 1) and v [j ] is the coefficient of z−j−1 in

Y [v , z ] = Y (q
L(0)
z v , qz − 1) with qz = exp(z).
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The VOSA Version

The n-point function for a VOSA V is defined, then, by

Z
(1)
V (g ; v1, z1; . . . ; vn, zn; τ)

= STrV

(
gY
(
q
L(0)
1 v1, q1

)
· · ·Y

(
q
L(0)
n vn, qn

)
qL(0)−c/24

)
where g ∈ Aut(V ) and STrV (A) = TrV0

(A)− TrV1
(A) for an

operator A.
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Zhu Recursion for VOSAs

The recursion formula for a VOSA V is quite similar in structure to
that of a VOA:

Z
(1)
V (g ; v , z ; v1, z1; . . . ; vn, zn; τ)

= δφ,1δθ,1STrV (go(v)Y (v1, q1) · · ·Y (vn, qn))

+
n∑

k=1

∑
m≥0

p(v , v1 . . . vk−1) · Pm+1

[
θ
φ

]
(z − zk , τ)·

Z
(1)
V (g ; v1, z1; . . . ; v [m]vk , zk ; . . . ; vn, zn; τ)

(2)

where gv = θ−1v , φ = exp(2πiwt(v)) and
p(v , v1 . . . vk−1) = (−1)p(v)[p(v1)+···+p(vk−1)] for k > 1.
We note that for v , vi ∈ V0, g = 1, equation (2) reduces to (1).
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