Genus One Zhu Recursion for Vertex Operator Superalgebras

Mike Welby

28th October, 2016

Introduction

In this talk we will briefly outline genus one Zhu Recursion on vertex operator algebras (VOSA).

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for $u \in V$

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for $u \in V$

- A vacuum vector $\mathbf{1} \in V$

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for $u \in V$

- A vacuum vector $\mathbf{1} \in V$
- A Virasoro vector $\omega \in V$

Vertex Operator Super Algebras

This data consists of the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in \mathbb{Z}_{2}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$

Vertex Operator Super Algebras

This data consists of the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in \mathbb{Z}_{2}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

where [,] is the commutator defined by:
$[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-(-1)^{p(u) p(v)} Y(v, w) Y(u, z)$

Vertex Operator Super Algebras

This data consists of the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in \mathbb{Z}_{2}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

where [,] is the commutator defined by:
$[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-(-1)^{p(u) p(v)} Y(v, w) Y(u, z)$

- $Y(1, z)=l d_{V}$

Vertex Operator Super Algebras

This data consists of the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in \mathbb{Z}_{2}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

where [,] is the commutator defined by:

$$
[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-(-1)^{p(u) p(v)} Y(v, w) Y(u, z)
$$

- $Y(\mathbf{1}, z)=l d_{V}$
- $Y(u, z) \mathbf{1}=u+O(z)$

VOSAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-1}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

VOSAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-1}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces a grading on V, i.e.

$$
V=\bigoplus_{r \in \mathbb{R}} V_{r}
$$

where V_{r} is defined to be

$$
\{v \in V: L(0) v=r v, r \in \mathbb{R}\}
$$

and $\operatorname{dim}(V)<\infty . r$ is known as the weight of the vector $w t(v)$.

VOSAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-1}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces a grading on V, i.e.

$$
V=\bigoplus_{r \in \mathbb{R}} V_{r}
$$

where V_{r} is defined to be

$$
\{v \in V: L(0) v=r v, r \in \mathbb{R}\}
$$

and $\operatorname{dim}(V)<\infty . r$ is known as the weight of the vector $w t(v)$.

- $Y(L(-1) v, z)=\frac{d}{d z} Y(v, z)$

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity
- satisfies the transformation law

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(z)
$$

where $a, b, c, d, \in \mathbb{Z}$ and $a d-b c=1$, for some non-negative integer k (called the weight of the form)

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity
- satisfies the transformation law

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(z)
$$

where $a, b, c, d, \in \mathbb{Z}$ and $a d-b c=1$, for some non-negative integer k (called the weight of the form)

- has a Fourier expansion

$$
f(\tau)=\sum_{n=0}^{\infty} a(n) q^{n}
$$

where $q=\exp (2 \pi i \tau)$. This converges for $|q|<1$ (i.e. $\Im(\tau)>0)$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$
as the transformation $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ is an action of $S L(2, \mathbb{Z})$ on \mathbb{H}, and that group is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$
as the transformation $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ is an action of $S L(2, \mathbb{Z})$ on \mathbb{H}, and that group is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The examples of interest here are the Eisenstein series

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$
as the transformation $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ is an action of $S L(2, \mathbb{Z})$ on \mathbb{H}, and that group is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The examples of interest here are the Eisenstein series

$$
E_{k}(\tau)=-\frac{B_{k}}{k!}+\frac{2}{(k-1)!} \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where q is as before, B_{k} is a Bernoulli number and $\sigma_{k-1}(n)$ is the divisor function $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$.

Elliptic Functions

The E_{k} also have an alternative series representation:

$$
E_{k}(\tau)=-\frac{B_{k}}{k!}+\frac{2}{(k-1)!} \sum_{r \geq 1} \frac{r^{k-1} q^{r}}{1-q^{r}}
$$

Following on from the E_{k} above we define elliptic Weierstrass functions:

$$
P_{n}(z, \tau)=\frac{1}{z^{n}}+\sum_{n \geq k}\binom{k-1}{n-1} E_{k}(\tau) z^{k-n}
$$

Note that there is no contribution from the odd k cases as then the E_{k} are trivial forms.

Twisted Functions

We can add additional parameters to these functions, which now become twisted Eisentein series and elliptic functions:

$$
P_{n}\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right](z, \tau)=\frac{1}{z^{n}}+(-1)^{n} \sum_{k=2}^{\infty}\binom{k-1}{n-1} E_{k}\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right](\tau) z^{k-n}
$$

where

$$
\begin{aligned}
E_{k}\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right](\tau)= & -\frac{B_{k}(\lambda)}{k!}+\frac{1}{(k-1)!} \sum_{r \geq 0}^{\prime} \frac{(r+\lambda)^{k-1} \theta^{-1} q^{r+\lambda}}{1-\theta^{-1} q^{r+\lambda}} \\
& +\frac{(-1)^{k}}{(k-1)!} \sum_{r \geq 1} \frac{(r-\lambda)^{k-1} \theta q^{r-\lambda}}{1-\theta q^{r-\lambda}}
\end{aligned}
$$

where $\phi, \theta \in U(1), \phi=\exp (2 \pi i \lambda)$. Note that if we set $\theta, \phi=1$ then $E_{k}\left[\begin{array}{l}\theta \\ \phi\end{array}\right](\tau)$ becomes the classical Eisenstein series E_{k}.

n-point Functions for VOAs

We now define an n-point function for a VOA by:

$$
\begin{gathered}
Z_{V}^{(1)}\left(v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right) \\
=\operatorname{Tr}\left(Y\left(q_{1}^{L(0)} v_{1}, q_{1}\right) \cdots Y\left(q_{n}^{L(0)} v_{n}, q_{n}\right) q^{L(0)-c / 24}\right)
\end{gathered}
$$

where $q_{i}=\exp \left(z_{i}\right)=\sum_{n \geq 0} \frac{z_{i}^{n}}{n!}$ is a formal series in z_{i}.

Zhu Recursion

Zhu developed a recursion formula relating genus one n-point functions to ($n-1$)-point functions:
$Z_{V}^{(1)}\left(v, z ; v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right)$
$=\operatorname{Tr}_{V}\left(o(v) Y\left(q_{1}^{L(0)} v_{1}, q_{1}\right) \cdots Y\left(q_{n}^{L(0)} v_{n}, q_{n}\right) q^{L(0)-c / 24}\right)$
$+\sum_{k=2}^{n} \sum_{j \geq 0} P_{1+j}\left(z-z_{k}, \tau\right) \cdot Z_{V}^{(1)}\left(v_{1}, z_{1} ; \ldots ; v[j] v_{k}, z_{k} ; \ldots ; v_{n}, z_{n} ; \tau\right)$
where $o(v)=v(w t-1)$ and $v[j]$ is the coefficient of z^{-j-1} in
$Y[v, z]=Y\left(q_{z}^{L(0)} v, q_{z}-1\right)$ with $q_{z}=\exp (z)$.

The VOSA Version

The n-point function for a VOSA V is defined, then, by

$$
\begin{gathered}
Z_{V}^{(1)}\left(g ; v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right) \\
=\operatorname{STr} v\left(g Y\left(q_{1}^{L(0)} v_{1}, q_{1}\right) \cdots Y\left(q_{n}^{L(0)} v_{n}, q_{n}\right) q^{L(0)-c / 24}\right)
\end{gathered}
$$

where $g \in \operatorname{Aut}(V)$ and $\operatorname{STr}_{V}(A)=\operatorname{Tr}_{V_{\overline{0}}}(A)-\operatorname{Tr}_{v_{\overline{1}}}(A)$ for an operator A.

Zhu Recursion for VOSAs

The recursion formula for a VOSA V is quite similar in structure to that of a VOA:

$$
\begin{align*}
& Z_{V}^{(1)}\left(g ; v, z ; v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right) \\
& =\delta_{\phi, 1} \delta_{\theta, 1} \operatorname{STr} \operatorname{Tr}\left(g o(v) Y\left(v_{1}, q_{1}\right) \cdots Y\left(v_{n}, q_{n}\right)\right) \\
& +\sum_{k=1}^{n} \sum_{m \geq 0} p\left(v, v_{1} \ldots v_{k-1}\right) \cdot P_{m+1}\left[\begin{array}{c}
\theta \\
\phi
\end{array}\right]\left(z-z_{k}, \tau\right) . \tag{2}\\
& Z_{V}^{(1)}\left(g ; v_{1}, z_{1} ; \ldots ; v[m] v_{k}, z_{k} ; \ldots ; v_{n}, z_{n} ; \tau\right)
\end{align*}
$$

where $g v=\theta^{-1} v, \phi=\exp (2 \pi i w t(v))$ and $p\left(v, v_{1} \ldots v_{k-1}\right)=(-1)^{p(v)\left[p\left(v_{1}\right)+\cdots+p\left(v_{k-1}\right)\right]}$ for $k>1$.
We note that for $v, v_{i} \in V_{\overline{0}}, g=1$, equation (2) reduces to (1).

References

是Mason，G．，Tuite，M．P．and Zuevsky，A．：Torus npoint functions for \mathbb{R}－graded vertex operator superalgebras and continuous fermion orbifolds，Commun．Math．Phys． 283 （2008）305－342．

囯 Serre，J－P．：A Course in Arithmetic，Springer－Verlag（Berlin 1978）
围 Zhu，Y．：Modular invariance of characters of vertex operator algebras．J．Amer．Math．Soc． 9 （1996）237－302

