Genus Two Zhu Theory for Fermionic VOSAs I

Mike Welby

27th October, 2017

Introduction

In this talk we will discuss the development of a genus two analogue of the Zhu recursion formula developed by Mason, Tuite and Zuevsky for a genus one vertex operator super-algebra (VOSA), or equivalently, a VOSA of the recursion formula found by Gilroy and Tuite.

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for $u \in V$

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for $u \in V$

- A vacuum vector $\mathbf{1} \in V$

Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for $u \in V$

- A vacuum vector $\mathbf{1} \in V$
- A Virasoro vector $\omega \in V$

Vertex Operator Super Algebras

This data obeys the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in\{0,1\}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$

Vertex Operator Super Algebras

This data obeys the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in\{0,1\}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

where [,] is the commutator defined by:
$[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-(-1)^{p(u) p(v)} Y(v, w) Y(u, z)$

Vertex Operator Super Algebras

This data obeys the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in\{0,1\}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

where [,] is the commutator defined by:
$[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-(-1)^{p(u) p(v)} Y(v, w) Y(u, z)$

- $Y(1, z)=l d_{V}$

Vertex Operator Super Algebras

This data obeys the following axioms:

- Each vector $v \in V$ has a parity $p(v) \in\{0,1\}$. We can then write $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

where [,] is the commutator defined by:

$$
[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-(-1)^{p(u) p(v)} Y(v, w) Y(u, z)
$$

- $Y(1, z)=I d_{V}$
- $Y(u, z) \mathbf{1}=u+O(z)$

VOSAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-1}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

VOSAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-1}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces a grading on V, i.e.

$$
V=\bigoplus_{r \in \mathbb{R}} V_{r}
$$

where V_{r} is defined to be

$$
\{v \in V: L(0) v=r v, r \in \mathbb{R}\}
$$

and $\operatorname{dim}(V)<\infty . r$ is known as the (conformal) weight of the vector $w t(v)$. For our purposes, we will only deal with integral or half-integral weights.

VOSAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-1}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces a grading on V, i.e.

$$
V=\bigoplus_{r \in \mathbb{R}} V_{r}
$$

where V_{r} is defined to be

$$
\{v \in V: L(0) v=r v, r \in \mathbb{R}\}
$$

and $\operatorname{dim}(V)<\infty . r$ is known as the (conformal) weight of the vector wt (v). For our purposes, we will only deal with integral or half-integral weights.

- $Y(L(-1) v, z)=\frac{d}{d z} Y(v, z)$

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity
- satisfies the transformation law

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(z)
$$

where $a, b, c, d, \in \mathbb{Z}$ and $a d-b c=1$, for some non-negative (even) integer k (called the weight of the form)

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity
- satisfies the transformation law

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(z)
$$

where $a, b, c, d, \in \mathbb{Z}$ and $a d-b c=1$, for some non-negative (even) integer k (called the weight of the form)

- has a Fourier expansion

$$
f(\tau)=\sum_{n=0}^{\infty} a(n) q^{n}
$$

where $q=\exp (2 \pi i \tau)$. This converges for $|q|<1$ (i.e. $\Im(\tau)>0)$

Modular forms and Elliptic Functions

The examples of interest here are the Eisenstein series

$$
E_{k}(\tau)=-\frac{B_{k}}{k!}+\frac{2}{(k-1)!} \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where q is as before, B_{k} is a Bernoulli number and $\sigma_{k-1}(n)$ is the divisor function $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$.
The E_{k} also have an alternative series representation:

$$
E_{k}(\tau)=-\frac{B_{k}}{k!}+\frac{2}{(n-1)!} \sum_{r \geq 0} \frac{r^{k-1} q^{r}}{1-q^{r}}
$$

Following on from the E_{k} above we define:

$$
P_{n}(z, \tau)=\frac{1}{z^{n}}+\sum_{k=2}^{\infty}\binom{k-1}{n-1} E_{k}(\tau) z^{k-n}
$$

Note that there is no contribution from the odd k cases as then the E_{k} are trivial forms.

Twisted Functions

We can add additional parameters to these functions, which now become twisted Eisentein series and elliptic functions:

$$
P_{n}\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right](z, \tau)=\frac{1}{z^{n}}+(-1)^{n} \sum_{k=2}^{\infty}\binom{k-1}{n-1} E_{k}\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right](\tau) z^{k-n}
$$

where

$$
\begin{aligned}
E_{k}\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right](\tau)= & -\frac{B_{k}(\lambda)}{k!}+\frac{1}{(k-1)!} \sum_{r \geq 0}^{\prime} \frac{(r+\lambda)^{k-1} \theta^{-1} q^{r+\lambda}}{1-\theta^{-1} q^{r+\lambda}} \\
& +\frac{(-1)^{k}}{(k-1)!} \sum_{r \geq 1} \frac{(r-\lambda)^{k-1} \theta q^{r-\lambda}}{1-\theta q^{r-\lambda}}
\end{aligned}
$$

where $\phi, \theta \in U(1), \phi=\exp (2 \pi i \lambda)$. Note that if we set $\theta, \phi=1$ then $E_{k}\left[\begin{array}{l}\theta \\ \phi\end{array}\right](\tau)$ collapses to the classical Eisenstein series (mostly).

n-point Functions for VOSAs

The n-point function for a VOSA V is defined by

$$
\begin{gathered}
Z_{V}^{(1)}\left(g ; v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right) \\
=\operatorname{STr} v\left(g Y\left(q_{1}^{L(0)} v_{1}, q_{1}\right) \cdots Y\left(q_{n}^{L(0)} v_{n}, q_{n}\right) q^{L(0)-c / 24}\right)
\end{gathered}
$$

where $g \in \operatorname{Aut}(V)$ and $\operatorname{STr}_{V}(A)=\operatorname{Tr}_{V_{\overline{0}}}(A)-\operatorname{Tr}_{V_{\overline{1}}}(A)$ for an operator A. It can also be naturally defined for a VOSA module M.

Zhu Recursion for VOSAs

n-point functions undergo Zhu recursion and can be expressed in terms of ($n-1$)-point functions as follows:

$$
\begin{aligned}
& Z_{V}^{(1)}\left(g ; v, z ; v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right) \\
& =\delta_{\phi, 1} \delta_{\theta, 1} S \operatorname{Tr}_{V}\left(g o(v) Y\left(v_{1}, q_{1}\right) \cdots Y\left(v_{n}, q_{n}\right) q^{L(0)-c / 24}\right) \\
& \quad+\sum_{k=1}^{n} \sum_{m \geq 0} p\left(v, v_{k-1}\right) \cdot P_{m+1}\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right]\left(z-z_{k}, \tau\right) \\
& \quad \times Z_{V}^{(1)}\left(g ; v_{1}, z_{1} ; \ldots ; v[m] v_{k}, z_{k} ; \ldots ; v_{n}, z_{n} ; \tau\right)
\end{aligned}
$$

where $g v=\theta^{-1} v, \phi=\exp (2 \pi i w t(v))$ and $p\left(v, \boldsymbol{v}_{\boldsymbol{k}-\mathbf{1}}\right)=(-1)^{p(v)\left[p\left(v_{1}\right)+\cdots+p\left(v_{k-1}\right)\right]}$ for $r>1$.

Genus Two

The idea is to use a sewing scheme introduced by Yamada and expanded on by Mason and Tuite to develop a genus two version of the above.

$$
z_{1}=0 \quad z_{2}=0
$$

Fig. 1 Sewing Two Tori

More on this on the next talk.

References I

- Gilroy, T., Tuite, M.P.: Genus Two Zhu Theory for Vertex Operator Algebras, arXiv:1511.07664

䍰 Mason, G. and Tuite, M.P.: On genus two Riemann surfaces formed from sewn tori. Commun. Math. Phys. 270, 587-634 (2007).
(1. Mason, G., Tuite, M.P. and Zuevsky, A.: Torus npoint functions for \mathbb{R}-graded vertex operator superalgebras and continuous fermion orbifolds, Commun. Math. Phys. 283 (2008) 305-342.

围 Serre, J-P.: A Course in Arithmetic, Springer-Verlag (Berlin 1978)

References II

Tuite, M.P and Zuevsky, A: Genus Two Partition and Correlation Functions for Fermionic Vertex Operator Superalgebras I, Commun. Math. Phys. 306, 419447 (2011)
囯 Yamada, A.: Precise variational formulas for abelian differentials. Kodai. Math. J. 3, 114-143 (1980).
EThu, Y.: Modular invariance of characters of vertex operator algebras. J.Amer.Math.Soc. 9 (1996) 237-302

