Genus Two Zhu Theory for Fermionic VOSAs I

Mike Welby

27th October, 2017

Mike Welby Genus Two Zhu Theory for Fermionic VOSAs I

In this talk we will discuss the development of a genus two analogue of the Zhu recursion formula developed by Mason, Tuite and Zuevsky for a genus one vertex operator super-algebra (VOSA), or equivalently, a VOSA of the recursion formula found by Gilroy and Tuite. A vertex operator super algebra is a quadruple $(V, Y(,), \mathbf{1}, \omega)$ consisting of the following data:

• A vector space V

э

A vertex operator super algebra is a quadruple $(V, Y(,), \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y(,): V \to \operatorname{End}(V)[[z, z^{-1}]]:$

$$Y(u,z) = \sum_{n \in \mathbb{Z}} u(n) z^{-n-1}$$

for $u \in V$

A vertex operator super algebra is a quadruple $(V, Y(,), \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y(,): V \to \operatorname{End}(V)[[z, z^{-1}]]:$

$$Y(u,z)=\sum_{n\in\mathbb{Z}}u(n)z^{-n-1}$$

for $u \in V$

• A vacuum vector $\mathbf{1} \in V$

A vertex operator super algebra is a quadruple $(V, Y(,), \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y(,): V \to \operatorname{End}(V)[[z, z^{-1}]]:$

$$Y(u,z)=\sum_{n\in\mathbb{Z}}u(n)z^{-n-1}$$

for $u \in V$

- A vacuum vector $\mathbf{1} \in V$
- A Virasoro vector $\omega \in V$

Each vector v ∈ V has a parity p(v) ∈ {0,1}. We can then write V = V₀ ⊕ V₁

4 3 b

- Each vector v ∈ V has a parity p(v) ∈ {0,1}. We can then write V = V₀ ⊕ V₁
- For all u, v in V, we have:

$$(z-w)^{N}[Y(u,z),Y(v,w)]=0$$

where [,] is the commutator defined by:

$$[Y(u,z), Y(v,w)] = Y(u,z)Y(v,w) - (-1)^{p(u)p(v)}Y(v,w)Y(u,z)$$

- Each vector v ∈ V has a parity p(v) ∈ {0,1}. We can then write V = V₀ ⊕ V₁
- For all u, v in V, we have:

٠

$$(z-w)^{N}[Y(u,z),Y(v,w)]=0$$

where [,] is the commutator defined by:

$$[Y(u, z), Y(v, w)] = Y(u, z)Y(v, w) - (-1)^{p(u)p(v)}Y(v, w)Y(u, z)$$
$$Y(1, z) = Id_V$$

- Each vector v ∈ V has a parity p(v) ∈ {0,1}. We can then write V = V₀ ⊕ V₁
- For all u, v in V, we have:

$$(z-w)^{N}[Y(u,z),Y(v,w)]=0$$

where [,] is the commutator defined by:

$$[Y(u,z), Y(v,w)] = Y(u,z)Y(v,w) - (-1)^{p(u)p(v)}Y(v,w)Y(u,z)$$

•
$$Y(\mathbf{1},z) = Id_V$$

•
$$Y(u,z)$$
1 = $u + O(z)$

VOSAs continued

Y(ω, z) = ∑_{n∈ℤ} L(n)z⁻ⁿ⁻¹ where the L(n) operators satisfy the Virasoro Lie algebra:

$$[L(m), L(n)] = (m - n)L(m + n) + \frac{m^3 - m}{12}\delta_{m, -n}c$$

where c is a constant known as the central charge.

A B + A B +

э

VOSAs continued

Y(ω, z) = ∑_{n∈ℤ} L(n)z⁻ⁿ⁻¹ where the L(n) operators satisfy the Virasoro Lie algebra:

$$[L(m), L(n)] = (m - n)L(m + n) + \frac{m^3 - m}{12}\delta_{m, -n}c$$

where c is a constant known as the central charge.

• The L(0) operator induces a grading on V, i.e.

$$V = \bigoplus_{r \in \mathbb{R}} V_r$$

where V_r is defined to be

$$\{v \in V : L(0)v = rv, r \in \mathbb{R}\}$$

and $dim(V) < \infty$. *r* is known as the *(conformal) weight* of the vector wt(*v*). For our purposes, we will only deal with integral or half-integral weights.

• • = • • = •

VOSAs continued

Y(ω, z) = ∑_{n∈ℤ} L(n)z⁻ⁿ⁻¹ where the L(n) operators satisfy the Virasoro Lie algebra:

$$[L(m), L(n)] = (m - n)L(m + n) + \frac{m^3 - m}{12}\delta_{m, -n}c$$

where c is a constant known as the central charge.

• The L(0) operator induces a grading on V, i.e.

$$V = \bigoplus_{r \in \mathbb{R}} V_r$$

where V_r is defined to be

$$\{v \in V : L(0)v = rv, r \in \mathbb{R}\}$$

and $dim(V) < \infty$. *r* is known as the *(conformal) weight* of the vector wt(*v*). For our purposes, we will only deal with integral or half-integral weights.

•
$$Y(L(-1)v,z) = \frac{d}{dz}Y(v,z)$$

• • = • • = •

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

 $\bullet\,$ is holomorphic on $\mathbb H$ and at infinity

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- \bullet is holomorphic on $\mathbb H$ and at infinity
- satisfies the transformation law

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(z)$$

where $a, b, c, d, \in \mathbb{Z}$ and ad - bc = 1, for some non-negative (even) integer k (called the *weight* of the form)

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- \bullet is holomorphic on $\mathbb H$ and at infinity
- satisfies the transformation law

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(z)$$

where $a, b, c, d, \in \mathbb{Z}$ and ad - bc = 1, for some non-negative (even) integer k (called the *weight* of the form)

• has a Fourier expansion

$$f(\tau) = \sum_{n=0}^{\infty} a(n)q^n$$

where $q = exp(2\pi i\tau)$. This converges for |q| < 1 (i.e. $\Im(\tau) > 0$)

Modular forms and Elliptic Functions

The examples of interest here are the Eisenstein series

$$E_k(\tau) = -\frac{B_k}{k!} + \frac{2}{(k-1)!} \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^n$$

where q is as before, B_k is a Bernoulli number and $\sigma_{k-1}(n)$ is the divisor function $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$. The E_k also have an alternative series representation:

$$E_k(\tau) = -\frac{B_k}{k!} + \frac{2}{(n-1)!} \sum_{r \ge 0} \frac{r^{k-1}q^r}{1-q^r}$$

Following on from the E_k above we define:

$$P_n(z,\tau) = \frac{1}{z^n} + \sum_{k=2}^{\infty} \binom{k-1}{n-1} E_k(\tau) z^{k-n}$$

Note that there is no contribution from the odd k cases as then the E_k are trivial forms.

Twisted Functions

We can add additional parameters to these functions, which now become twisted Eisentein series and elliptic functions:

$$P_n\begin{bmatrix}\theta\\\phi\end{bmatrix}(z,\tau) = \frac{1}{z^n} + (-1)^n \sum_{k=2}^{\infty} \binom{k-1}{n-1} E_k\begin{bmatrix}\theta\\\phi\end{bmatrix}(\tau) z^{k-n}$$

where

$$E_k \begin{bmatrix} \theta \\ \phi \end{bmatrix} (\tau) = -\frac{B_k(\lambda)}{k!} + \frac{1}{(k-1)!} \sum_{r \ge 0}^{\prime} \frac{(r+\lambda)^{k-1} \theta^{-1} q^{r+\lambda}}{1 - \theta^{-1} q^{r+\lambda}} \\ + \frac{(-1)^k}{(k-1)!} \sum_{r \ge 1} \frac{(r-\lambda)^{k-1} \theta q^{r-\lambda}}{1 - \theta q^{r-\lambda}}$$

where $\phi, \theta \in U(1)$, $\phi = \exp(2\pi i\lambda)$. Note that if we set $\theta, \phi = 1$ then $E_k \begin{bmatrix} \theta \\ \phi \end{bmatrix} (\tau)$ collapses to the classical Eisenstein series (mostly).

The n-point function for a VOSA V is defined by

$$Z_V^{(1)}(g; v_1, z_1; \dots; v_n, z_n; \tau)$$

= STr_V(gY(q_1^{L(0)}v_1, q_1) \cdots Y(q_n^{L(0)}v_n, q_n)q^{L(0)-c/24})

where $g \in Aut(V)$ and $STr_V(A) = Tr_{V_{\overline{0}}}(A) - Tr_{V_{\overline{1}}}(A)$ for an operator A. It can also be naturally defined for a VOSA module M.

n-point functions undergo *Zhu recursion* and can be expressed in terms of (n - 1)-point functions as follows:

$$Z_{V}^{(1)}(g; v, z; v_{1}, z_{1}; ...; v_{n}, z_{n}; \tau) = \delta_{\phi,1} \delta_{\theta,1} STr_{V}(go(v)Y(v_{1}, q_{1}) \cdots Y(v_{n}, q_{n})q^{L(0)-c/24}) + \sum_{k=1}^{n} \sum_{m \ge 0} p(v, v_{k-1}) \cdot P_{m+1} \begin{bmatrix} \theta \\ \phi \end{bmatrix} (z - z_{k}, \tau) \times Z_{V}^{(1)}(g; v_{1}, z_{1}; ...; v[m]v_{k}, z_{k}; ...; v_{n}, z_{n}; \tau)$$

where $gv = \theta^{-1}v$, $\phi = \exp(2\pi iwt(v))$ and $p(v, v_{k-1}) = (-1)^{p(v)[p(v_1)+\dots+p(v_{k-1})]}$ for r > 1.

The idea is to use a sewing scheme introduced by Yamada and expanded on by Mason and Tuite to develop a genus two version of the above.

Fig. 1 Sewing Two Tori

More on this on the next talk.

- Gilroy, T., Tuite, M.P.: Genus Two Zhu Theory for Vertex Operator Algebras, arXiv:1511.07664
- Mason, G. and Tuite, M.P.: On genus two Riemann surfaces formed from sewn tori. Commun. Math. Phys. 270, 587-634 (2007).
- Mason, G., Tuite, M.P. and Zuevsky, A.: Torus npoint functions for ℝ-graded vertex operator superalgebras and continuous fermion orbifolds, Commun. Math. Phys. 283 (2008) 305-342.
- Serre, J-P.: A Course in Arithmetic, Springer-Verlag (Berlin 1978)

• • = • • = •

- Tuite, M.P and Zuevsky, A: Genus Two Partition and Correlation Functions for Fermionic Vertex Operator Superalgebras I, Commun. Math. Phys. 306, 419447 (2011)
- Yamada, A.: Precise variational formulas for abelian differentials. Kodai. Math. J. **3**, 114-143 (1980).
- Zhu, Y.: Modular invariance of characters of vertex operator algebras. J.Amer.Math.Soc. 9 (1996) 237-302