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Introduction

In this talk we will discuss the development of a genus two
analogue of the Zhu recursion formula developed by Mason, Tuite
and Zuevsky for a genus one vertex operator super-algebra
(VOSA), or equivalently, a VOSA of the recursion formula found
by Gilroy and Tuite.
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Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple (V ,Y (, ), 1, ω)
consisting of the following data:

A vector space V

A map Y (, ) : V → End(V )[[z , z−1]]:

Y (u, z) =
∑
n∈Z

u(n)z−n−1

for u ∈ V

A vacuum vector 1 ∈ V

A Virasoro vector ω ∈ V
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Vertex Operator Super Algebras

This data obeys the following axioms:

Each vector v ∈ V has a parity p(v) ∈ {0, 1}. We can then
write V = V0̄ ⊕ V1̄

For all u, v in V , we have:

(z − w)N [Y (u, z),Y (v ,w)] = 0

where [, ] is the commutator defined by:

[Y (u, z),Y (v ,w)] = Y (u, z)Y (v ,w)−(−1)p(u)p(v)Y (v ,w)Y (u, z)

Y (1, z) = IdV

Y (u, z)1 = u + O(z)
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VOSAs continued

Y (ω, z) =
∑

n∈Z L(n)z−n−1 where the L(n) operators satisfy
the Virasoro Lie algebra:

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nc

where c is a constant known as the central charge.

The L(0) operator induces a grading on V , i.e.

V =
⊕
r∈R

Vr

where Vr is defined to be

{v ∈ V : L(0)v = rv , r ∈ R}
and dim(V ) <∞. r is known as the (conformal) weight of
the vector wt(v). For our purposes, we will only deal with
integral or half-integral weights.

Y (L(−1)v , z) = d
dzY (v , z)

Mike Welby Genus Two Zhu Theory for Fermionic VOSAs I



VOSAs continued

Y (ω, z) =
∑

n∈Z L(n)z−n−1 where the L(n) operators satisfy
the Virasoro Lie algebra:

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nc

where c is a constant known as the central charge.

The L(0) operator induces a grading on V , i.e.

V =
⊕
r∈R

Vr

where Vr is defined to be

{v ∈ V : L(0)v = rv , r ∈ R}
and dim(V ) <∞. r is known as the (conformal) weight of
the vector wt(v). For our purposes, we will only deal with
integral or half-integral weights.

Y (L(−1)v , z) = d
dzY (v , z)

Mike Welby Genus Two Zhu Theory for Fermionic VOSAs I



VOSAs continued

Y (ω, z) =
∑

n∈Z L(n)z−n−1 where the L(n) operators satisfy
the Virasoro Lie algebra:

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nc

where c is a constant known as the central charge.

The L(0) operator induces a grading on V , i.e.

V =
⊕
r∈R

Vr

where Vr is defined to be

{v ∈ V : L(0)v = rv , r ∈ R}
and dim(V ) <∞. r is known as the (conformal) weight of
the vector wt(v). For our purposes, we will only deal with
integral or half-integral weights.

Y (L(−1)v , z) = d
dzY (v , z)

Mike Welby Genus Two Zhu Theory for Fermionic VOSAs I



Modular forms and Elliptic functions

We now define modular forms. A modular form is a function f (τ)
on the upper-half complex plane H which:

is holomorphic on H and at infinity

satisfies the transformation law

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (z)

where a, b, c , d ,∈ Z and ad − bc = 1, for some non-negative
(even) integer k (called the weight of the form)

has a Fourier expansion

f (τ) =
∞∑
n=0

a(n)qn

where q = exp(2πiτ). This converges for |q| < 1 (i.e.
=(τ) > 0)
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Modular forms and Elliptic Functions

The examples of interest here are the Eisenstein series

Ek(τ) = −Bk

k!
+

2

(k − 1)!

∞∑
n=0

σk−1(n)qn

where q is as before, Bk is a Bernoulli number and σk−1(n) is the
divisor function σk−1(n) =

∑
d |n d

k−1.
The Ek also have an alternative series representation:

Ek(τ) = −Bk

k!
+

2

(n − 1)!

∑
r≥0

rk−1qr

1− qr

Following on from the Ek above we define:

Pn(z , τ) =
1

zn
+
∞∑
k=2

(
k − 1

n − 1

)
Ek(τ)zk−n

Note that there is no contribution from the odd k cases as then
the Ek are trivial forms.
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Twisted Functions

We can add additional parameters to these functions, which now
become twisted Eisentein series and elliptic functions:

Pn

[
θ
φ

]
(z , τ) =

1

zn
+ (−1)n

∞∑
k=2

(
k − 1

n − 1

)
Ek

[
θ
φ

]
(τ)zk−n

where

Ek

[
θ
φ

]
(τ) = −Bk(λ)

k!
+

1

(k − 1)!

′∑
r≥0

(r + λ)k−1θ−1qr+λ

1− θ−1qr+λ

+
(−1)k

(k − 1)!

∑
r≥1

(r − λ)k−1θqr−λ

1− θqr−λ

where φ, θ ∈ U(1), φ = exp(2πiλ). Note that if we set θ, φ = 1
then Ek

[
θ
φ

]
(τ) collapses to the classical Eisenstein series (mostly).
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n-point Functions for VOSAs

The n-point function for a VOSA V is defined by

Z
(1)
V (g ; v1, z1; . . . ; vn, zn; τ)

= STrV (gY (q
L(0)
1 v1, q1) · · ·Y (q

L(0)
n vn, qn)qL(0)−c/24)

where g ∈ Aut(V ) and STrV (A) = TrV0
(A)− TrV1

(A) for an
operator A. It can also be naturally defined for a VOSA module M.
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Zhu Recursion for VOSAs

n-point functions undergo Zhu recursion and can be expressed in
terms of (n − 1)-point functions as follows:

Z
(1)
V (g ; v , z ; v1, z1; . . . ; vn, zn; τ)

= δφ,1δθ,1STrV (go(v)Y (v1, q1) · · ·Y (vn, qn)qL(0)−c/24)

+
n∑

k=1

∑
m≥0

p(v , vk−1) · Pm+1

[
θ
φ

]
(z − zk , τ)

× Z
(1)
V (g ; v1, z1; . . . ; v [m]vk , zk ; . . . ; vn, zn; τ)

where gv = θ−1v , φ = exp(2πiwt(v)) and
p(v , vk−1) = (−1)p(v)[p(v1)+···+p(vk−1)] for r > 1.
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Genus Two

The idea is to use a sewing scheme introduced by Yamada and
expanded on by Mason and Tuite to develop a genus two version
of the above.
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Fig. 1 Sewing Two Tori
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More on this on the next talk.

Mike Welby Genus Two Zhu Theory for Fermionic VOSAs I



References I

Gilroy, T., Tuite, M.P.: Genus Two Zhu Theory for Vertex
Operator Algebras, arXiv:1511.07664

Mason, G. and Tuite, M.P.: On genus two Riemann surfaces
formed from sewn tori. Commun. Math. Phys. 270, 587-634
(2007).

Mason, G., Tuite, M.P. and Zuevsky, A.: Torus npoint
functions for R-graded vertex operator superalgebras and
continuous fermion orbifolds, Commun. Math. Phys. 283
(2008) 305-342.

Serre, J-P.: A Course in Arithmetic, Springer-Verlag (Berlin
1978)

Mike Welby Genus Two Zhu Theory for Fermionic VOSAs I



References II

Tuite, M.P and Zuevsky, A: Genus Two Partition and
Correlation Functions for Fermionic Vertex Operator
Superalgebras I, Commun. Math. Phys. 306, 419447 (2011)

Yamada, A.: Precise variational formulas for abelian
differentials. Kodai. Math. J. 3, 114-143 (1980).

Zhu, Y.: Modular invariance of characters of vertex operator
algebras. J.Amer.Math.Soc. 9 (1996) 237-302

Mike Welby Genus Two Zhu Theory for Fermionic VOSAs I


