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Introduction

In this talk, we will outline recent work done on general genus Zhu
recursion for vertex operator algebras.

Michael P. Tuite, Michael Welby Genus g Zhu Recursion for Vertex Operator Algebras



Vertex Operator Algebras

We begin with a brief recap of vertex operator algebras (VOAs). A
vertex operator algebra is a quadruple (V ,Y (, ), 1, ω) consisting of
the following data:

A vector space V

A map Y (, ) : V → End(V )[[z , z−1]]:

Y (u, z) =
∑
n∈Z

u(n)z−n−1

for u ∈ V

A vacuum vector 1 ∈ V

A Virasoro vector ω ∈ V
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Vertex Operator Algebras

This data obeys the following axioms:

For all u, v in V , there exists an integer N such that:

(z − w)N [Y (u, z),Y (v ,w)] = 0

where [, ] is the commutator defined by:

[Y (u, z),Y (v ,w)] = Y (u, z)Y (v ,w)− Y (v ,w)Y (u, z)

Y (1, z) = IdV

Y (u, z)1 = u + O(z)
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VOAs continued

Y (ω, z) =
∑

n∈Z L(n)z−n−2 where the L(n) operators satisfy
the Virasoro Lie algebra:

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nc

where c is a parameter known as the central charge.

The L(0) operator induces a grading on V , i.e.

V =
⊕
n∈N

Vn

where Vn is given by

{v ∈ V : L(0)v = nv , n ∈ N}

and dim(Vn) <∞. n is known as the (conformal) weight of
the vector wt(v).

Y (L(−1)v , z) = d
dzY (v , z)
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Genus Zero Zhu Recursion and Higher...

In previous talks, we have mostly examined genus two Zhu
recursion, building on genus one data.

The aim of this project is to find a formula for all genera, building
on genus zero data using the canonical formalism.
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The Canonical Formalism

Define the indexing sets

I = {−1, . . . ,−g , 1, . . . , g}, I+ = {1, 2, . . . , g}

To construct a genus g surface, we begin by excising 2g discs on
the sphere S(0). Let Let {Qa} be a set of 2g points on S(0) for
a ∈ I. Let za denote a local coordinate in the neighbourhood of
Qa. We introduce g sewing parameters ρa = ρ−a and excise 2g
disks

|za| <
|ρa|
r−a

for real ra > 0 to form a sphere with 2g punctures. Denote this
new surface by Ŝ(0).
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The Canonical Formalism

Define 2g annuli on Ŝ(0) centred at Qa by

Aa = {|ρa|/r−a ≤ |za| ≤ ra}

The construction of the genus g surfaces is completed by
identifying the annuli Aa and A−a using the sewing relation

zaz−a = ρa; a ∈ I+

with the stipulation that the parameters ra are sufficiently small so
as to prevent intersection of distinct annuli.

Taking the limit ρa → 0 for all a ∈ I+, we see that the genus g
surface S(g) degenerates to the Riemann sphere S(0).
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The Canonical Formalism
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Genus Zero Zhu Recursion

The genus zero n-point function is defined for states vk ∈ V ,
k = 1, . . . n by

Z
(0)
V (v , y) = 〈1,Y (v , y)1〉

where Y (v , y) = Y (v1, y1)Y (v2, y2) . . .Y (vn, yn) and 1 denotes
the vacuum vector.
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Genus Zero Zhu Recursion

We find that the genus zero n-point function obeys the following
recursion formula:

Theorem (Genus Zero Zhu Recursion)

For u quasiprimary of weight N, the genus zero (n + 1)-point
function obeys the following Zhu recursion formula

Z
(0)
V (u, x ; v , y) =

n∑
k=1

∑
j≥0

∂(0,j)ζN(x , yk)Z
(0)
V (. . . ; u(j)vk , yk ; . . .).

(1)
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Genus Zero Zhu Recursion

where ∂(i ,j)f (x , y) = ∂
(i)
x ∂

(j)
y f (x , y) and ∂(i) = 1

i!∂
i , with ζN(x , y)

given by

ζN(x , y) =
1

x − y
+

2N−2∑
`=0

f`(x)y `,

where f`(x) is any Laurent series in x . We have found that we
have a large degree of latitude in the choice of f`(x), however some
choices are more “interesting” than others.

We now want to extend this result to any genus.
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General Genus n-Point Functions

Let b+ denote an element of a basis {ba} for V⊗g , i.e. g copies of
V , with a ∈ I+, and let ba denote the dual vector with respect to
the ρa-dependent Li-Z metric 〈·, ·〉a. Now for ba ∈ Vna , define for
a ∈ I+

b−a = ba.

Now we will consider Zhu recursion for genus g n-point functions.
The genus g n-point function is given by:

Z
(g)
V (v , y) =

∑
b+

Z
(0)
V (v , y ;b,w),

where

Z
(0)
V (v , y ;b,w) = Z

(0)
V (v1, y1; . . . ; vn, yn; b−1,w−1; . . . ; bg ,wg ).
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General Genus Zhu Recursion

We eventually find that

Theorem

Genus g Zhu Recursion The genus g n-point function for a
quasiprimary vector u of weight wt(u) = N inserted at x ∈ S(g)

and general vectors v1, v2 . . . , vn inserted at y1, y2 . . . , yn ∈ S(g)

respectively, obeys the recursive identity

Z
(g)
V (u, x ; v , y) = φ(g)(x)XΠ

+
n∑

k=1

∑
j≥0

∂(0,j)ζ
(g)
N (x , yk)Z

(g)
V (. . . ; u(j)vk , yk ; . . .).

(2)

where φ(g)(x) is a doubly indexed row vector given by

φ(g)(x) =

(
A(x) + Ã(x)

(
I − R̃

)−1
(R + ΛΓ)

)
Π,
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General Genus Zhu Recursion

XΠ = (XΠ
a (m)) is given by

XΠ
a (m) = ρ

−m
2

a

∑
b+

Z
(0)
V (. . . u(m)ba,wa; . . .),

m = 0, . . . , 2N − 2. Lastly, ζ
(g)
N (x , y) is given by

ζ
(g)
N (x , y) := ζN(x , y) + Ã(x)(I − R̃)−1B(y),
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Genus g Objects

where the following are all indexed by a, b ∈ I, m, n ≥ 0:

Aa(x ,m) = ρ
m
2
a ∂

(0,m)ζN(x ,wa), Ã(x) = A(x)∆,

with

∆ab(m, n) = δm,n+K+1δab,

similarly,

Γab(m, n) = δm,−n+Kδa,−b,

and

Rab(m, n) =

{
(−1)Nρ

m+1
2

a ρ
n
2
b ∂

(m,n)ζN(w−a,wb), a 6= −b,
0, a = −b.

with R̃ = R∆ and
(
I − R̃

)−1
=
∑

k≥0 R̃
k .
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Genus g Objects

Lastly,

Λab(m, n) = (−1)Nρ
i+j+1

2
a ∂

(j)
w−aFi (w−a)δab,

where Fi depends on the choice of {f`(x)} in ζN(x , y), and

Ba(y ;m) = (−1)Nρ
m+1

2
a ∂(m,0)ζN(w−a, y).
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ζ
(g)
N (x , y) as a Poincaré Sum

We have found that ζ
(g)
N (x , y) can be expressed as a Poincaré sum

over the genus g Schottky group

ζ
(g)
N (x , y)dxN =

∑
γ∈Γ

(g)
S

ζ
(0)
N (γx , y)d(γx)N
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The Entries of φ(g)(x)

We believe that the vector φ(g)(x) comprises a (non-independent)
spanning set of differential forms on the genus g Riemann surface.

We are currently working on constructing a normalised basis from
these entries with dimension complying with the Riemann-Roch
Theorem.
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