

n-point Functions for Genus One Bosonic VOAs I

Mike Welby

18th March, 2016

Introduction

In this talk we will discuss work towards discussing genus one Zhu recursion on free bosonic vertex operator algebras, examining a paper of Mason and Tuite.

VOAs Revisited

Recall the (ring-theoretic) commutator [$[, \cdot]: R \times R \rightarrow R$ with $[A, B]=A B-B A$ for $A, B \in R$. We will consider this in the context of the ring of linear operators $\operatorname{End}(V)$ acting on a vector space V. $\operatorname{End}(V)$ is also a vector space, and with $[\cdot, \cdot]$ forms a Lie algebra.

VOAs Revisited

We first recall the definition of a vertex operator algebra $(V, Y, \mathbf{1}, \omega)$:

- A space of states V
- A map $Y: V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ which takes $v \in V$ to $\sum_{n \in \mathbb{Z}} v(n) z^{-n-1}$
- A (unique nonzero) vacuum vector $\mathbf{1} \in V$ with $Y(\mathbf{1}, z)=I d_{v}$ and $Y(u, z) \mathbf{1}=u+\mathcal{O}(z)$ for all $u \in V$
- A Virasoro vector $\omega \in V$ with $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$ where the $L(n)$ operators satisfy the Virasoro algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

VOAs Revisited

This data satisfies the following axioms:

- Each vector has an integral eigenvalue for the operator $L(0)$ (known as the weight) which puts the vector into a weight space V_{n}. We then have

$$
V=\bigoplus_{n \in \mathbb{Z}} V_{n}
$$

where the V_{n} all have finite dimension.

- $[L(-1), Y(v, z)]=\partial_{z} Y(v, z)$
- There exists an integer N such that:

$$
(w-z)^{N}[Y(u, w), Y(v, z)]=0
$$

for N sufficiently large. These operators are then said to be local of order N.

VOAs Revisited

The bracket on the vertex operators is defined:

$$
\begin{gathered}
{[Y(u, w), Y(v, z)]=\left[\sum_{m \in \mathbb{Z}} u(m) w^{-m-1}, \sum_{n \in \mathbb{Z}} v(n) z^{-n-1}\right]} \\
=\sum_{m, n \in \mathbb{Z}}[u(m), v(n)] w^{-m-1} z^{-n-1}
\end{gathered}
$$

Modular Forms

Recall also the modular group

$$
S L(2, \mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

with the usual multiplication. This group acts on the complex upper half plane \mathbb{H} as follows:

$$
\gamma \cdot \tau=\frac{a \tau+b}{c \tau+d}
$$

for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z}), \tau \in \mathbb{H}$.

Modular Forms

Following this we define a modular form. A modular form is a function f on \mathbb{H} which:

- is holomorphic on \mathbb{H}
- satisfies $f(\gamma \cdot \tau)=(c z+d)^{k} f(\tau)$ where γ is as above and k is a non-negative even integer known as the weight of the form
- has a Fourier expansion $f(\tau)=\sum_{n \geq 0} a_{n} q^{n}$ where $q=\exp (2 \pi i \tau)$.

These Fourier coefficients are of number-theoretic interest. The modular forms we will encounter here are the Eisenstein series

$$
E_{k}(\tau)=\frac{B_{k}}{k!}+\frac{2}{(k-1)!} \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$ is the divisor function and B_{k} is the k th Bernoulli number.

The Dedekind Eta function

Another function with modular properties is the Dedekind eta function:

$$
\eta(\tau)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

This function will appear across our studies of the the n-point functions of the Heisenberg VOA. It is not exactly a modular form but a modular function of weight $\frac{1}{2}$.

Elliptic Functions

We will now discuss elliptic functions. The main functions we will be concerned with here are:

$$
P_{1}(z, \tau)=\frac{1}{z}+\sum_{k=2}^{\infty} E_{k}(\tau) z^{k-1}
$$

and its successive derivatives:

$$
P_{n}(z, \tau)=\frac{(-1)^{n}}{(n-1)!} \partial_{z} P_{0}(z, \tau)=\frac{1}{z^{n}}+\sum_{k=2}^{\infty}\binom{n-1}{k-1} E_{k}(\tau) z^{n-k}
$$

These will feature in our discussion of Zhu recursion.

The Square Bracket

Zhu also defined a coordinate change to an isomorphic VOA, known as the square bracket formalism, defined by:

$$
(V, Y(,), \mathbf{1}, \omega) \rightarrow(V, Y[,], \mathbf{1}, \widetilde{\omega})
$$

where

$$
Y[u, z]=\sum_{n \in \mathbb{Z}} u[n] z^{-n-1}=Y\left(q_{z}^{L(0)} v, q_{z}-1\right)
$$

where $q_{z}=\exp (z)$ and

$$
\widetilde{\omega}=\omega-\frac{c}{24} \mathbf{1}
$$

This space is also integer graded (by $L[0]$) but the grading itself is different.

n-point functions

We define an n-point function on the torus as

$$
\begin{gathered}
Z_{V}^{(1)}\left(v_{1}, z_{1}, v_{2}, z_{2}, \ldots, v_{n}, z_{n}\right) \\
=\operatorname{Tr}_{V}\left(Y\left(q_{1}^{L(0)} v_{1}, q_{1}\right) Y\left(q_{2}^{L(0)} v_{2}, q_{2}\right) \cdots Y\left(q_{n}^{L(0)} v_{n}, q_{n}\right) q^{L(0)-\frac{c}{24}}\right)
\end{gathered}
$$

following Zhu, where $q_{i}=e^{z_{i}}, q_{i}^{L(0)}=\sum_{k \geq 0} \frac{\left(z_{i} L(0)\right)^{k}}{k!}$. The $q^{L(0)-\frac{c}{24}}$ factor is present to enhance the modular properties of the function. Letting $v_{i}=\mathbf{1}$ for all i we get

$$
Z_{V}(\tau)=\operatorname{Tr}_{V}\left(I d_{V}^{n} q^{L(0)-\frac{c}{24]}}\right)=\operatorname{Tr}_{V}\left(q^{L(0)-\frac{c}{24}}\right)
$$

as we know $\mathbf{1} \in V_{0}$.

A Combinatorial Approach

Recall the rank one Heisenberg VOA M with generator a. We can then write any vector $v \in M$ as

$$
v=a[-1]^{e_{1}} \cdots a[-p]^{e_{p}} \mathbf{1}
$$

We then have a labelled set

$$
\Phi_{i}=\{\underbrace{1,1, \ldots, 1}_{e_{1}}, \underbrace{2, \ldots, 2}_{e_{2}}, \ldots, \underbrace{p \ldots, p}_{e_{p}}\}
$$

corresponding to each $v_{i} \in M$. Then for an n-point function we consider the (disjoint) union $\Phi=\bigcup_{i=1}^{n} \Phi_{i}$ which is also a labelled set.

Fixed Point Free Involutions

On an arbitrary finite set S we can define the group of permutations $\Sigma(S)$. A subset of this group is the set of involutions, i.e. permutations that can be written uniquely as a product of disjoint 1- and 2-cycles. If we look at the set of permutations with no 1-cycles we get the set of fixed-point free involutions of $F(\Phi)$. This will appear several times in our discussion of Zhu reduction.

Next Time...

We will bring these notions together to examine some n-point functions and the Zhu reduction on these functions.

References

E- Mason, G. and Tuite, M.P.: Torus chiral n-point functions for free boson and lattice vertex operator algebras, Commun.Math.Phys. 235 (2003) 47-68.

Rerre, J-P.: A Course in Arithmetic, Springer-Verlag (Berlin 1978)

嗇 Zhu, Y.: Modular invariance of characters of vertex operator algebras. J.Amer.Math.Soc. 9 (1996) 237-302

