Genus Two n-point Functions for VOAs I

Mike Welby

10th February, 2017

Introduction

In this talk we will discuss the idea of a genus one n-point function for a VOA, along with genus one Zhu recursion.

We will also motivate the notion of a genus two version of this function and the idea of Zhu recursion for such an object.

Vertex Operator Algebras

A vertex operator algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V

Vertex Operator Algebras

A vertex operator algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for all $u \in V$

Vertex Operator Algebras

A vertex operator algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for all $u \in V$

- A vacuum vector $\mathbf{1} \in V$

Vertex Operator Algebras

A vertex operator algebra is a quadruple $(V, Y(),, \mathbf{1}, \omega)$ consisting of the following data:

- A vector space V
- A map $Y():, V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]:$

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}
$$

for all $u \in V$

- A vacuum vector $\mathbf{1} \in V$
- A Virasoro vector $\omega \in V$

Vertex Operator Algebras

This data obeys the following axioms:

- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

Vertex Operator Algebras

This data obeys the following axioms:

- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

for a sufficiently large integer N, where $[\cdot, \cdot]$ is the commutator defined by:

$$
[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-Y(v, w) Y(u, z)
$$

Vertex Operator Algebras

This data obeys the following axioms:

- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

for a sufficiently large integer N, where $[\cdot, \cdot]$ is the commutator defined by:

$$
[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-Y(v, w) Y(u, z)
$$

- $Y(\mathbf{1}, z)=I d_{V}$

Vertex Operator Algebras

This data obeys the following axioms:

- For all u, v in V, we have:

$$
(z-w)^{N}[Y(u, z), Y(v, w)]=0
$$

for a sufficiently large integer N, where $[\cdot, \cdot]$ is the commutator defined by:

$$
[Y(u, z), Y(v, w)]=Y(u, z) Y(v, w)-Y(v, w) Y(u, z)
$$

- $Y(\mathbf{1}, z)=l d_{V}$
- $Y(u, z) \mathbf{1}=u+O(z)$

VOAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

VOAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces an integral grading on V, i.e.

$$
V=\bigoplus_{n \in \mathbb{Z}} V_{n}
$$

VOAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces an integral grading on V, i.e.

$$
V=\bigoplus_{n \in \mathbb{Z}} V_{n}
$$

where V_{n} is the eigenspace defined to be

$$
\{v \in V: L(0) v=n v\}
$$

for a given integer n, and $\operatorname{dim}(V)<\infty$.

VOAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces an integral grading on V, i.e.

$$
V=\bigoplus_{n \in \mathbb{Z}} V_{n}
$$

where V_{n} is the eigenspace defined to be

$$
\{v \in V: L(0) v=n v\}
$$

for a given integer n, and $\operatorname{dim}(V)<\infty$. n is known as the weight of the vector (denoted $w t(v)$).

VOAs continued

- $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$ where the $L(n)$ operators satisfy the Virasoro Lie algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge.

- The $L(0)$ operator induces an integral grading on V, i.e.

$$
V=\bigoplus_{n \in \mathbb{Z}} V_{n}
$$

where V_{n} is the eigenspace defined to be

$$
\{v \in V: L(0) v=n v\}
$$

for a given integer n, and $\operatorname{dim}(V)<\infty$.
n is known as the weight of the vector (denoted $w t(v)$).

- $Y(L(-1) v, z)=\frac{d}{d z} Y(v, z)$

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity
- satisfies the transformation law

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(z)
$$

where $a, b, c, d, \in \mathbb{Z}$ and $a d-b c=1$, for some non-negative integer k (called the weight of the form)

Modular forms and Elliptic functions

We now define modular forms. A modular form is a function $f(\tau)$ on the upper-half complex plane \mathbb{H} which:

- is holomorphic on \mathbb{H} and at infinity
- satisfies the transformation law

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(z)
$$

where $a, b, c, d, \in \mathbb{Z}$ and $a d-b c=1$, for some non-negative integer k (called the weight of the form)

- has a Fourier expansion

$$
f(\tau)=\sum_{n=0}^{\infty} a(n) q^{n}
$$

where $q=\exp (2 \pi i \tau)$. This converges for $|q|<1$ (i.e. $\Im(\tau)>0)$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$
as the transformation $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ is an action of $S L(2, \mathbb{Z})$ (the group of 2×2 matrices over the integers with determinant 1) on \mathbb{H} and $S L(2, \mathbb{Z})$ is generated by the matrices

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$
as the transformation $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ is an action of $S L(2, \mathbb{Z})$ (the group of 2×2 matrices over the integers with determinant 1) on \mathbb{H} and $S L(2, \mathbb{Z})$ is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$
as the transformation $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ is an action of $S L(2, \mathbb{Z})$ (the group of 2×2 matrices over the integers with determinant 1) on \mathbb{H} and $S L(2, \mathbb{Z})$ is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The examples of interest here are the Eisenstein series

$$
E_{k}(\tau)=-\frac{B_{k}}{k!}+\frac{2}{(k-1)!} \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^{n}
$$

Modular forms contd.

We can rephrase the second axiom as

- $f(\tau+1)=f(z)$
- $f(-1 / \tau)=\tau^{k} f(z)$
as the transformation $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ is an action of $S L(2, \mathbb{Z})$ (the group of 2×2 matrices over the integers with determinant 1) on \mathbb{H} and $S L(2, \mathbb{Z})$ is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The examples of interest here are the Eisenstein series

$$
E_{k}(\tau)=-\frac{B_{k}}{k!}+\frac{2}{(k-1)!} \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where q is as before, B_{k} is a Bernoulli number and $\sigma_{k-1}(n)$ is the divisor function $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$.

Elliptic Functions

Following on from the E_{k} above we define:

$$
P_{n}(z, \tau)=\frac{1}{z^{n}}+(-1)^{n} \sum_{k=n}^{\infty}\binom{k-1}{n-1} E_{k}(\tau) z^{k-n}
$$

Note that there is no contribution from the odd k cases as then the E_{k} are trivial forms.

These functions obey the periodicities:

$$
\begin{gathered}
P_{k}(z+2 \pi i, \tau)=P_{k}(z, \tau) \\
P_{k}(z+2 \pi i \tau, \tau)=P_{k}(z, \tau)-\delta_{k 1}
\end{gathered}
$$

n-point Functions for VOAs

We now define an n-point function for a VOA by:

$$
\begin{gathered}
Z_{V}^{(1)}\left(v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right) \\
=\operatorname{Tr}\left(Y\left(q_{1}^{L(0)} v_{1}, q_{1}\right) \cdots Y\left(q_{n}^{L(0)} v_{n}, q_{n}\right) q^{L(0)-c / 24}\right)
\end{gathered}
$$

where $q_{i}=\exp \left(z_{i}\right)=\sum_{n \geq 0} \frac{z_{i}^{n}}{n!}$ is a formal series in z_{i}.

Zhu Recursion

Zhu developed a recursion formula relating genus one n-point functions to ($n-1$)-point functions:

$$
\begin{gathered}
Z_{V}^{(1)}\left(v, z ; v_{1}, z_{1} ; \ldots ; v_{n}, z_{n} ; \tau\right) \\
=\operatorname{Tr} v\left(o(v) Y\left(q_{1}^{L(0)} v_{1}, q_{1}\right) \cdots Y\left(q_{n}^{L(0)} v_{n}, q_{n}\right) q^{L(0)-c / 24}\right) \\
+\sum_{k=2}^{n} \sum_{j \geq 0} P_{1+j}\left(z-z_{k}, \tau\right) Z_{V}^{(1)}\left(v_{1}, z_{1} ; \ldots ; v[j] v_{k}, z_{k} ; \ldots ; v_{n}, z_{n} ; \tau\right)
\end{gathered}
$$

where $o(v)=v(w t(v)-1)$ and $v[j]$ is the coefficient of z^{-j-1} in $Y[v, z]=Y\left(q_{z}^{L(0)} v, q_{z}-1\right)$, with $q_{z}=\exp (z)$.

Genus Two n-Point Functions

One can also define genus two versions of n-point functions, building up from genus one data. This is implemented by a sewing scheme for Riemann surfaces, where two tori ("left" and "right") are attached (more on this in the next talk) to construct a double torus.

Figure: A genus two surface (double torus)

Genus Two n-Point Functions

The definition of this function with $L+1$ states on the left torus and R states on the right is as follows (for $n=L+R+1$):

$$
\begin{aligned}
& Z_{V}^{(2)}\left(v, x ; \boldsymbol{a}_{\boldsymbol{l}}, \boldsymbol{x}_{\boldsymbol{l}} \mid \boldsymbol{b}_{\mathbf{r}}, \boldsymbol{y}_{\mathbf{r}} ; \tau_{1}, \tau_{2}, \epsilon\right)= \\
& \sum_{u \in V} Z_{V}^{(1)}\left(Y[v, x] \boldsymbol{Y}\left[\boldsymbol{a}_{\boldsymbol{l}}, \boldsymbol{x}_{\boldsymbol{l}}\right] u, \tau_{1}\right) Z_{V}^{(1)}\left(\boldsymbol{Y}\left[\boldsymbol{b}_{\mathbf{r}}, \boldsymbol{y}_{\boldsymbol{r}}\right] \bar{u}, \tau_{2}\right)
\end{aligned}
$$

where $\boldsymbol{a}_{\boldsymbol{l}}, \boldsymbol{x}_{\boldsymbol{l}}$ denotes arguments $a_{1}, x_{1}, \ldots, a_{L}, x_{L}$, and likewise for the $\boldsymbol{b}_{\boldsymbol{r}}$ terms.
Similarly, the bold vertex operator notation is used to streamline the products:

$$
\begin{aligned}
\boldsymbol{Y}\left[\boldsymbol{a}_{\boldsymbol{I}}, \boldsymbol{x}_{\boldsymbol{I}}\right] & :=Y\left[a_{1}, x_{1}\right] \cdots Y\left[x_{L}, x_{L}\right] \\
\boldsymbol{Y}\left[\boldsymbol{b}_{\boldsymbol{r}}, \boldsymbol{y}_{\boldsymbol{r}}\right] & :=Y\left[b_{R}, y_{R}\right] \cdots Y\left[b_{1}, y_{1}\right]
\end{aligned}
$$

Genus Two n－Point Functions

The objective，then，is to find a genus two analogue of the Zhu recursion formula outlined above．Similar to how the $P_{k}(z, \tau)$ functions have periodicities on a torus，one expects to find a new class of objects with a natural interpretation on a double torus． More on this in the next talk．

References I

（ Gilroy，T．and Tuite，M．P．：Genus Two Zhu Theory for Vertex Operator Algebras，arXiv：1511．07664v3
國 Mason，G．and Tuite，M．P．：On genus two Riemann surfaces formed from sewn tori．Commun．Math．Phys．270，587－634 （2007）．
R Mason，G．，Tuite，M．P．and Zuevsky，A．：Torus npoint functions for \mathbb{R}－graded vertex operator superalgebras and continuous fermion orbifolds，Commun．Math．Phys． 283 （2008）305－342．
圊 Serre，J－P．：A Course in Arithmetic，Springer－Verlag（Berlin 1978）
围 Yamada，A．：Precise variational formulas for abelian differentials．Kodai．Math．J．3，114－143（1980）．

References II

目 Zhu, Y.: Modular invariance of characters of vertex operator algebras. J.Amer.Math.Soc. 9 (1996) 237-302

