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Introduction

In this talk, we will discuss a genus two analogue of the Zhu
recursion formula developed by Mason, Tuite and Zuevsky for a
genus one vertex operator superalgebra (VOSA), or equivalently, a
VOSA version of the VOA recursion formula found by Gilroy and
Tuite.
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Vertex Operator Super Algebras

A vertex operator super algebra is a quadruple (V ,Y (, ), 1, ω)
consisting of the following data:

A vector space V

A map Y (, ) : V → End(V )[[z , z−1]]:

Y (u, z) =
∑
n∈Z

u(n)z−n−1

for u ∈ V

A vacuum vector 1 ∈ V

A Virasoro vector ω ∈ V
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Vertex Operator Super Algebras

This data obeys the following axioms:

Each vector v ∈ V has a parity p(v) ∈ {0, 1}. We can then
write V = V0̄ ⊕ V1̄

For all u, v in V , we have:

(z − w)N [Y (u, z),Y (v ,w)] = 0

for a sufficiently large integer N, where [, ] is the commutator
defined by:

[Y (u, z),Y (v ,w)] = Y (u, z)Y (v ,w)−(−1)p(u)p(v)Y (v ,w)Y (u, z)

Y (1, z) = IdV

Y (u, z)1 = u + O(z)
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VOSAs continued

Y (ω, z) =
∑

n∈Z L(n)z−n−1 where the L(n) operators satisfy
the Virasoro Lie algebra:

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nc

where c is a constant known as the central charge.

The L(0) operator induces a grading on V , i.e.

V =
⊕
r∈R

Vr

where Vr is defined to be

{v ∈ V : L(0)v = rv , r ∈ R}
and dim(V ) <∞. r is known as the (conformal) weight of
the vector wt(v). For our purposes, we will only deal with
integral or half-integral weights.

Y (L(−1)v , z) = d
dzY (v , z)
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Modular forms and Elliptic functions

We now define modular forms. A modular form is a function f (τ)
on the upper-half complex plane H which:

is holomorphic on H and at infinity

satisfies the transformation law

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (z)

where a, b, c , d ,∈ Z and ad − bc = 1, for some non-negative
integer k (called the weight of the form)

has a Fourier expansion

f (τ) =
∞∑
n=0

a(n)qn

where q = exp(2πiτ). This converges for |q| < 1 (i.e.
=(τ) > 0)
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Modular forms and Elliptic Functions

The examples of interest here are the Eisenstein series

Ek(τ) = −Bk

k!
+

2

(k − 1)!

∞∑
n=0

σk−1(n)qn

where q is as before, Bk is a Bernoulli number and σk−1(n) is the
divisor function σk−1(n) =

∑
d |n d

k−1.
The Ek also have an alternative series representation:

Ek(τ) = −Bk

k!
+

2

(n − 1)!

∑
r≥0

rk−1qr

1− qr

Following on from the Ek above we define:

Pn(z , τ) =
1

zn
+
∞∑
k=2

(
k − 1

n − 1

)
Ek(τ)zk−n

Note that there is no contribution from the odd k cases as then
the Ek are trivial forms.
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Twisted Functions

We can add additional parameters to these functions, which now
become twisted Eisentein series and elliptic functions:

Pn

[
θ
φ

]
(z , τ) =

1

zn
+ (−1)n

∞∑
k=2

(
k − 1

n − 1

)
Ek

[
θ
φ

]
(τ)zk−n

where

Ek

[
θ
φ

]
(τ) = −Bk(λ)

k!
+

1

(k − 1)!

′∑
r≥0

(r + λ)k−1θ−1qr+λ

1− θ−1qr+λ

+
(−1)k

(k − 1)!

∑
r≥1

(r − λ)k−1θqr−λ

1− θqr−λ

where φ, θ ∈ U(1), φ = exp(2πiλ). Note that if we set θ, φ = 1
then Ek

[
θ
φ

]
(τ) becomes the classical Eisenstein series.

Mike Welby, Michael Tuite Genus Two Zhu Theory for Fermionic VOSAs II



n-point Functions for VOSAs

The n-point function for a VOSA V is defined by

Z
(1)
V (g ; v1, z1; . . . ; vn, zn; τ)

= STrV (gY (q
L(0)
1 v1, q1) · · ·Y (q

L(0)
n vn, qn)qL(0)−c/24)

where g ∈ Aut(V ) and STrV (A) = TrV0
(A)− TrV1

(A) for an
operator A. It can also be naturally defined for a VOSA module M.
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Zhu Recursion for VOSAs

n-point functions undergo Zhu recursion and can be expressed in
terms of (n − 1)-point functions:

Z
(1)
V (g ; v , z ; v1, z1; . . . ; vn, zn; τ)

= δφ,1δθ,1STrV (go(v)Y (v1, q1) · · ·Y (vn, qn)qL(0)−c/24)

+
n∑

k=1

∑
m≥0

p(v , vk−1) · Pm+1

[
θ
φ

]
(z − zk , τ)

× Z
(1)
V (g ; v1, z1; . . . ; v [m]vk , zk ; . . . ; vn, zn; τ)

where gv = θ−1v , φ = exp(2πiwt(v)) and
p(v , vk−1) = (−1)p(v)[p(v1)+···+p(vk−1)] for r > 1.

Mike Welby, Michael Tuite Genus Two Zhu Theory for Fermionic VOSAs II



Genus Two

The idea is to use a sewing scheme introduced by Yamada and
expanded on by Mason and Tuite to develop a genus two version
of the above.
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U

z2 = 0
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|ε|/r1

S2

Fig. 1 Sewing Two Tori

1

We will refer to S1 and S2 as the left and right tori respectively.
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Genus Two n-point Functions

We then build up the genus two n-point function (n = L + R + 1)
from genus one data:

Z
(2)
V (g1, g2; v , x ; al , xl |br , yr , τ1, τ2, ε)

=
∑
u∈V

Z
(1)
V (g1;Y [v , x ]Y [al , xl ]u, τ1)Z

(1)
V (g2;Y [br , yr ]u, τ2)

where g1, g2 ∈ Aut(V ), al , br are states and
al , xl := a1, x1; . . . ; aL, xL, Y [al , xl ] = Y [a1, x1] · · ·Y [aL, xL],
Y [br , yr ] = Y [bR , xR ] · · ·Y [b1, x1] and the sum is over a basis for
V .
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Genus Two Zhu Recursion

To develop a genus two Zhu recursion formula, we can substitute
our genus one version into the left L + 1 point function. For
convenience, we will streamline notation greatly. We obtain the
formula:

Z
(2)
M1,M2

(g1, g2; v , x ; al , xl |br , yr )

= δ1,1
θ1,φ1

O1 + p1R
[
θ1

φ1

]
(x)X1

+
L∑

l=1

∑
j≥0

p(v , al−1)P1+j

[
θ1

φ1

]
(x − xl , τ1)Z

(2)
M1,M2

(. . . ; v [j ]al , xl ; . . .)
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Genus Two Zhu Recursion

where p1 = (−1)p(v)[p(a1)+...+p(aL)],

O1 = O1(v , al , xl |br , yr ; τ1, τ2, ε)

=
∑
u∈V

STrM1

(
g1o(v)Y (q

L(0)
xl

al ,qxl
)Y (q

L(0)
0 u, q0)q

L(0)−c/24
1

)
× Z

(1)
M2

(g2;Y [br , yr ]u, τ2)

and R(x), Xa (a = 1, 2) are infinite row and column vectors
(indexed from m = 0) given by:

R
[
θ
φ

]
(x ;m) = ε

m
2 Pm+1

[
θ
φ

]
(x , τ)

X1(m) = ε−
m
2

∑
u∈V

Z
(1)
M1

(g1;Y [al , xl ]v [m]u, τ1)Z
(1)
M2

(g2;Y [br , yr ]u, τ2)

X2(m) = ε−
m
2

∑
u∈V

Z
(1)
M1

(g1;Y [al , xl ]u, τ1)Z
(1)
M2

(g2;Y [br , yr ]v [m]u, τ2)
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The Method

The process of developing the formula is similar to that employed
by Gilroy and Tuite, relating X1 to X2 (i.e., the left to the right)
and using this to obtain the final Zhu reduction formula.
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A Genus Two Zhu Recursion Formula

We eventually obtain the formula:

Z
(2)
M1,M2

(g1, g2; v , x ; al , xl |br , yr ; τ1, τ2, ε)

= δ1,1
θ1,φ1

NF1

[
θ(2)

φ(2)

]
(x)O1

+ p1δ
1,1
θ2,φ2

NF2

[
θ(2)

φ(2)

]
(x)O2

+ p1
NFΠ

[
θ(2)

φ(2)

]
(x)Xδ1

+
L∑

l=1

∑
j≥0

p(v , al−1) NP1+j

[
θ(2)

φ(2)

]
(x , xl)Z

(2)
M1,M2

(. . . ; v [j ]al , xl ; . . .)

+ p1

R∑
r=1

∑
j≥0

p(v ,br−1) NP1+j

[
θ(2)

φ(2)

]
(x , yr )Z

(2)
M1,M2

(. . . ; v [j ]br , yr ; . . .)
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A Genus Two Zhu Recursion Formula

where

NP1

[
θ(2)

φ(2)

]
(x , y) =

P1

[
θa

φa

]
(x − y , τa) + NQ(x)Λ̃aP1

[
θa

φa

]
(y , τa)

− δ1,1
θa,φa

(
P1

[
θa

φa

]
(x , τa)− πN

(
NQ(x)Λa

)
(K )

)
, x , y ∈ Ŝa

ξ2N

(
NQ(x)P1

[
θa

φa

]
(y , τa)− δ1,1

θa,φa
πN

(
εK/2PK+1

[
θa

φa

]
(x , τa)

−
(

NQ(x)Λ̃aΛa

)
(K )

))
, x ∈ Ŝa, y ∈ Ŝa

for a = 1, 2, N = wt(v), K = 2N − 2 and πN = 1− δN,1 − δN, 1
2
.

The ξ factor is a branch cut chosen in the sewing process.
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Genus Two Objects

The other objects are given by Xδ1 = ΠδX1, where

Πδ = Π− δ1,1
θ1,φ1

E00 − δ1,1
θ2,φ2

EKK

where δb,da,c = δa,bδc,d is a product of Kronecker deltas, with Π an
infinite projection matrix with an initial K non-trivial entries along
the diagonal, and Eij are infinite elementary matrices with entries
given by

Eij(m, n) = δi ,jm,n

and

O2 = O2(v , al , xl |br , yr ; τ1, τ2, ε)

=
∑
u∈V

Z
(1)
M1

(g1;Y [al , xl ]u, τ1)×

× STrM2

(
g2o(v)Y (q

L(0)
yr

al ,qyr
)Y (q

L(0)
0 u, q0)q

L(0)−c/24
2

)
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Genus Two Objects

Also

NP1+j

[
θ(2)

φ(2)

]
(x , y) =

1

j!
∂y

(
NP1

[
θ(2)

φ(2)

]
(x , y)

)

=


P1+j

[
θa
φa

]
(x − y , τa) + NQ(x)Λ̃aP1+j

[
θa
φa

]
(y , τa), x , y ∈ Ŝa

ξ2N · NQ(x)P1+j

[
θa
φa

]
(y , τa), x ∈ Ŝa, y ∈ Ŝa
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Genus Two Objects

The boldface objects in these formulas are infinite vectors similar
to those defined above (and analogous to those defined by Gilroy
and Tuite), with some parameter and indexing changes:

P1+j

[
θ
φ

]
(x ;m)

=


(−1)m+1ε

m
2

(
m + j − 1

j

)(
Pm+j−1

[
θ
φ

]
(−x , τ)− δ0,1,1

j ,θ,φEm(τ)

)
,

m ≥ 1

0,m = 0

for m, j ≥ 0, τ ∈ H and θ, φ ∈ U(1). NQ
[
θ(2)

φ(2)

]
(x) is given by

R
[
θa
φa

]
(x)∆

(
1− Λ̃a

[
θa
φa

]
Λ̃a

[
θa
φa

])−1

, x ∈ Ŝa (1)
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Genus Two Objects

The infinite matrices Λ

[
θ
φ

]
, a = 1, 2 are described by

Λ

[
θ
φ

]
(m, n) =

 ε(m+n)/2(−1)n+1

(
m + n − 1

n

)
Em+n

[
θ
φ

]
(τ) ,m ≥ 1

0 ,m = 0

Mike Welby, Michael Tuite Genus Two Zhu Theory for Fermionic VOSAs II



Genus Two Objects

We believe that the NFa

[
θa
φa

]
(x), NFΠ

[
θa
φa

]
(x) objects are related

to the space of forms living on the genus two Riemann surface.

The NFΠ object is nontrivially either a (K − 1)-, K - or
(K + 1)-dimensional vector, depending on the various values of θa
and φa. These objects seem to conspire so that the dimension of
this space is always preserved, in compliance with the
Riemann-Roch theorem.
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Next time

Sewing g handles to a sphere, the Schottky group etc....
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