Nonsingular Entry Pattern Matrices

Hieu Ha Van

Supervised by: Dr. Rachel Quinlan School of Maths, Statistics and Applied Maths

NUI Galway

October 25, 2018

NUI Galway

Entry pattern matrices

An entry pattern matrix (EPM for short) is a matrix in which:

- Each entry is an element of a specified set of independent indeterminates.
- Entries can be the same, but can not be a constant.

Entry pattern matrices

An entry pattern matrix (EPM for short) is a matrix in which:

- Each entry is an element of a specified set of independent indeterminates.
- Entries can be the same, but can not be a constant.

Example: Let

$$
A=\left[\begin{array}{ll}
x & y \\
z & x
\end{array}\right], B=\left[\begin{array}{cc}
x+y & 0 \\
z & x
\end{array}\right]
$$

Then A is an entry pattern matrix with 3 indeterminates $\{x, y, z\}$ while B is not.

Nonsingular EPMs

A square EPM $A\left(x_{1}, \cdots, x_{k}\right)$ is said to be almost nonsingular over a field \mathbb{F} (or \mathbb{F}-almost nonsingular) if $\operatorname{det} A\left(a_{1}, \cdots, a_{k}\right) \neq 0$ for all vector $\left(a_{1}, \cdots, a_{k}\right) \neq($ constant $)(1, \cdots, 1)$.

Nonsingular EPMs

A square EPM $A\left(x_{1}, \cdots, x_{k}\right)$ is said to be almost nonsingular over a field \mathbb{F} (or \mathbb{F}-almost nonsingular) if $\operatorname{det} A\left(a_{1}, \cdots, a_{k}\right) \neq 0$ for all vector $\left(a_{1}, \cdots, a_{k}\right) \neq($ constant $)(1, \cdots, 1)$.

Example. Let

$$
A(x, y, z)=\left[\begin{array}{lllll}
y & z & z & x & z \\
z & y & x & x & x \\
x & x & y & z & x \\
z & x & y & y & z \\
x & z & y & y & y
\end{array}\right]
$$

Then A is almost nonsingular over \mathbb{F}_{3} since $\operatorname{det} A(x, y, z)=0 \bmod 3$ precisely if $x=y=z$ but A is not almost nonsingular over \mathbb{F}_{5} since $\operatorname{det} A(0,1,2)=0$

The maximum possible number of indeterminates $\tau_{\mathbb{F}}(n)$

Given a field \mathbb{F} and an integer n, denote $\tau_{\mathbb{F}}(n)$ to be the maximum possible number of indeterminates appearing in an $n \times n$ EPM A so that A is almost nonsingular over \mathbb{F}. Determine $\tau_{\mathbb{F}}(n)$.

The maximum possible number of indeterminates $\tau_{\mathbb{F}}(n)$

Given a field \mathbb{F} and an integer n, denote $\tau_{\mathbb{F}}(n)$ to be the maximum possible number of indeterminates appearing in an $n \times n$ EPM A so that A is almost nonsingular over \mathbb{F}. Determine $\tau_{\mathbb{F}}(n)$. Example:

- $\boldsymbol{\tau}_{\mathbb{F}_{2}}(2)=2: A(x, y)=\left[\begin{array}{ll}x & y \\ y & x\end{array}\right]$
- $\boldsymbol{\tau}_{\mathbb{F}_{2}}(3)=\boldsymbol{\tau}_{\mathbb{F}_{2}}(2)=2: A(x, y)=\left[\begin{array}{lll}x & x & y \\ y & x & y \\ y & y & x\end{array}\right]$
- $\tau_{\mathbb{C}}(n)=2$ for every n since \mathbb{C} is algebraic closed.

Bounds of $\tau_{\mathbb{F}}(n)$

- $\tau_{\mathbb{F}}(n) \leq n: A=x_{1} A_{1}+\cdots+x_{k} A_{k}$, each A_{i} has at least n non-zero entries and no two of them have non-zero entry in the same position.
- $\boldsymbol{\tau}_{\mathbb{F}}(n) \geq 2$ for $n \geq 4$:

$$
T_{4}(x, y)=\left[\begin{array}{llll}
x & y & x & x \\
y & y & x & y \\
x & x & x & y \\
x & y & y & y
\end{array}\right], \operatorname{det} T_{4}(x, y)=(x-y)^{4}
$$

- $\tau_{\mathbb{R}}(n)=2$ if n is odd: $\operatorname{det} A(x, 0,1)$ is of odd degree and has no root!!!
- $\boldsymbol{\tau}_{\mathbb{F}_{p^{k}}}(n)=2$ if $n!$ divides k : $\operatorname{det} A(x, 1,0)$ has degree n and has no root in $\mathbb{F}_{p^{n!}}$, which contains the splitting field of every polynomial of degree $n!!!$

Bounds of $\tau_{\mathbb{F}}(n)$

Let $\rho_{\mathbb{F}}(n)$ be the maximum possible dimension of nonsingular vector subspace of $M_{n}(\mathbb{F})$. Then

$$
\begin{equation*}
\boldsymbol{\tau}_{\mathbb{F}}(n) \leq \rho_{\mathbb{F}}(n)+1 \tag{1}
\end{equation*}
$$

Bounds of $\tau_{\mathbb{F}}(n)$

Let $\rho_{\mathbb{F}}(n)$ be the maximum possible dimension of nonsingular vector subspace of $M_{n}(\mathbb{F})$. Then

$$
\begin{equation*}
\tau_{\mathbb{F}}(n) \leq \rho_{\mathbb{F}}(n)+1 \tag{1}
\end{equation*}
$$

$A\left(x_{1}, \cdots, x_{k}\right)$ is \mathbb{F}-almost nonsingular $\Rightarrow A\left(0, x_{2}, \cdots, x_{k}\right)$ is $(k-1)$-dimensional nonsingular vector subspace of $M_{n}(\mathbb{F})$.

The case of Real field

Let $\rho(n)$ be the Radon-Hurwitz number defined by

$$
n=(2 a+1) 2^{b+4 c} \Rightarrow \rho(n)=2^{b}+8 c
$$

For example,

$$
\begin{aligned}
& \rho(32)=\rho\left(2^{1+4 \cdot 1}\right)=2^{1}+8 \cdot 1=10, \\
& \rho(48)=\rho(16)=\rho\left(2^{4}\right)=1+8=9
\end{aligned}
$$

Theorem (Adams, Lax and Phillips, 1963)

$$
\rho_{\mathbb{R}}(n)=\rho(n)
$$

Hence

$$
\tau_{\mathbb{R}}(n) \leq \rho(n)+1
$$

Theorem

$$
\tau_{\mathbb{R}}(n)=\rho(n)+1
$$

if n has an odd divisor greater than 3.
Otherwise,

$$
\begin{aligned}
& \rho\left(2^{k-2}\right)+1 \leq \tau_{\mathbb{R}}\left(2^{k}\right) \leq \rho\left(2^{k}\right)+1, \\
& \rho\left(2^{k-1}\right)+1 \leq \tau_{\mathbb{R}}\left(3 \cdot 2^{k}\right) \leq \rho\left(2^{k}\right)+1
\end{aligned}
$$

Furthermore, if we denote $\tau_{\mathbb{R}}^{S}(n)$ to be the maximum possible number of indeterminates of a \mathbb{R}-almost nonsingular EPM which is symmetric. Then

$$
\tau_{\mathbb{R}}^{S}(n)=\rho\left(\frac{n}{2}\right)+1
$$

provided n has an odd divisor greater than 3 .

THANK YOU!

