Internal-variable modelling of solids with slow dynamics

Harold Berjamin¹, Guillaume Chiavassa², Nicolas Favrie³, Bruno Lombard¹, Emmanuelle Sarrouy¹

¹Laboratoire de Mécanique et d'Acoustique, Marseille (France) berjamin@lma.cnrs-mrs.fr 😒 🖬 🖬 ²Laboratoire de Mécanique, Modélisation et Procédés Propres, Marseille (France) ³Institut Universitaire des Systèmes Thermiques Industriels, Marseille (France)

Modelling group seminar, NUI Galway, September 28, 2018

Time-domain numerical method

Frequency-domain numerical method 00000

Who I am

26, French and German École Centrale de Marseille: *general engineering*, acoustics PhD viva: 29th November 2018

Time-domain numerical method

Frequency-domain numerical method 00000

Sandstone across the scales

Fime-domain numerical method

Frequency-domain numerical method 00000

Forced longitudinal vibrations (1)

Resonance (NRUS) 😂 Johnson 96, Remillieux 16

Measurement of steady-state frequency response

- low strain $arepsilon~\sim~10^{-8}\!
 ightarrow\!10^{-6}$
- softening (≃ Duffing StrenCate et al. 04)
- harmonic generation

Fime-domain numerical method

Frequency-domain numerical method 00000

Forced longitudinal vibrations (2)

Dynamic Acoustoelasticity (DAE) 😂 Renaud et al. 12, Rivière et al. 13

Local measurement over time

- softening/recovery transients ("slow dynamics")
- no permanent damage

Fime-domain numerical method

Frequency-domain numerical method 00000

Forced longitudinal vibrations (2)

Dynamic Acoustoelasticity (DAE) 😂 Renaud et al. 12, Rivière et al. 13

Local measurement over time

- softening/recovery transients ("slow dynamics")
- no permanent damage

Fime-domain numerical method

Frequency-domain numerical method 00000

Contribution

Softening (internal variable)

$$\sigma = (1 - g)E\varepsilon, \qquad \varepsilon = \partial_x u$$
$$\tau \dot{g} = \frac{1}{2}E\varepsilon^2 - \gamma g$$

Outline

- 1 Modelling
- 2 Time-domain numerical method
- **3** Frequency-domain numerical method

Outline

1 Modelling

- Time-domain numerical method
- 3 Frequency-domain numerical method

Fime-domain numerical method

Frequency-domain numerical method 00000

Thermodynamics with internal variable

Adiabatic transformation Variables of state $\{s, \varepsilon, g\}$ (elasticity + internal variable)

Clausius-Duhem inequality

$$\left(\sigma - \frac{\partial U}{\partial \varepsilon}\right)\dot{\varepsilon} - \frac{\partial U}{\partial g}\dot{g} \ge 0$$
 for all $\{\varepsilon, g, \dot{\varepsilon}\}$

$$\implies \quad \sigma = \frac{\partial U}{\partial \varepsilon} \qquad \text{and} \qquad -\frac{\partial U}{\partial g} \dot{g} \ge 0$$

Time-domain numerical method

Frequency-domain numerical method 00000

Thermodynamics with internal variable

Adiabatic transformation Variables of state $\{s, \varepsilon, g\}$ (elasticity + internal variable)

Clausius-Duhem inequality

$$\left(\sigma - \frac{\partial U}{\partial \varepsilon}\right)\dot{\varepsilon} - \frac{\partial U}{\partial g}\dot{g} \ge 0$$
 for all $\{\varepsilon, g, \dot{\varepsilon}\}$

$$\implies \left[\sigma = \frac{\partial U}{\partial \varepsilon} \right] \quad \text{and} \quad -\frac{\partial U}{\partial g} \dot{g} \ge 0$$

$$f\left[\sigma = \phi_1(g)W'(\varepsilon) \right], \text{ then}$$

$$U = \phi_1(g)W(\varepsilon) + \phi_2(g) \quad \text{and} \quad -(\phi_1'(g)W(\varepsilon) + \phi_2'(g))\dot{g} \ge 0$$

Choice: $au \dot{g} = - ig(\phi_1'(g) W(arepsilon) + \phi_2'(g) ig)$ with au > 0

Time-domain numerical method

Frequency-domain numerical method 00000

Thermodynamics with internal variable

Adiabatic transformation Variables of state $\{s, \varepsilon, g\}$ (elasticity + internal variable)

Clausius-Duhem inequality

$$\left(\sigma - \frac{\partial U}{\partial \varepsilon}\right)\dot{\varepsilon} - \frac{\partial U}{\partial g}\dot{g} \ge 0$$
 for all $\{\varepsilon, g, \dot{\varepsilon}\}$

$$\implies \quad \sigma = \frac{\partial U}{\partial \varepsilon} \qquad \text{and} \qquad \left[-\frac{\partial U}{\partial g} \dot{g} \ge 0 \right]$$

If $\sigma = \phi_1(g) W'(arepsilon)$, then

 $\left\{ U = \phi_1(g)W(\varepsilon) + \phi_2(g)
ight\}$ and $\left[- \left(\phi_1'(g)W(\varepsilon) + \phi_2'(g) \right) \dot{g} \ge 0
ight]$

 $\hbox{Choice:} \ \ \tau \dot{g} = - \big(\phi_1'(g) \mathcal{W}(\varepsilon) + \phi_2'(g) \big) \ \ \hbox{with} \ \tau > 0$

Time-domain numerical method

Frequency-domain numerical method 00000

Thermodynamics with internal variable

Adiabatic transformation Variables of state $\{s, \varepsilon, g\}$ (elasticity + internal variable)

Clausius-Duhem inequality

$$\left(\sigma - \frac{\partial U}{\partial \varepsilon}\right)\dot{\varepsilon} - \frac{\partial U}{\partial g}\dot{g} \ge 0$$
 for all $\{\varepsilon, g, \dot{\varepsilon}\}$

$$\implies \sigma = \frac{\partial U}{\partial \varepsilon} \qquad \text{and} \qquad -\frac{\partial U}{\partial g} \dot{g} \ge 0$$

If $\sigma = \phi_1(g)W'(\varepsilon)$, then $U = \phi_1(g)W(\varepsilon) + \phi_2(g)$ and $\left| -(\phi'_1(g)W(\varepsilon) + \phi'_2(g))\dot{g} \ge 0 \right|$ Choice: $\tau \dot{g} = -(\phi'_1(g)W(\varepsilon) + \phi'_2(g))$ with $\tau > 0$

Time-domain numerical method

Frequency-domain numerical method 00000

Modelling choices

From 😂 Berjamin et al. 17

- mathematical considerations
- qualitative behaviour

Internal energy $U = \phi_1(g)W(\varepsilon) + \phi_2(g)$ Possible choices:

$$egin{aligned} \mathcal{W}(arepsilon) &\simeq rac{1}{2} E arepsilon^2 \ \phi_1(g) &= 1-g \ ext{for} \ g < 1 \ \phi_2(g) &\simeq rac{1}{2} \gamma g^2 \end{aligned}$$

$$egin{aligned} \sigma &= \phi_1(g) W'(arepsilon) \ au \dot{g} &= -ig(\phi_1'(g) W(arepsilon) + \phi_2'(g)ig) \end{aligned}$$

Time-domain numerical method

Frequency-domain numerical method 00000

Modelling choices

From 😂 Berjamin et al. 17

- mathematical considerations
- qualitative behaviour

Internal energy $U = \phi_1(g)W(\varepsilon) + \phi_2(g)$ Possible choices:

$$egin{aligned} \mathcal{W}(arepsilon)&\simeqrac{1}{2}Earepsilon^2\ \phi_1(g)&=1-g \ \ \mbox{for} \ \ g<1\ \phi_2(g)&\simeqrac{1}{2}\gamma g^2 \end{aligned}$$

$$\sigma = (1-g) E arepsilon \ au \dot{g} = rac{1}{2} E arepsilon^2 - \gamma g$$

Fime-domain numerical method

Frequency-domain numerical method 00000

Viscoelastic cases

Kelvin–Voigt rheology $\{s, \varepsilon, \dot{\varepsilon}, g\}$

$$\sigma = (1 - g) \left(E \varepsilon + \eta \dot{\varepsilon}
ight)$$

 $au \dot{g} = rac{1}{2} E \varepsilon^2 - \gamma g$

Generalized Zener rheology $\{s, \varepsilon, \varepsilon - \xi_1, \dots, \varepsilon - \xi_N, g\}$ Serjamin et al. 18

$$\begin{split} \sigma &= (1-g) \sum_{\ell=1}^{N} M_{\ell} \xi_{\ell} \\ \tau \dot{g} &= \frac{1}{2} \left(\sum_{\ell=1}^{N} M_{\ell} (\xi_{\ell})^{2} + \mathcal{K}_{\ell} (\varepsilon - \xi_{\ell})^{2} \right) - \gamma g \\ \eta_{\ell} \dot{\xi}_{\ell} &= \eta_{\ell} \dot{\varepsilon} + \mathcal{K}_{\ell} \varepsilon - (M_{\ell} + \mathcal{K}_{\ell}) \xi_{\ell} \end{split}$$

Frequency-domain numerical method 00000

Outline

1 Modelling

2 Time-domain numerical method

3 Frequency-domain numerical method

Time-domain numerical method 0000

Frequency-domain numerical method 00000

Lagrangian equations of motion

First-order strong formulation 😂 Berjamin et al. 18

$$\begin{array}{c} \hline \partial_t \varepsilon = \partial_x v \\ \rho_0 \partial_t v = \partial_x \sigma \end{array} \quad \text{and} \quad \begin{cases} \sigma = (1 - g) \sum_{\ell=1}^N M_\ell \xi_\ell \\ \\ \tau \partial_t g = \frac{1}{2} \left(\sum_{\ell=1}^N M_\ell (\xi_\ell)^2 + K_\ell (\varepsilon - \xi_\ell)^2 \right) - \gamma g \\ \\ \eta_\ell \partial_t \xi_\ell = \eta_\ell \partial_t \varepsilon + K_\ell \varepsilon - (M_\ell + K_\ell) \xi_\ell \end{cases}$$

Balance laws $\partial_t q + \partial_x f(q) = r(q)$, with sound speeds

$$\{-c, 0, \dots, 0, +c\}$$
 where $\rho_0 c^2 = (1-g) \sum_{\ell=1}^N M_\ell$

Finite-volume method 😂 LeVeque 02

Time-domain numerical method

Frequency-domain numerical method 00000

Finite-volume method

Operator splitting 😂 Berjamin et al. 18

$$\partial_t \boldsymbol{q} + \partial_x \boldsymbol{f}(\boldsymbol{q}) = \boldsymbol{r}(\boldsymbol{q})$$
 as $(\mathcal{H}_a): \quad \partial_t \boldsymbol{q} + \partial_x \boldsymbol{f}(\boldsymbol{q}) = \boldsymbol{0}$
 $(\mathcal{H}_b): \quad \partial_t \boldsymbol{q} = \boldsymbol{r}(\boldsymbol{q})$

~

Strang splitting scheme

- (\mathcal{H}_a) : fourth-order ADER flux
- (*H_b*): fourth-order adaptive Rosenbrock method

Configuration

Time-domain numerical method

Frequency-domain numerical method 00000

Results

Resonance curves

20 freq. \simeq 40 min. \rightarrow

Time-domain numerical method

Frequency-domain numerical method •0000

Outline

- 1 Modelling
 - 2 Time-domain numerical method
- **3** Frequency-domain numerical method

Time-domain numerical method

Frequency-domain numerical method 00000

Lagrangian equations of motion

Second-order-in-time weak formulation

$$\rho_0 \langle \partial_{tt} u, \tilde{u} \rangle = (\sigma \tilde{u})|_{x=L} - (\sigma \tilde{u})|_{x=0} - \langle \sigma, \partial_x \tilde{u} \rangle$$

for all $\tilde{u} \in H^1([0, L])$, and

$$\begin{cases} \sigma = (1 - g) \sum_{\ell=1}^{N} M_{\ell} \xi_{\ell} \\ \tau \partial_{t} g = \frac{1}{2} \left(\sum_{\ell=1}^{N} M_{\ell} (\xi_{\ell})^{2} + K_{\ell} (\varepsilon - \xi_{\ell})^{2} \right) - \gamma g \\ \eta_{\ell} \partial_{t} \xi_{\ell} = \eta_{\ell} \partial_{t} \varepsilon + K_{\ell} \varepsilon - (M_{\ell} + K_{\ell}) \xi_{\ell} \end{cases}$$

Mixed finite elements $(P^1 - P^0)$ yield $\dot{X} = C + LX + Q : (XX^{\top})$ Harmonic balance + numerical continuation (Manlab) Cochelin et al. 09

Harmonic balance + numerical continuation (Manlab)

Harmonic balance of $\dot{X} = C + LX + Q : (XX^{\top})$ Scochelin et al. 09

$$\boldsymbol{X} = \frac{\boldsymbol{a}_0}{2} + \boldsymbol{a}_1 \cos(\omega t) + \boldsymbol{b}_1 \sin(\omega t) + \dots + \boldsymbol{b}_H \sin(H\omega t)$$

Numerical continuation: Analytic expansion of a_0, \ldots, b_H w.r.t. parameter

ime-domain numerical method

Frequency-domain numerical method

Resonance curves

Fime-domain numerical method

Frequency-domain numerical method

Parametric study $\tau \dot{g} = W - \gamma g (1^{st} harm.)$

Time-domain numerical method 0000 Frequency-domain numerical method 00000

Conclusion

Rocks and concrete belong to a general class of *nonlinear viscoelastic* solids with *softening*

	response (stress BC)	response (displ. BC)	transient
time FVM	×	(×)	 Image: A second s
freq. FEM	\checkmark	(✓)	×

Future works

- continuation of peaks (backbone curve)
- perturbation methods

Fime-domain numerical method

Frequency-domain numerical method

Multiple space dimensions (non viscous)

$$\sigma = (1 - g) \frac{1}{\det F} F \cdot \frac{\partial W}{\partial E} \cdot F^{\top}$$
$$\tau \dot{g} = W(E) - \gamma g$$

$$W(\mathbf{E}) = \frac{\lambda}{2} (\operatorname{tr} \mathbf{E})^2 + \mu \operatorname{tr} \mathbf{E}^2 + \frac{\mathcal{C}}{3} (\operatorname{tr} \mathbf{E})^3 + \mathcal{B} (\operatorname{tr} \mathbf{E}) \operatorname{tr} \mathbf{E}^2 + \frac{\mathcal{A}}{3} \operatorname{tr} \mathbf{E}^3 + \dots$$

