

## Control of a model of competition between two animal species

Gianmario Alfonso Varchetta 30/11/2018





- Italian student of automatic engineering
- Erasmus plus student
- Erasmus period: 3 months (November-January)



- Goal: Final Thesis work

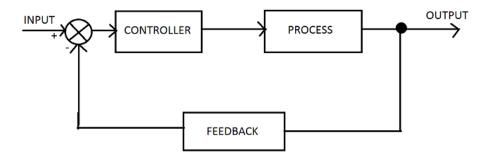






### Control Strategy

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$



 $\begin{aligned} x(t) &= state \ variables \\ u &= \ control \ input \\ y(x) &= \ output \end{aligned}$ 

 Control of the system using feedback control:

#### Aim: regulate the system output at a fixed value





$$= x_1(a - x_1 - bx_2)$$

$$\frac{dx_2}{dt} = x_2(c - x_2 - x_1)$$

 $x, y \ge 0$ 

 $dx_1$ 

dt

 $x_1(t) = population of$ species1 (i.e. rabbits)  $x_2(t) = population of$ species 2 (i.e. Sheep)

- Competition for the same food supply and the amount available is limited.
- Each species would grow to its carrying capacity in the absence of the other.
- When both species coexist they start fighting for food.





### Equilibria

- $x_A = (0; 0)$
- $x_B = (0; 2)$
- $x_C = (3; 0)$

•  $x_D = (1; 1)$ 

$$J = \begin{bmatrix} 3 - 2x_1 - 2x_2 & -2x_1 \\ -x_2 & 2 - x_1 - 2x_2 \end{bmatrix}$$

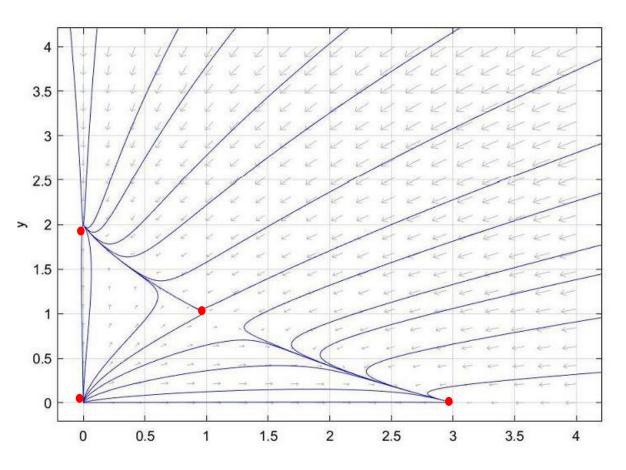
 $x_A$  is a repeller node.  $x_B$  is a stable node.  $x_C$  is a stable node.  $x_D$  is a saddle.

 $*a = 3 \quad b = 2 \quad c = 2$ 





## Phase portrait



- Principle of competitive exclusion: two species competing for the same limited food typically cannot coexist
- Basins and their boundaries partition the phase plane into regions of different longterm behavior





### How to control

Dependence on:➢Food availability➢Species rates



# Control on food Control on species rates culling and fertility control





### First results

Aim: to stabilize the saddle in (1;1)

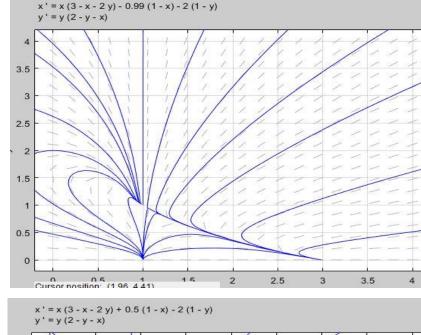
- Proportional error controller:

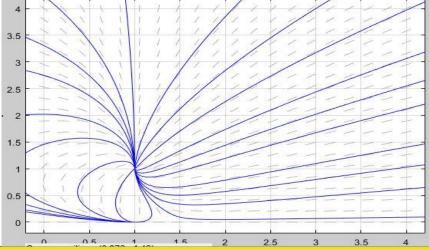
$$u = K_1 (x_{1ref} - x_1) + K_2 (x_{2ref} - x_2)$$

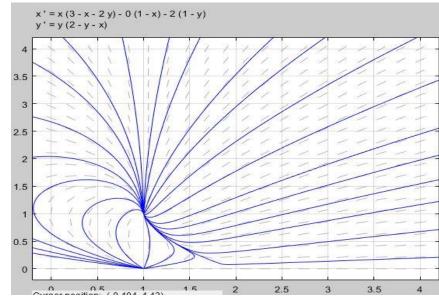
Varying  $K_1$  and  $K_2$ , the dynamics of the closed loop system change



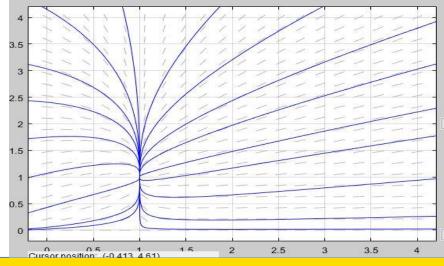
### DIE UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II





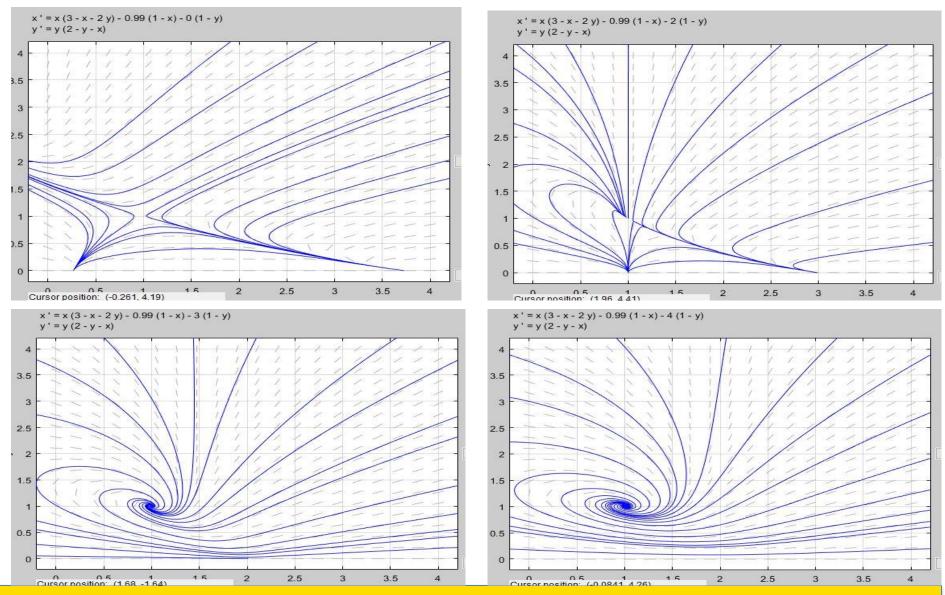


x ' = x (3 - x - 2 y) + 2.5 (1 - x) - 2 (1 - y) y ' = y (2 - y - x)





### DIE UNIVERSITA DEGLISTUDI DI NAPOLI FEDERICO II







## Future steps

- Study the Jacobian Matrix and its eigenvalues depending on K
- Try to get bigger or smaller the basins of attraction of the stable nodes
- Implement different kind of control and compare the results (i.e. Adding an integral part of error)

