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Introduction

We are interested in the numerical solution of a singularly perturbed,
fourth-order ordinary differential equations.

Our model differential equation is

− εu(4)(x) + au′′(x)− bu(x) = f (x) on Ω := (0,1), (1)

subject to the boundary conditions

u(0) = u′′(0) = 0, u(1) = u′′(1) = 0.

Here ε is a positive, real-valued parameter: 0 < ε ≤ 1, but typically
ε� 1. And so the problem is singularly perturbed.
The coefficient functions a, b and right-hand side function f are real
or complex-valued functions on the interval Ω.
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Real-valued singularly perturbed problems

We consider the numerical solution of real-valued singularly
perturbed, fourth-order ordinary differential equations, and in
particular, problems of the following form.

[Shanthi and Ramanujam, 2002]:

− εu(4)(x) + au′′(x)− bu(x) = f (x) on Ω := (0,1), (2)

subject to the boundary conditions

u(0) = u′′(0) = u(1) = u′′(1) = 0.

The coefficient functions a, b and right-hand side function f are
real-valued functions on the interval Ω.
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A positive definite system

We now propose an simple approach that allows one to reformulate
(2) as a system with a (non-symmetric) positive definite coefficient
matrix. We set

u′′ := αw + βu,

and, consequently,

u(4) = αw ′′ + βαw + β2u.

With this, (2) can be transformed as a system of two equations of the
form

−εw ′′ + (aα− εαβ)w + (aβ − εβ2 − b)u = f , (3a)
−u′′ + αw + βu = 0, (3b)

subject to the boundary conditions

u(0) = w(0) = u(1) = w(1) = 0.
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Positive definite matrix

Written in matrix form, this is

−
(
ε 0
0 1

) (
w ′′

u′′

)
+ B

(
w
u

)
=

(
f
0

)
.

where

B =

(
aα− εαβ aβ − εβ2 − b

α β

)
.

This B satisfies vT Bv ≥ γvT v, for all v , if and only if, M = (BT + B)/2
is symmetric positive definite. Here

M =

(
aα− εαβ 1

2 (aβ − εβ2 − b + α)
1
2 (aβ − εβ2 − b + α) β

)
.

Clearly, M is symmetric.
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Tests for Positive definite matrix M

What conditions on α and β ensure that M is a positive definite?

Each of the following tests is a necessary and sufficient condition for
a symmetric matrix M to be Positive definite:

(i) vT Mv ≥ γvT v, for all v ,
(ii) All eigenvalues of M are positive,
(iii) Determinant test,
(iv) Pivot test.

There is the case if M is strictly diagonally dominant, with positive
diagonal entries, i.e., Mii >

∑
j 6=i |Mij | for i = 1,2 [Beezer, 2008]. So,

thus, we require that
(i) |aα− εαβ| > 0,
(ii) |β| > 0,
(iii) |aα− εαβ| > 1

2 |aβ − εβ
2 − b + α|,

(iv) |β| > 1
2 |aβ − εβ

2 − b + α|.
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Eigenvalue test

By applying the eigenvalue test on the matrix M. We can see that

−εβ2 +aβ+b−2
√

aβb − εβ2b ≤ α ≤ −εβ2 +aβ+b +2
√

aβb − εβ2b

Suppose β = 1, then α = a + b − ε. These are two conditions on α
and β to be ensure that M is a positive definite. We can rewrite (2) as
a system

−
(
ε 0
0 1

) (
w ′′

u′′

)
+ B

(
w
u

)
=

(
f
0

)
.

where

B =

(
(a + b − ε)(a− ε) a− ε− b

a + b − ε 1

)
,
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Coercivity property of the matrix

Lemma

When β = 1 and α−a + b− ε, the matrix M is coercive (for sufficiently
small ε). Further more there is a positive γ such that γ ∈ [λmin, λmax],
where λmin and λmax are eigenvalues of matrix M, and

vT Mv
vT v

≥ γ for all v ∈ R2. (4)
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Example

Now consider the real-valued problem:

− εu(4)(x) + 2u′′(x)− 4u(x) = f (x) on Ω := (0,1), (5)

subject to the boundary conditions

u(0) = u′′(0) = 0, u(1) = u′′(1) = 0.

If we take α = 6− ε and β = 1, we have

B =

(
12− 8ε+ ε2 −(ε+ 2)

6− ε 1

)
, and M =

(
12− 8ε+ ε2 −ε+ 2
−ε+ 2 1

)
.

where M is a symmetric positive definite for ε < 1.
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Conclusions and future work

I We also aim to extend the work to complex-valued case where
the associated 4× 4 coefficient matrix in the second order
system is a positive definite.

I We are now working on the analysis of methods for fourth-order
complex-valued problems in the case where the problem can be
re-cast as a coupled system of second-order problems (see, e.g.,
[Xenophontos et al., 2013]).

I We also aim to extend the work to complex-valued fourth-order
ones which cannot be written as a coupled system of
second-order ones (e.g., [Constantinou et al., 2016]).
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