Postgraduate Modelling Research Group

School of Mathematics, Statistics and Applied Mathematics, NUI Galway

A positive definite system of real-valued singularly perturbed problems

Faiza Alssaedi
Supervisor: Niall Madden

Content

Introduction
Real-valued singularly perturbed problems
A system of Two Differential Equations
A positive definite system
Positive definite matrix
Tests for Positive definite matrix M
A system of Two Differential Equations
Coercivity property of the matrix
Example
Conclusions and future work
References

Introduction

We are interested in the numerical solution of a singularly perturbed, fourth-order ordinary differential equations.

Our model differential equation is

$$
\begin{equation*}
-\varepsilon u^{(4)}(x)+a u^{\prime \prime}(x)-b u(x)=f(x) \quad \text { on } \quad \Omega:=(0,1), \tag{1}
\end{equation*}
$$

subject to the boundary conditions

$$
u(0)=u^{\prime \prime}(0)=0, \quad u(1)=u^{\prime \prime}(1)=0
$$

Here ε is a positive, real-valued parameter: $0<\varepsilon \leq 1$, but typically $\varepsilon \ll 1$. And so the problem is singularly perturbed.
The coefficient functions a, b and right-hand side function f are real or complex-valued functions on the interval Ω.

Real-valued singularly perturbed problems

We consider the numerical solution of real-valued singularly perturbed, fourth-order ordinary differential equations, and in particular, problems of the following form.

[Shanthi and Ramanujam, 2002]:

$$
\begin{equation*}
-\varepsilon u^{(4)}(x)+a u^{\prime \prime}(x)-b u(x)=f(x) \quad \text { on } \quad \Omega:=(0,1), \tag{2}
\end{equation*}
$$

subject to the boundary conditions

$$
u(0)=u^{\prime \prime}(0)=u(1)=u^{\prime \prime}(1)=0 .
$$

The coefficient functions a, b and right-hand side function f are real-valued functions on the interval Ω.

A positive definite system

We now propose an simple approach that allows one to reformulate (2) as a system with a (non-symmetric) positive definite coefficient matrix. We set

$$
u^{\prime \prime}:=\alpha w+\beta u
$$

and, consequently,

$$
u^{(4)}=\alpha w^{\prime \prime}+\beta \alpha w+\beta^{2} u
$$

With this, (2) can be transformed as a system of two equations of the form

$$
\begin{align*}
-\varepsilon w^{\prime \prime}+(a \alpha-\varepsilon \alpha \beta) w+ & \left(a \beta-\varepsilon \beta^{2}-b\right) u \tag{3a}
\end{align*}=f,
$$

subject to the boundary conditions

$$
u(0)=w(0)=u(1)=w(1)=0 .
$$

Positive definite matrix

Written in matrix form, this is

$$
-\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & 1
\end{array}\right)\binom{w^{\prime \prime}}{u^{\prime \prime}}+B\binom{w}{u}=\binom{f}{0} .
$$

where

$$
B=\left(\begin{array}{cc}
a \alpha-\varepsilon \alpha \beta & a \beta-\varepsilon \beta^{2}-b \\
\alpha & \beta
\end{array}\right) .
$$

This B satisfies $\mathbf{v}^{\top} B \mathbf{v} \geq \gamma \mathbf{v}^{\top} \mathbf{v}$, for all v, if and only if, $M=\left(B^{T}+B\right) / 2$ is symmetric positive definite. Here

$$
M=\left(\begin{array}{cc}
a \alpha-\varepsilon \alpha \beta & \frac{1}{2}\left(a \beta-\varepsilon \beta^{2}-b+\alpha\right) \\
\frac{1}{2}\left(a \beta-\varepsilon \beta^{2}-b+\alpha\right) & \beta
\end{array}\right) .
$$

Clearly, M is symmetric.

Tests for Positive definite matrix M

What conditions on α and β ensure that M is a positive definite?

Each of the following tests is a necessary and sufficient condition for a symmetric matrix M to be Positive definite:
(i) $\mathbf{v}^{\top} M \mathbf{v} \geq \gamma \mathbf{v}^{\top} \mathbf{v}$, for all v,
(ii) All eigenvalues of M are positive,
(iii) Determinant test,
(iv) Pivot test.

There is the case if M is strictly diagonally dominant, with positive diagonal entries, i.e., $M_{i i}>\sum_{j \neq i}\left|M_{i j}\right|$ for $i=1,2$ [Beezer, 2008]. So, thus, we require that
(i) $|a \alpha-\varepsilon \alpha \beta|>0$,
(ii) $|\beta|>0$,
(iii) $|\boldsymbol{a} \alpha-\varepsilon \alpha \beta|>\frac{1}{2}\left|a \beta-\varepsilon \beta^{2}-b+\alpha\right|$, (iv) $|\beta|>\frac{1}{2}\left|a \beta-\varepsilon \beta^{2}-b+\alpha\right|$.

Eigenvalue test

By applying the eigenvalue test on the matrix M. We can see that
$-\varepsilon \beta^{2}+a \beta+b-2 \sqrt{a \beta b-\varepsilon \beta^{2} b} \leq \alpha \leq-\varepsilon \beta^{2}+a \beta+b+2 \sqrt{a \beta b-\varepsilon \beta^{2} b}$
Suppose $\beta=1$, then $\alpha=a+b-\varepsilon$. These are two conditions on α and β to be ensure that M is a positive definite. We can rewrite (2) as a system

$$
-\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & 1
\end{array}\right)\binom{w^{\prime \prime}}{u^{\prime \prime}}+B\binom{w}{u}=\binom{f}{0} .
$$

where

$$
B=\left(\begin{array}{cc}
(a+b-\varepsilon)(a-\varepsilon) & a-\varepsilon-b \\
a+b-\varepsilon & 1
\end{array}\right),
$$

Coercivity property of the matrix

Lemma

When $\beta=1$ and $\alpha-a+b-\varepsilon$, the matrix M is coercive (for sufficiently small ε). Further more there is a positive γ such that $\gamma \in\left[\lambda_{\min }, \lambda_{\max }\right]$, where $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ are eigenvalues of matrix M, and

$$
\begin{equation*}
\frac{\mathbf{v}^{\top} M \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}} \geq \gamma \text { for all } \mathbf{v} \in \mathbb{R}^{2} \tag{4}
\end{equation*}
$$

Example

Now consider the real-valued problem:

$$
\begin{equation*}
-\varepsilon u^{(4)}(x)+2 u^{\prime \prime}(x)-4 u(x)=f(x) \quad \text { on } \quad \Omega:=(0,1), \tag{5}
\end{equation*}
$$

subject to the boundary conditions

$$
u(0)=u^{\prime \prime}(0)=0, \quad u(1)=u^{\prime \prime}(1)=0 .
$$

If we take $\alpha=6-\varepsilon$ and $\beta=1$, we have
$B=\left(\begin{array}{cc}12-8 \varepsilon+\varepsilon^{2} & -(\varepsilon+2) \\ 6-\varepsilon & 1\end{array}\right)$, and $M=\left(\begin{array}{cc}12-8 \varepsilon+\varepsilon^{2} & -\varepsilon+2 \\ -\varepsilon+2 & 1\end{array}\right)$.
where M is a symmetric positive definite for $\varepsilon<1$.

Conclusions and future work

- We also aim to extend the work to complex-valued case where the associated 4×4 coefficient matrix in the second order system is a positive definite.
- We are now working on the analysis of methods for fourth-order complex-valued problems in the case where the problem can be re-cast as a coupled system of second-order problems (see, e.g., [Xenophontos et al., 2013]).
- We also aim to extend the work to complex-valued fourth-order ones which cannot be written as a coupled system of second-order ones (e.g., [Constantinou et al., 2016]).

References

[Beezer, 2008] Beezer, R. A. (2008).
A first course in linear algebra.

Beezer.

[Constantinou et al., 2016] Constantinou, P., Varnava, C., and Xenophontos, C. (2016).

An hp finite element method for 4th order singularly perturbed problems.
Numerical Algorithms, 73(2):567-590.
[Shanthi and Ramanujam, 2002] Shanthi, V. and Ramanujam, N. (2002).
A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations.
Appl. Math. Comput., 129(2-3):269-294.
[Xenophontos et al., 2013] Xenophontos, C., Melenk, M., Madden, N., Oberbroeckling, L., Panaseti, P., and Zouvani, A. (2013).
hp finite element methods for fourth order singularly perturbed boundary value problems.
In Dimov, I., Faragó, I., and Vulkov, L., editors, Numerical Analysis and Its Applications, pages 532-539, Berlin, Heidelberg. Springer Berlin Heidelberg.

Thank you

