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Introduction

We are interested in the numerical solution of a singularly perturbed,
second-order, complex-valued reaction diffusion equation. Our model
differential equation is

Lu := −ε2u′′ + bu = f on Ω = (0,1), (1a)

subject to the boundary conditions

u(0) = 0, u(1) = 0. (1b)

Here ε is a positive, real-valued parameter: 0 < ε ≤ 1, but typically
ε� 1.
The functions b and f are complex valued functions on the real
interval Ω. That is, b : Ω→ C, and f : Ω→ C.

Faiza Alssaedi | A complex-valued reaction-diffusion equation



3

Why this is interesting

These problems are interesting, and difficult, becuase solutions
feature boundary layers.
There are many methods for solving problems such as (1). But it is
always assumed that the coefficients and solution are real-valued.
Furthermore, it is usually assumed that b(x) > 0 for all x . A
consequence of this is that differential operator satisfies a maximum
principle.
This means that, for example, if f (x) > 0, then u(x) > 0. (I have
spoken about this at previous talks).
But in the complex-valued case, we don’t have an analogous concept.
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An example with layers

Example (Layers)

− ε2u′′ + (i + 4)2u = (4 + 4i)ex on (0,1), u(0) = u(1) = 0. (2)

Figure: Real and imaginary parts of the solutions to (2) with ε = 1.

Faiza Alssaedi | A complex-valued reaction-diffusion equation



4

An example with layers

Example (Layers)

− ε2u′′ + (i + 4)2u = (4 + 4i)ex on (0,1), u(0) = u(1) = 0. (2)

Figure: Real and imaginary parts of the solutions to (2) with ε = 0.1.
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But the solution has oscillations

Example (Oscillations)

− ε2u′′ + (1 +
i
2

)2u = 0 u(0) = 1 + i ,u(1) = 0. (3)

The solution is (roughly)

e−x/ε(cos(x/2ε)+sin(x/2ε))+ie−x/ε(cos(x/2ε)−sin(x/2ε))+O(e−1/ε).

The imaginary part of u is neither positive nor monotonic.
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Since we can’t use standard ideas, we will take a special approach:
I Rewrite the equation as a coupled system of real-valued

problems;
I Follow some analysis from [Kellogg et al., 2008]
I That in turn uses arguments from classic paper [Bahvalov, 1969].
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A system of reaction-diffusion equations

We now consider the following system by rewriting (1) as

− ε2(ur + iui )
′′ + (br + ibi )(ur + iui ) = fr + ifi , (4)

From (4), when we equate real terms and imaginary terms separately,
we get

−ε2u′′r + br ur − biui = fr ,

−ε2u′′i + biur + br ui = fi .

So, we can write the system as

~L~u := −ε2~u′′ + B~u = ~f , (5)
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We can write the system as

~L~u := −ε2~u′′ + B~u = ~f , (6)

where
~u =

(
ur
ui

)
, B =

(
br −bi
bi br

)
and ~f =

(
fr
fi

)
.

Since u = ur + iui , the bounds on the solution and its derivatives are
given by

‖~u(k)‖Ω̄ ≤ C(1 + ε−k ),

where 0 ≤ k ≤ 4.
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Analysis of the continuous problem
the continuous problem

Lemma

Assume that br > 0. Then the matrix B is coercive, meaning that,
there exists a constant α such that

√
br ≥ α > 0 and

~vT B~v ≥ α2~vT~v for all ~v ∈ R2. (7)

proof
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A system of reaction-diffusion equations
The discrete problem

The finite difference method for equation (6) is: find ~U such that

~LN ~Uj := −ε2δ2~Uj + B~Uj = ~fj for j = 1, ...,N − 1, (8)

~U0 = ~u(0), ~UN = ~u(1),

where ~Uj is the approximation for ~u(xj ) and a standard second-order
approximation of the second derivative is

δ2~Uj =
1
~j

( ~Uj−1

hj
− ~Ui (

1
hj

+
1

hj+1
) +

~Uj+1

hj+1

)
, (9)

where ~j = (xj+1 − xj−1)/2.
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Analysis of the continuous problem
Analysis of the discrete problem

Lemma

The discrete operator ~LN satisfies the stability inequality

‖ ~W‖Ω̄ ≤ α−2‖~LN ~W‖Ω + ‖ ~W (0)‖+ ‖ ~W (1)‖,

for arbitrary vector-valued functions ~W defined on Ω̄.

Theorem
Let ΩN be the Bakhvalov mesh, and let ~U be the solution to (8) on
this mesh. Then, if ~u solves (6),

‖~u − ~U‖ ≤ CN−2. (10)
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Numerical results

We now present the results for problem (2):

− ε2u′′ + (4 + i)2u = (4 + 4i)ex u(0) = 0, u(1) = 0.

Table: Errors, EN
ε , for problem (2), solved on a Shishkin mesh.

ε N = 16 N = 32 N = 64 N = 128 N = 256
1 1.105e-03 2.781e-04 6.961e-05 1.741e-05 4.353e-06

1e-01 3.988e-02 2.050e-02 5.595e-03 1.468e-03 3.694e-04
1e-02 2.430e-02 3.863e-02 3.656e-02 1.954e-02 6.615e-03

Table: Errors, EN
ε , for problem (2), solved on a Bakhvalov mesh.

ε N = 16 N = 32 N = 64 N = 128 N = 256
1 1.105e-03 2.781e-04 6.961e-05 1.741e-05 4.353e-06

1e-01 1.258e-02 3.321e-03 8.419e-04 2.112e-04 5.291e-05
1e-02 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05
1e-03 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05Faiza Alssaedi | A complex-valued reaction-diffusion equation
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