Parameter robust methods for second-order complex-valued reaction-diffusion equations

Faiza Alssaedi
Supervisor: Niall Madden

School of Mathematics, Statistics and Applied Mathematics, NUI Galway

§Outline

1 Introduction

2 A motivating example

3 Comparing Real-Valued and Complex-Valued Problems

4 Analysis

5 The numerical method
■ The finite difference method

- Shishkin mesh

■ Bakhvalov mesh

6 Numerical results
7 References

For more, see [2].

Introduction

We are interested in the numerical solution of a singularly perturbed, second-order, complex-valued reaction diffusion equation. Our model differential equation is

$$
\begin{equation*}
\mathrm{Lu}:=-\varepsilon^{2} u^{\prime \prime}+\mathrm{bu}=\mathrm{f} \quad \text { on } \quad \Omega=(0,1) \text {, } \tag{1a}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
u(0)=0, \quad u(1)=0 \tag{1b}
\end{equation*}
$$

Here ε is a positive, real-valued parameter: $0<\varepsilon \leqslant 1$, but typically $\varepsilon \ll 1$. The functions b and f are complex valued functions on the real interval Ω. That is, $b: \Omega \rightarrow \mathbb{C}$, and $f: \Omega \rightarrow \mathbb{C}$. More precise assumptions on b and f are made below.

A motivating example

We consider the following example: find $u \in \mathbb{C}^{2}(\Omega)$ such that

$$
\begin{equation*}
-\varepsilon^{2} u^{\prime \prime}+(1+4 i)^{2} u=(4+4 i) e^{x} \quad \text { on } \Omega=(0,1), \quad u(0)=u(1)=0 . \tag{2}
\end{equation*}
$$

The exact solution can be expressed as

$$
\begin{equation*}
\mathfrak{u}(x)=C_{1} e^{\frac{-(4+i) x}{\varepsilon}}+C_{2} e^{\frac{(4+i)(x-1)}{\varepsilon}}+\frac{(4+4 i) e^{x}}{-\varepsilon^{2}+15+8 i}, \tag{3}
\end{equation*}
$$

where
$\mathrm{C}_{1}=-\frac{4\left(\mathfrak{i}-\mathfrak{i} e^{\frac{(\varepsilon-4-i)}{\varepsilon}}+1-e^{\left.\frac{(\varepsilon-4-i)}{\varepsilon}\right)}\right.}{\left(-\varepsilon^{2}+15+8 i\right)\left(1-e^{\left.\frac{(-8-2 i)}{\varepsilon}\right)}\right)}$ and $\mathrm{C}_{2}=\frac{4\left(\mathfrak{i e} \frac{\frac{(-4-i)}{\varepsilon}}{}-\mathfrak{i e}+e^{\left.\frac{(-4-i)}{\varepsilon}-e\right)}\right.}{\left(-\varepsilon^{2}+15+8 i\right)\left(1-e^{\left.\frac{(--2 i)}{\varepsilon}\right)}\right)}$.
The first two terms on the right-hand side of (3) correspond to the left and right layer, respectively.

Figure: Real and imaginary parts of the solutions to (2) with $\varepsilon=1$ (left) and $\varepsilon=0.1$ (right)

In Figure 1 we show u with $\varepsilon=1$ (left), which does not features layers. On the right for smaller ε (in this case $\varepsilon=0.1$), the solutions possess boundary layers near $x=0$ and $x=1$, in both the real and the imaginary parts.

Comparing Real-Valued and Complex-Valued Problems

Definition

The differential operator L satisfies a maximum principle, if $\psi(0) \geqslant 0$ and $\psi(1) \geqslant 0$, and $\mathrm{L} \psi(x) \geqslant 0$, for all $x \in \Omega$, imply that $\psi(x) \geqslant 0$, for all $x \in \bar{\Omega}[2]$.

To see how a problem such as (1) differs from the real-valued case, consider the example

$$
\begin{equation*}
-\varepsilon^{2} u^{\prime \prime}+u=0 \quad u(0)=0, \quad u(1)=1 \tag{4}
\end{equation*}
$$

The solution is $u(x) \cong e^{-x / \varepsilon}$, which is positive and monotonic. The associated differential operator satisfies a maximum principle.

Comparing Real-Valued and Complex-Valued Problems

Now consider the complex-valued problem:

$$
\begin{equation*}
-\varepsilon^{2} u^{\prime \prime}+(1+i)^{2} u=0 \quad u(0)=1+i, \quad u(1)=0 \tag{5}
\end{equation*}
$$

The solution is $u(x) \cong e^{-x / \varepsilon}(\cos (-x / \varepsilon)+i \cos (-x / \varepsilon))$, thus, neither the real and the imaginary part of u are neither positive nor monotonic. The associated differential operator does not satisfy a maximum principle, in the conventional sense, and the solution can oscillate.

Figure: The solutions to (5) with $\varepsilon=0.1$.

Analysis

Lemma

Let u be the solution of (1). Then, for $0 \leqslant k \leqslant 4$,

$$
\begin{equation*}
\left\|u^{(k)}\right\| \leqslant C\left(1+\varepsilon^{-k}\right), \tag{6}
\end{equation*}
$$

Proof

On a arbitrary mesh, $\Omega^{N}:=\left\{0=x_{0}<x_{1}<\cdots<x_{N}=1\right\}$, where $h_{i}=x_{i}-x_{i-1}$. suppose we want to approximate u_{i}^{\prime} by a finite difference approximation based only on values of u at finite number of points near x_{i}. One obvious choice would be to use the forward difference approximation:

$$
\mathrm{D}^{+} \mathrm{u}_{\mathrm{i}}=\frac{\mathrm{u}_{\mathrm{i}+1}-\mathrm{u}_{\mathrm{i}}}{\mathrm{~h}_{\mathrm{i}+1}}
$$

Note that $D^{+} U_{i}$ is the slope of the line interpolating u at points x_{i} and x_{i+1}. Another one-sided approximation would be the backward difference approximation:

$$
\mathrm{D}^{-} \mathrm{U}_{\mathrm{i}}=\frac{\mathrm{U}_{\mathrm{i}}-\mathrm{U}_{\mathrm{i}-1}}{\mathrm{~h}_{\mathrm{i}}}
$$

Finally, we have the centred approximation

$$
\mathrm{D}^{0} \mathrm{u}_{\mathrm{i}}=\frac{1}{2}\left(\mathrm{D}^{+} \mathrm{u}_{\mathrm{i}}+\mathrm{D}^{-} \mathrm{U}_{\mathrm{i}}\right)=\frac{1}{2}\left(\frac{\mathrm{u}_{\mathrm{i}+1}}{\mathrm{~h}_{\mathrm{i}+1}}+\mathrm{u}_{\mathrm{i}}\left(\frac{1}{\mathrm{~h}_{\mathrm{i}}}-\frac{1}{\mathrm{~h}_{\mathrm{i}+1}}\right)-\frac{\mathrm{u}_{\mathrm{i}-1}}{\mathrm{~h}_{\mathrm{i}}}\right)
$$

This is the slope of the line interpolating u at x_{i+1} and x_{i-1}.

A standard second-order approximation of a second derivative is

$$
\delta^{2} u_{i}:=\frac{1}{\hbar_{i}}\left(\frac{u_{i-1}}{h_{i}}-u_{i}\left(\frac{1}{h_{i}}+\frac{1}{h_{i+1}}\right)+\frac{u_{i+1}}{h_{i+1}}\right),
$$

where $h_{i}=x_{i}-x_{i-1}$ and $\hbar_{i}=\left(x_{i+1}-x_{i-1}\right) / 2$. The finite difference operator is defined as:

$$
\mathrm{L}^{\mathrm{N}} \psi_{i}:=-\varepsilon \delta^{2} \psi_{i}+\mathrm{b}\left(x_{i}\right) \psi_{i} \quad \text { for } \quad i=1, \ldots, \mathrm{~N}-1 .
$$

The finite difference method is:

$$
\begin{gather*}
u_{i}(0)=u_{0}, \\
-\varepsilon^{2} \delta^{2} u_{i}+b\left(x_{i}\right) U_{i}=f\left(x_{i}\right), \quad \text { for all } \quad x_{i} \in \Omega^{N}, \tag{7}\\
U_{i}(1)=u_{1} .
\end{gather*}
$$

We construct a standard Shishkin mesh with the mesh parameter $\tau=\min \left\{\frac{1}{4}, 2 \frac{\varepsilon}{\beta} \ln N\right\}$, where $0<\beta^{2} \leqslant \min _{0 \leqslant x \leqslant 1} b(x)$. We now define two mesh transition points at $x=\tau$ and $x=1-\tau$. That is, we form a piecewise uniform mesh with $N / 4$ equally-sized mesh intervals on each of $[0, \tau]$ and $[1-\tau, 1]$, and $\mathrm{N} / 2$ equally-sized mesh intervals on $[\tau, 1-\tau]$. Typically, when ε is small, $\tau \ll 1 / 4$, the mesh is very find near the boundaries, and coarse in the interior.
The mesh may also be specified in terms of a mesh generating function, which we now define.

Definition

$[1, \mathrm{p} 5]$ A strictly monotone function $\varphi:[0,1] \rightarrow[0,1]$ that maps a uniform mesh $t_{i}=i / N, i=0, \ldots, N$, onto a layer-adapted mesh by $x_{i}=\varphi\left(t_{i}\right), i=0, \ldots, N$, is called a mesh generating function.

The mesh generating function φ, for Shishkin mesh described above, is

$$
\varphi(\mathrm{t})= \begin{cases}4 \mathrm{t} \tau & \mathrm{t} \leqslant \frac{1}{4}, \\ 2(1-\tau)\left(\mathrm{t}-\frac{1}{4}\right)+2 \tau\left(\frac{3}{4}-\mathrm{t}\right) & \frac{1}{4}<\mathrm{t}<\frac{3}{4}, \\ 4(1-\tau)(1-\mathrm{t})+4\left(\mathrm{t}-\frac{3}{4}\right) & \mathrm{t} \geqslant \frac{3}{4} .\end{cases}
$$

Notice that this is a piecewise linear function.

We construct a standard Bakhvalov mesh with mesh parameters at $\sigma>0$, $\mathrm{q} \in(0,1 / 2)$, typical values of the mesh parameters are $\sigma=2, \mathrm{q}=1 / 4$, where the method has order σ and q is the proportion of mesh points in the layer. Mesh points are $x_{i}=i / N$ if $\sigma \varepsilon \geqslant \beta q$. However when $\sigma \varepsilon<\beta q$ one sets

$$
x_{i}= \begin{cases}\varphi(i / N) & \text { for } i \leqslant N / 2 \\ 1-\varphi(N-i) / N & \text { for } i>N / 2\end{cases}
$$

with a mesh generating function φ defined by

$$
\varphi(t)= \begin{cases}\chi(t):=-\frac{2 \varepsilon}{\beta} \ln \left(1-\frac{t}{q}\right) & \text { for } t \in[0, \tau] \\ \pi(t):=\chi(\tau)+\chi^{\prime}(\tau)(t-\tau) & \text { for } t \in[\tau, 1 / 2]\end{cases}
$$

where the point τ satisfies

$$
\chi^{\prime}(\tau)=\frac{1-2 \chi(\tau)}{1-2 \tau}
$$

This defines the mesh on $[0,1 / 2]$ and it is extended to $[0,1]$ by reflection about $x=1 / 2$.

Numerical results

We now present the results for problem (2):

$$
-\varepsilon^{2} u^{\prime \prime}+(4+i)^{2} u=(4+4 i) e^{x} \quad u(0)=0, \quad u(1)=0
$$

Table: Errors, $\mathrm{E}_{\varepsilon}^{\mathrm{N}}$, for problem (2), solved on a Shishkin mesh.

ε	$\mathrm{N}=16$	$\mathrm{~N}=32$	$\mathrm{~N}=64$	$\mathrm{~N}=128$	$\mathrm{~N}=256$
1	$1.105 \mathrm{e}-03$	$2.781 \mathrm{e}-04$	$6.961 \mathrm{e}-05$	$1.741 \mathrm{e}-05$	$4.353 \mathrm{e}-06$
$1 \mathrm{e}-01$	$3.988 \mathrm{e}-02$	$2.050 \mathrm{e}-02$	$5.595 \mathrm{e}-03$	$1.468 \mathrm{e}-03$	$3.694 \mathrm{e}-04$
$1 \mathrm{e}-02$	$2.430 \mathrm{e}-02$	$3.863 \mathrm{e}-02$	$3.656 \mathrm{e}-02$	$1.954 \mathrm{e}-02$	$6.615 \mathrm{e}-03$
$1 \mathrm{e}-03$	$2.430 \mathrm{e}-02$	$3.863 \mathrm{e}-02$	$3.656 \mathrm{e}-02$	$1.954 \mathrm{e}-02$	$6.615 \mathrm{e}-03$

Table: Errors, E_{ε}^{N}, for problem (2), solved on a Bakhvalov mesh.

ε	$\mathrm{N}=16$	$\mathrm{~N}=32$	$\mathrm{~N}=64$	$\mathrm{~N}=128$	$\mathrm{~N}=256$
1	$1.105 \mathrm{e}-03$	$2.781 \mathrm{e}-04$	$6.961 \mathrm{e}-05$	$1.741 \mathrm{e}-05$	$4.353 \mathrm{e}-06$
$1 \mathrm{e}-01$	$1.258 \mathrm{e}-02$	$3.321 \mathrm{e}-03$	$8.419 \mathrm{e}-04$	$2.112 \mathrm{e}-04$	$5.291 \mathrm{e}-05$
$1 \mathrm{e}-02$	$1.257 \mathrm{e}-02$	$3.319 \mathrm{e}-03$	$8.415 \mathrm{e}-04$	$2.111 \mathrm{e}-04$	$5.288 \mathrm{e}-05$
$1 \mathrm{e}-03$	$1.257 \mathrm{e}-02$	$3.319 \mathrm{e}-03$	$8.415 \mathrm{e}-04$	$2.111 \mathrm{e}-04$	$5.288 \mathrm{e}-05$

References

Torsten Linß.
Layer-adapted meshes for reaction-convection-diffusion problems, volume 1985 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2010.

J. J. H. Miller, E. O'Riordan, and G. I. Shishkin.

Fitted numerical methods for singular perturbation problems.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, revised edition, 2012.

