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Introduction

We are interested in the numerical solution of a singularly perturbed,
second-order, complex-valued reaction diffusion equation. Our model
differential equation is

Lu := −ε2u ′′ + bu = f on Ω = (0, 1), (1a)

subject to the boundary conditions

u(0) = 0, u(1) = 0. (1b)

Here ε is a positive, real-valued parameter: 0 < ε 6 1, but typically ε� 1.

The functions b and f are complex valued functions on the real interval Ω.
That is, b : Ω→ C, and f : Ω→ C. More precise assumptions on b and f are
made below.
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A motivating example

We consider the following example: find u ∈ C2(Ω) such that

− ε2u ′′ + (1 + 4i)2u = (4 + 4i)ex on Ω = (0, 1), u(0) = u(1) = 0. (2)

The exact solution can be expressed as

u(x) = C1e
−(4+i)x

ε + C2e
(4+i)(x−1)

ε +
(4 + 4i)ex

−ε2 + 15 + 8i
, (3)

where

C1 = −
4(i− ie

(ε−4−i)
ε + 1 − e

(ε−4−i)
ε )

(−ε2 + 15 + 8i)(1 − e
(−8−2i)

ε )
and C2 =

4(ie
(−4−i)

ε − ie+ e
(−4−i)

ε − e)

(−ε2 + 15 + 8i)(1 − e
(−8−2i)

ε )
.

The first two terms on the right-hand side of (3) correspond to the left and
right layer, respectively.
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A motivating example Furthermore

Figure: Real and imaginary parts of the solutions to (2) with ε = 1 (left) and ε = 0.1
(right)

In Figure 1 we show u with ε = 1 (left), which does not features layers. On the
right for smaller ε (in this case ε = 0.1), the solutions possess boundary layers
near x = 0 and x = 1, in both the real and the imaginary parts.
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Comparing Real-Valued and Complex-Valued Problems

Definition

The differential operator L satisfies a maximum principle, if ψ(0) > 0 and
ψ(1) > 0, and Lψ(x) > 0, for all x ∈ Ω, imply that ψ(x) > 0, for all x ∈ Ω̄ [2].

To see how a problem such as (1) differs from the real-valued case, consider
the example

−ε2u ′′ + u = 0 u(0) = 0, u(1) = 1. (4)

The solution is u(x) ∼= e−x/ε, which is positive and monotonic. The associated
differential operator satisfies a maximum principle.
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Comparing Real-Valued and Complex-Valued Problems

Now consider the complex-valued problem:

− ε2u ′′ + (1 + i)2u = 0 u(0) = 1 + i, u(1) = 0. (5)

The solution is u(x) ∼= e−x/ε(cos(−x/ε) + i cos(−x/ε)),thus, neither the real
and the imaginary part of u are neither positive nor monotonic. The associated
differential operator does not satisfy a maximum principle, in the conventional
sense, and the solution can oscillate.

Figure: The solutions to (5) with ε = 0.1.
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Analysis

Lemma

Let u be the solution of (1). Then, for 0 6 k 6 4,

||u(k)|| 6 C(1 + ε−k), (6)

Proof
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The numerical method The finite difference method

On a arbitrary mesh, ΩN := {0 = x0 < x1 < · · · < xN = 1}, where
hi = xi − xi−1. suppose we want to approximate u ′

i by a finite difference
approximation based only on values of u at finite number of points near xi.
One obvious choice would be to use the forward difference approximation:

D+Ui =
Ui+1 −Ui
hi+1

Note that D+Ui is the slope of the line interpolating u at points xi and xi+1.
Another one-sided approximation would be the backward difference
approximation:

D−Ui =
Ui −Ui−1

hi

Finally, we have the centred approximation

D0Ui =
1

2
(D+Ui +D

−Ui) =
1

2

(
Ui+1

hi+1
+Ui(

1

hi
−

1

hi+1
) −

Ui−1

hi

)
This is the slope of the line interpolating u at xi+1 and xi−1.
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The numerical method Furthermore

A standard second-order approximation of a second derivative is

δ2Ui :=
1
 hi

(
Ui−1

hi
−Ui(

1

hi
+

1

hi+1
) +

Ui+1

hi+1

)
,

where hi = xi − xi−1 and  hi = (xi+1 − xi−1)/2. The finite difference operator is
defined as:

LNψi := −εδ2ψi + b(xi)ψi for i = 1, . . . ,N− 1.

The finite difference method is:

Ui(0) = u0,

− ε2δ2Ui + b(xi)Ui = f(xi), for all xi ∈ ΩN, (7)

Ui(1) = u1.
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The numerical method Shishkin mesh

We construct a standard Shishkin mesh with the mesh parameter
τ = min{ 1

4
, 2 ε
β

lnN}, where 0 < β2 6 min
06x61

b(x). We now define two mesh

transition points at x = τ and x = 1 − τ. That is, we form a piecewise uniform
mesh with N/4 equally-sized mesh intervals on each of [0, τ] and [1 − τ, 1], and
N/2 equally-sized mesh intervals on [τ, 1 − τ]. Typically, when ε is small,
τ� 1/4, the mesh is very find near the boundaries, and coarse in the interior.

The mesh may also be specified in terms of a mesh generating function, which
we now define.

Definition

[1, p5] A strictly monotone function ϕ : [0, 1]→ [0, 1] that maps a uniform
mesh ti = i/N, i = 0, ...,N, onto a layer-adapted mesh by
xi = ϕ(ti), i = 0, ...,N, is called a mesh generating function.

The mesh generating function ϕ, for Shishkin mesh described above, is

ϕ(t) =


4tτ t 6 1

4
,

2(1 − τ)(t− 1
4
) + 2τ( 3

4
− t) 1

4
< t < 3

4
,

4(1 − τ)(1 − t) + 4(t− 3
4
) t > 3

4
.

Notice that this is a piecewise linear function.
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The numerical method Bakhvalov mesh

We construct a standard Bakhvalov mesh with mesh parameters at σ > 0,
q ∈ (0, 1/2), typical values of the mesh parameters are σ = 2,q = 1/4, where
the method has order σ and q is the proportion of mesh points in the layer.
Mesh points are xi = i/N if σε > βq. However when σε < βq one sets

xi =

{
ϕ(i/N) for i 6 N/2,

1 −ϕ(N− i)/N for i > N/2,

with a mesh generating function ϕ defined by

ϕ(t) =

{
χ(t) := − 2ε

β
ln(1 − t

q
) for t ∈ [0, τ],

π(t) := χ(τ) + χ ′(τ)(t− τ) for t ∈ [τ, 1/2].

where the point τ satisfies

χ ′(τ) =
1 − 2χ(τ)

1 − 2τ
.

This defines the mesh on [0, 1/2] and it is extended to [0, 1] by reflection about
x = 1/2.
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Numerical results

We now present the results for problem (2):

− ε2u ′′ + (4 + i)2u = (4 + 4i)ex u(0) = 0, u(1) = 0.

Table: Errors, ENε , for problem (2), solved on a Shishkin mesh.

ε N = 16 N = 32 N = 64 N = 128 N = 256
1 1.105e-03 2.781e-04 6.961e-05 1.741e-05 4.353e-06

1e-01 3.988e-02 2.050e-02 5.595e-03 1.468e-03 3.694e-04
1e-02 2.430e-02 3.863e-02 3.656e-02 1.954e-02 6.615e-03
1e-03 2.430e-02 3.863e-02 3.656e-02 1.954e-02 6.615e-03

Table: Errors, ENε , for problem (2), solved on a Bakhvalov mesh.

ε N = 16 N = 32 N = 64 N = 128 N = 256
1 1.105e-03 2.781e-04 6.961e-05 1.741e-05 4.353e-06

1e-01 1.258e-02 3.321e-03 8.419e-04 2.112e-04 5.291e-05
1e-02 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05
1e-03 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05
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