
Postgraduate Modelling Research Group
School of Mathematics, Statistics and Applied Mathematics, NUI Galway

A short note on 4th order real-valued
singularly perturbed problems

Faiza Alssaedi
Supervisor: Niall Madden

October 5, 2018



1

Content

Introduction

Research Question

The finite difference method

Real-valued problems
About the boundary conditions
How not to solve this problem
A positive definite system

Example

Conclusions and future work

References

Faiza Alssaedi | Real-Valued Singularly Perturbed Problems



2

Introduction

We are interested in the numerical solution of a singularly perturbed,
fourth-order ordinary differential equations.

Our model differential equation is

− ε2u(4)(x) + au′′(x)− bu(x) = f (x) on Ω := (0,1), (1)

subject to the boundary conditions

u(0) = u′′(0) = 0, u(1) = u′′(1) = 0.

Here ε is a positive, real-valued parameter: 0 < ε ≤ 1, but typically
ε� 1. And so the problem is singularly perturbed.
The coefficient functions a, b and right-hand side function f are real
or complex-valued functions on the interval Ω.

Faiza Alssaedi | Real-Valued Singularly Perturbed Problems



3

Research Question

The above problem is complicated, because solutions feature
boundary layers.
The numerical methods are used to solve this problem (1)

I By using standard finite difference methods, on specialised fitted
meshes: the well-known piecewise uniform Shishkin mesh, and
the more complicated Bakhvalov mesh.

I The numerical analysis of such method usually relies on
Maximum Principles, but these do not hold, in a direct way.

I Since we cannot use standard ideas, we take the approach of
rewriting (1) as a coupled system of real-valued problems, and
establish that the coefficient matrix for this system is positive
definite.
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The finite difference method

Consider an arbitrary mesh, ΩN := {0 = x0 < x1 < · · · < xN = 1}. On
this we define the standard second-order approximation of the
second derivative

δ2ui :=
1
~i

(
ui−1

hi
− ui (

1
hi

+
1

hi+1
) +

ui+1

hi+1

)
, (2)

and we define the standard 4th-order approximation of the fourth
derivative

u(4)(xi ) ≈ D4ui :=
6

(~i−1 + ~i+1)(hi−1 + hi + hi+1)~i−1hi−1
ui−2

− 12
hi−1(hi + hi+1 + hi+2)~ihi

ui−1+
6

~i−1h2~i+1h3
ui−

12
~ihi+1hi+2(hi−1 + hi + hi+1)

ui+1

+
6

(~i−1 + ~i+1)(hi + hi+1 + hi+2)~i+1hi+2
ui+2, (3)

where hi = xi − xi−1 and ~i = (xi+1 − xi−1)/2.
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Real-valued problems

We consider the case of real-valued fourth-order ordinary differential
equations and the following example from the literature.

[Shanthi and Ramanujam, 2002]:

− ε2u(4)(x) + au′′(x)− bu(x) = f (x) on Ω := (0,1), (4)

subject to the boundary conditions

u(0) = u′′(0) = u(1) = u′′(1) = 0.

The coefficient functions a, b and right-hand side function f are
real-valued functions on the interval Ω.
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About the boundary conditions

It is important to note that the boundary conditions are

u(0) = u′′(0) = u(1) = u′′(1) = 0. (5)

It is also common to have boundary conditions of the form

u(0) = u′(0) = u(1) = u′(1) = 0. (6)

When the conditions are of the form given in (5), then the equation
can be written as a system of two second order equations, and
solved using techniques for such problems.
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How not to solve this problem

When the boundary conditions are

u(0) = u′′(0) = u(1) = u′′(1) = 0.

we can set u′′ = w and write the problem as the following coupled
system:

−ε2w ′′ + aw − bu = f , (7a)
−u′′ + w = 0, (7b)

Written in matrix-vector form, this is

−
(
ε2 0
0 1

)(
w ′′

u′′

)
+

(
a −b
1 0

)(
w
u

)
=

(
f
0

)
.

There are numerous papers that study this formulation, but some are
flawed. For example, in [Xenophontos et al., 2013a] some of the
analysis depends on the coefficient matrix of the zero-order term
being “pointwise positive definite (but not necessarily symmetric)”.
But this is impossible!
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A positive definite system

We now propose an simple approach that allows one to reformulate
(4) as a system with a (non-symmetric) positive definite coefficient
matrix. We set

u′′ := αw + βu,

and, consequently,

u(4) = αw ′′ + βαw + β2u.

With this, (4) can be transformed as a system of two equations of the
form

−ε2αw ′′ + (aα− ε2αβ)w + (aβ − ε2β2 − b)u = f , (8a)
−u′′ + αw + βu = 0, (8b)

subject to the boundary conditions

u(0) = w(0) = u(1) = w(1) = 0.
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Coercivity property of the matrix

Written in matrix form, this is

−
(
ε2α 0
0 1

) (
w ′′

u′′

)
+ B

(
w
u

)
=

(
f
0

)
.

where

B =

(
aα− ε2αβ aβ − ε2β2 − b

α β

)
.

Our eventual goal is to analyse the convergence of a finite difference
scheme for this problem. We wish to apply the analysis techniques
from [Bakhvalov, 1969, Kellogg et al., 2008], for which we need that

vT Bv ≥ δvT v,

for all vectors v, and some positive constant δ.
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This B satisfies vT Bv ≥ δvT v, for all v , if and only if, M = (BT + B)/2
is symmetric positive definite. Here

M =

(
aα− ε2αβ 1

2 (aβ − ε2β2 − b + α)
1
2 (aβ − ε2β2 − b + α) β

)
.

Clearly, M is symmetric. In addition M is positive definite if and only if
all of its eigenvalues are positive [Horn et al., 1990, Thm 7.2.1]. That
will be the case if M is strictly diagonally dominant, with positive
diagonal entries, i.e., Mii >

∑
j 6=i |Mij | for i = 1,2 [Beezer, 2008]. So,

thus, we require that
(i) |aα− ε2αβ| > 0,
(ii) |β| > 0,
(iii) |aα− ε2αβ| > | 12 (aβ − ε2β2 − b + α)|,
(iv) |β| > | 12 (aβ − ε2β2 − b + α)|.
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Example

Now consider the real-valued problem:

− ε2u(4)(x) + 2u′′(x)− 4u(x) = f (x) on Ω := (0,1), (9)

subject to the boundary conditions

u(0) = u′′(0) = 0, u(1) = u′′(1) = 0.

If we take α = 1 and β = 1, we have

B =

(
2− ε2 −(ε2 + 2)

1 1

)
, and M =

(
2− ε2 − 1

2 (ε2 + 1)
− 1

2 (ε2 + 1) 1

)
.

where M is a symmetric positive definite for ε <
√

2.
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Conclusions and future work

I We have shown that standard ideas cannot be used for this
problem.

I We are now working on the analysis of methods for fourth-order
complex-valued problems in the case where the problem can be
re-cast as a coupled system of second-order problems (see, e.g.,
[Xenophontos et al., 2013b]).

I We also aim to extend the work to complex-valued fourth-order
ones which cannot be written as a coupled system of
second-order ones (e.g., [Constantinou et al., 2016]).
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