A short note on 4th order real-valued singularly perturbed problems

Faiza Alssaedi
Supervisor: Niall Madden

Content

Introduction
Research Question
The finite difference method
Real-valued problems
About the boundary conditions
How not to solve this problem
A positive definite system
Example
Conclusions and future work
References

Introduction

We are interested in the numerical solution of a singularly perturbed, fourth-order ordinary differential equations.

Our model differential equation is

$$
\begin{equation*}
-\varepsilon^{2} u^{(4)}(x)+a u^{\prime \prime}(x)-b u(x)=f(x) \quad \text { on } \quad \Omega:=(0,1) \tag{1}
\end{equation*}
$$

subject to the boundary conditions

$$
u(0)=u^{\prime \prime}(0)=0, \quad u(1)=u^{\prime \prime}(1)=0
$$

Here ε is a positive, real-valued parameter: $0<\varepsilon \leq 1$, but typically $\varepsilon \ll 1$. And so the problem is singularly perturbed.
The coefficient functions a, b and right-hand side function f are real or complex-valued functions on the interval Ω.

Research Question

The above problem is complicated, because solutions feature boundary layers.
The numerical methods are used to solve this problem (1)

- By using standard finite difference methods, on specialised fitted meshes: the well-known piecewise uniform Shishkin mesh, and the more complicated Bakhvalov mesh.
- The numerical analysis of such method usually relies on Maximum Principles, but these do not hold, in a direct way.
- Since we cannot use standard ideas, we take the approach of rewriting (1) as a coupled system of real-valued problems, and establish that the coefficient matrix for this system is positive definite.

The finite difference method

Consider an arbitrary mesh, $\Omega^{N}:=\left\{0=x_{0}<x_{1}<\cdots<x_{N}=1\right\}$. On this we define the standard second-order approximation of the second derivative

$$
\begin{equation*}
\delta^{2} u_{i}:=\frac{1}{\hbar_{i}}\left(\frac{u_{i-1}}{h_{i}}-u_{i}\left(\frac{1}{h_{i}}+\frac{1}{h_{i+1}}\right)+\frac{u_{i+1}}{h_{i+1}}\right), \tag{2}
\end{equation*}
$$

and we define the standard 4th-order approximation of the fourth derivative

$$
\begin{align*}
u^{(4)}\left(x_{i}\right) \approx D^{4} u_{i}: & =\frac{6}{\left(\hbar_{i-1}+\hbar_{i+1}\right)\left(h_{i-1}+h_{i}+h_{i+1}\right) \hbar_{i-1} h_{i-1}} u_{i-2} \\
-\frac{12}{h_{i-1}\left(h_{i}+h_{i+1}+\right.} & \left.h_{i+2}\right) \hbar_{i} h_{i}
\end{align*} u_{i-1}+\frac{6}{\hbar_{i-1} h_{2} \hbar_{i+1} h_{3}} u_{i}-\frac{12}{\hbar_{i} h_{i+1} h_{i+2}\left(h_{i-1}+h_{i}+h_{i+}\right.} .
$$

where $h_{i}=x_{i}-x_{i-1}$ and $\hbar_{i}=\left(x_{i+1}-x_{i-1}\right) / 2$.

Real-valued problems

We consider the case of real-valued fourth-order ordinary differential equations and the following example from the literature.

[Shanthi and Ramanujam, 2002]:

$$
\begin{equation*}
-\varepsilon^{2} u^{(4)}(x)+a u^{\prime \prime}(x)-b u(x)=f(x) \quad \text { on } \quad \Omega:=(0,1), \tag{4}
\end{equation*}
$$

subject to the boundary conditions

$$
u(0)=u^{\prime \prime}(0)=u(1)=u^{\prime \prime}(1)=0 .
$$

The coefficient functions a, b and right-hand side function f are real-valued functions on the interval Ω.

About the boundary conditions

It is important to note that the boundary conditions are

$$
\begin{equation*}
u(0)=u^{\prime \prime}(0)=u(1)=u^{\prime \prime}(1)=0 \tag{5}
\end{equation*}
$$

It is also common to have boundary conditions of the form

$$
\begin{equation*}
u(0)=u^{\prime}(0)=u(1)=u^{\prime}(1)=0 \tag{6}
\end{equation*}
$$

When the conditions are of the form given in (5), then the equation can be written as a system of two second order equations, and solved using techniques for such problems.

How not to solve this problem

When the boundary conditions are

$$
u(0)=u^{\prime \prime}(0)=u(1)=u^{\prime \prime}(1)=0
$$

we can set $u^{\prime \prime}=w$ and write the problem as the following coupled system:

$$
\begin{align*}
-\varepsilon^{2} w^{\prime \prime}+a w-b u & =f \tag{7a}\\
-u^{\prime \prime}+w & =0 \tag{7b}
\end{align*}
$$

Written in matrix-vector form, this is

$$
-\left(\begin{array}{cc}
\varepsilon^{2} & 0 \\
0 & 1
\end{array}\right)\binom{w^{\prime \prime}}{u^{\prime \prime}}+\left(\begin{array}{cc}
a & -b \\
1 & 0
\end{array}\right)\binom{w}{u}=\binom{f}{0} .
$$

There are numerous papers that study this formulation, but some are flawed. For example, in [Xenophontos et al., 2013a] some of the analysis depends on the coefficient matrix of the zero-order term being "pointwise positive definite (but not necessarily symmetric)". But this is impossible!

A positive definite system

We now propose an simple approach that allows one to reformulate (4) as a system with a (non-symmetric) positive definite coefficient matrix. We set

$$
u^{\prime \prime}:=\alpha w+\beta u
$$

and, consequently,

$$
u^{(4)}=\alpha w^{\prime \prime}+\beta \alpha w+\beta^{2} u .
$$

With this, (4) can be transformed as a system of two equations of the form

$$
\begin{align*}
-\varepsilon^{2} \alpha w^{\prime \prime}+\left(a \alpha-\varepsilon^{2} \alpha \beta\right) w+\left(a \beta-\varepsilon^{2} \beta^{2}-b\right) u & =f, \tag{8a}\\
-u^{\prime \prime}+\alpha w+\beta u & =0, \tag{8b}
\end{align*}
$$

subject to the boundary conditions

$$
u(0)=w(0)=u(1)=w(1)=0 .
$$

Coercivity property of the matrix

Written in matrix form, this is

$$
-\left(\begin{array}{cc}
\varepsilon^{2} \alpha & 0 \\
0 & 1
\end{array}\right)\binom{w^{\prime \prime}}{u^{\prime \prime}}+B\binom{w}{u}=\binom{f}{0} .
$$

where

$$
B=\left(\begin{array}{cc}
a \alpha-\varepsilon^{2} \alpha \beta & a \beta-\varepsilon^{2} \beta^{2}-b \\
\alpha & \beta
\end{array}\right) .
$$

Our eventual goal is to analyse the convergence of a finite difference scheme for this problem. We wish to apply the analysis techniques from [Bakhvalov, 1969, Kellogg et al., 2008], for which we need that

$$
\mathbf{v}^{\top} B \mathbf{v} \geq \delta \mathbf{v}^{\top} \mathbf{v}
$$

for all vectors \mathbf{v}, and some positive constant δ.

This B satisfies $\mathbf{v}^{\top} B \mathbf{v} \geq \delta \mathbf{v}^{\top} \mathbf{v}$, for all v, if and only if, $M=\left(B^{T}+B\right) / 2$ is symmetric positive definite. Here

$$
M=\left(\begin{array}{cc}
a \alpha-\varepsilon^{2} \alpha \beta & \frac{1}{2}\left(a \beta-\varepsilon^{2} \beta^{2}-b+\alpha\right) \\
\frac{1}{2}\left(a \beta-\varepsilon^{2} \beta^{2}-b+\alpha\right) & \beta
\end{array}\right) .
$$

Clearly, M is symmetric. In addition M is positive definite if and only if all of its eigenvalues are positive [Horn et al., 1990, Thm 7.2.1]. That will be the case if M is strictly diagonally dominant, with positive diagonal entries, i.e., $M_{i i}>\sum_{j \neq i}\left|M_{i j}\right|$ for $i=1,2$ [Beezer, 2008]. So, thus, we require that
(i) $\left|a \alpha-\varepsilon^{2} \alpha \beta\right|>0$,
(ii) $|\beta|>0$,
(iii) $\left|a \alpha-\varepsilon^{2} \alpha \beta\right|>\left|\frac{1}{2}\left(a \beta-\varepsilon^{2} \beta^{2}-b+\alpha\right)\right|$,
(iv) $|\beta|>\left|\frac{1}{2}\left(a \beta-\varepsilon^{2} \beta^{2}-b+\alpha\right)\right|$.

Example

Now consider the real-valued problem:

$$
\begin{equation*}
-\varepsilon^{2} u^{(4)}(x)+2 u^{\prime \prime}(x)-4 u(x)=f(x) \quad \text { on } \quad \Omega:=(0,1), \tag{9}
\end{equation*}
$$

subject to the boundary conditions

$$
u(0)=u^{\prime \prime}(0)=0, \quad u(1)=u^{\prime \prime}(1)=0
$$

If we take $\alpha=1$ and $\beta=1$, we have

$$
B=\left(\begin{array}{cc}
2-\varepsilon^{2} & -\left(\varepsilon^{2}+2\right) \\
1 & 1
\end{array}\right) \text {, and } M=\left(\begin{array}{cc}
2-\varepsilon^{2} & -\frac{1}{2}\left(\varepsilon^{2}+1\right) \\
-\frac{1}{2}\left(\varepsilon^{2}+1\right) & 1
\end{array}\right) \text {. }
$$

where M is a symmetric positive definite for $\varepsilon<\sqrt{2}$.

Conclusions and future work

- We have shown that standard ideas cannot be used for this problem.
- We are now working on the analysis of methods for fourth-order complex-valued problems in the case where the problem can be re-cast as a coupled system of second-order problems (see, e.g., [Xenophontos et al., 2013b]).
- We also aim to extend the work to complex-valued fourth-order ones which cannot be written as a coupled system of second-order ones (e.g., [Constantinou et al., 2016]).

References

[Bakhvalov, 1969] Bakhvalov, N. S. (1969).
On the optimization of the methods for solving boundary value problems in the presence of a boundary layer.
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 9(4):841-859.
[Beezer, 2008] Beezer, R. A. (2008).
A first course in linear algebra.
Beezer.
[Constantinou et al., 2016] Constantinou, P., Varnava, C., and Xenophontos, C. (2016).

An hp finite element method for 4th order singularly perturbed problems.
Numerical Algorithms, 73(2):567-590.
[Horn et al., 1990] Horn, R. A., Horn, R. A., and Johnson, C. R. (1990).
Matrix analysis.
Cambridge university press.
[Kellogg et al., 2008] Kellogg, R. B., Linss, T., and Stynes, M. (2008).
A finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions.
Math. Comp., 77(264):2085-2096.

Thank you

