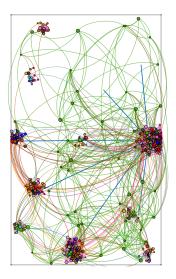
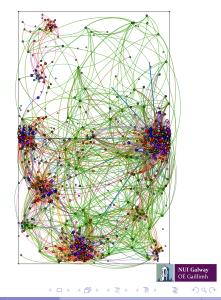
# Normooth Dynamical Systems with Noise: An Introduction

E. Staunton, P.T. Piiroinen

October 23, 2015


NUI Galway OÉ Gaillimh


Eoghan Staunton

Modelling Research Group

2015 1 / 10

# Something Completely Different - Economic Development





2015 2 / 10

# Introduction

Historically mathematicians have made widespread use of smooth, deterministic mathematical models to describe real-world phenomena. These models present a simplified view of the world where

- The evolution of systems is always smooth and exhibits no interruptions such as impacts, switches, slides or jumps.
- The future of any system is completely determined by its present state.

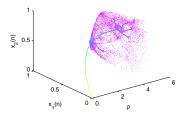
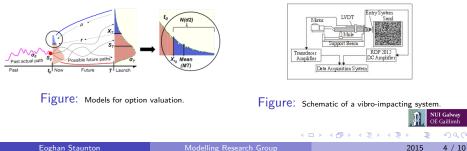




Figure: Bifurcation diagram for a smooth dynamical system on a network with two nodes

### Introduction

However, when modelling many real-world systems one or both of these simplifications may not hold.

- A level of randomness or noise is ubiquitous in real-world systems.
- Many real-world systems behave in a nonsmooth manner: 2
  - Mechanical systems through impacts or friction
  - Electrical systems through switches
  - More complex systems such as the world's climate and financial systems have also been modelled using nonsmooth models.



#### Introduction

Both noise and nonsmoothness have been shown to be the drivers of significant changes in qualitative behaviour.

- Nonsmooth systems qualitative changes in the behavior of the system under parameter variation that do not occur in the smooth setting.
- Adding noise to *(smooth)* systems does more than just blur the outcome of the system in the absence of noise.

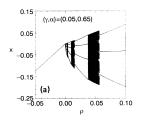



Figure: Grazing bifurcation diagram.

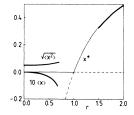



Figure: Additive noise destroys the transcritical bifurcation NUI Galway at r= 1 in the logistic map.

Modelling Research Group

2015 5 / 10

### Central Research Questions

- I How can we best include noise in a nonsmooth dynamical system?
- What are the potential outcomes of including noise in nonsmooth dynamical systems and in particular how are DIBs affected by the addition of noise?
- Or an we classify how noise enters and affects different types of nonsmooth dynamical systems?
- What numerical methods are suitable for simulating nonsmooth, noisy dynamical systems?

**Nonsmooth systems**  $\sim$  systems whose solutions are not everywhere differentiable, and may even possess discontinuities.

- Well-developed approaches to dynamical systems typically rely on the system evolution being defined by a smooth function of its arguments.
- This excludes many systems that arise in practice.
- Can be argued all physical systems are smooth in reality.
- Timescales over which transitions such as impacts occur are so small compared to the overall dynamics that the appropriate global model is nonsmooth on a macroscopic timescale.

3 🕨 🖌 3

# Example: DC/DC Buck Converter

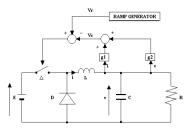



Figure: Schematic of DC/DC Buck Converter.

- Several coexisting attractors can be detected.
- Abrupt transition from periodic orbit to chaos.
- Initial attempts to account for the experimental observations using the existing theory of bifurcations in smooth dynamical systems failed
- Transitions observed are due to the discontinuous nature of the original circuit.

### Example: DC/DC Buck Converter

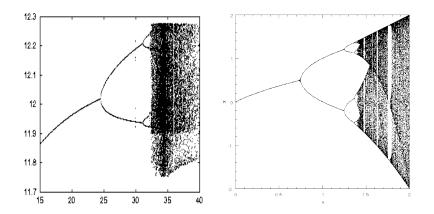



Figure: Comparison of bifurcation diagrams for a Buck Converter (on the left) and a smooth dynamical system (on the right).

2015 9 / 10

JI Galway Gaillimh

#### References

- W. Chin, E. Ott, H. E. Nusse, and C. Grebogi, *Grazing bifurcations in impact oscillators*, Physical Review E **50** (1994), no. 6, 4427–4444.
- M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, *Piecewise-smooth dynamical systems: Theory and applications*, Applied Mathematical Sciences, vol. 163, Springer-Verlag London Ltd., London, 2008.
- S. J. Linz and M. Lücke, Effect of additive and multiplicative noise on the first bifurcations of the logistic model, Physical Review A 33 (1986), no. 4, 2694–2703.

3 🕨 🖌 3