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Introduction
Historically mathematicians have made widespread use of smooth,
deterministic mathematical models to describe real-world phenomena.
These models present a simplified view of the world where

1 The evolution of systems is always smooth and exhibits no
interruptions such as impacts, switches, slides or jumps.

2 The future of any system is completely determined by its present
state.
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Figure: Bifurcation diagram for a smooth dynamical system on a network with
two nodes
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Introduction

However, when modelling many real-world systems one or both of these
simplifications may not hold.

1 A level of randomness or noise is ubiquitous in real-world systems.
2 Many real-world systems behave in a nonsmooth manner:

I Mechanical systems through impacts or friction
I Electrical systems through switches
I More complex systems such as the world’s climate and financial

systems have also been modelled using nonsmooth models.

Figure: Models for option valuation. Figure: Schematic of a vibro-impacting system.
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Introduction
Both noise and nonsmoothness have been shown to be the drivers of
significant changes in qualitative behaviour.

Nonsmooth systems - qualitative changes in the behavior of the
system under parameter variation that do not occur in the smooth
setting.
Adding noise to (smooth) systems - does more than just blur the
outcome of the system in the absence of noise.
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considered in [11,13) and discussed in Sec. VI). The pur-
pose of this paper is to present an analysis of grazing bi-
furcations for the system in Fig. 1. It is anticipated that
these results are universal in that they apply to many sys-
tems in which impacts occur.

The two dimensional map derived for the system in
Fig. 1 by Nordmark in [9] is equivalent to the following
map, which will henceforth be referred to as the Nord-
mark map:

through zero. Depending on y and a, there are two possi-
ble forms such a cascade can take: (a) a cascade where
chaos appears in bands between successive windows of
periodic behavior, and (b) a cascade with hysteresis. Sub-
case (a} is illustrated by the example shown in Fig. 2(a),
while subcase (b) is illustrated by the example shown in
Fig. 2(b). (See the figure caption for Figs. 2 for a descrip-
tion of how the bifurcation diagrams are made. ) The line
in the diagrams occurring for p (0 represents the x loca-
tion of an attracting period-1 orbit for the map. Since
this period-1 orbit is located in x &0, it is determined

«n+ i
= +xn+yn+p

y„+,= —yHx„ for x„)0. (2)
0.15p-

(y, a) =(0.05,0.65)

0.05
Here x„and y„are transformed coordinates in the
position-velocity space (g, g) evaluated at times t„,where
cot„=2nm, and ~ is the frequency of the external forcing
(see Fig. 1). The quantity 2 is the restitution coeScient
of the impacts. The relation of y and a to the intrinsic
properties of the oscillator such as the quantities
k, m, o,cp in Fig. 1 is given in Sec. II. The parameter p is
related to Fo Equati. ons (1}govern the system if there is
no impact between time t„and t„+&. Otherwise, if an im-

pact takes place between t„andt„+
„

then Eqs. (2) govern
the system. Note that the Nordmark map is continuous
at x„=0,but that its Jacobian matrix of partial deriva-
tives is singular at x„=O [in particular,
Bx„+&/Bx„=—I/(2+x„) for x„&0].This singularity
at x„=Ois responsible for the new bifurcations studied in
this paper. The map is normalized so that for fixed y and
a, the long-time behavior is such that the orbit does not
impact with the wall at g, for p &0, is in the grazing state
for p=O, and may impact with the wall at g, for p&0.
Thus if we vary p through zero with fixed y and a, the
Nordmark map describes the dynamics of an orbit in the
neighborhood of the grazing state if ~p~ &&1. Since the
map is obtained by expansion of solutions in the neigh-
borhood of the grazing state, its dynamics is related to
the physical system only for ~pi &&1. However, since we
are interested in the bifurcations at p =0 (i.e., the grazing
bifurcations), the map is expected to capture the univer-
sal properties of impact oscillators near grazing. That is,
other, physically different systems, when suitably normal-
ized and expanded about the grazing state, should also
yield Eqs. (1) and (2).

In what follows we shall be concerned with the bifurca-
tion phenomena for the Nordmark map that occur as the
bifurcation parameter p is increased through P=O (graz-
ing incidence} with y and a held fixed. Depending on the
values of y and a (0&y & 1, a & 1+y for physically ad-
missible systems), we observe three basic bifurcation
scenarios listed as cases 1—3 below. One of our goals will
be to give an analysis to delineate the (y, a) parameter
space into regions in which the bifurcations in each case
take place.

Case 1: Bifurcation from a stable period lorbit in p & 0-
to a reversed infinite period adding cascade as p increases
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FIG. 2. (a) Bifurcation diagram for {y,a)=(0.05,0.65) and
r'=l. (b) Bifurcation diagram for (y, a)=(0.01,0.25) and

2= 1. We use the following steps to produce a bifurcation dia-

gram. (i) Set p to the leftmost value p;„in the figure. [In (a),
we start with p=p;„=—0.05.] (ii) Set initial point (xo,yo) to
an arbitrary point. {iii) Iterate the map 10000 times without

plotting anything, to eliminate transient behavior. (iv) Iterate
the map another 300 times and plot the resulting 300 values of
x. This is the x position of the points on the attractor. (v) In-

crement p by a small amount (in this figure, p~p+ ' ), and

set the new initial point (xo,yo) to the last point produced in the
last step, and return to step (iii). Continue until p reaches the
rightmost value p, „

in the Sgure [in (a), p,„=0.10]. (vi) If
p,„isreached, go to step (v), except now decrease p by a small

amount every time (here p~p —~I) until p;„is reached

again. Step {vi) enables us to plot the x positions of coexisting
attractors. The same steps are used to produce Figs. 3—5. The
numbers of iterations in steps (iii) and (iv), and the amount of in-

crement in steps (v) and {vi) are varied for each figure.

Figure: Grazing bifurcation diagram.
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Factorizing the numerator and approximating

r (x„(1—x„))=(x„+i)=(1—1/r)

(3.32)
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FIG. 4. Order parameter and mean orbit (thick solid lines) vs

r for additive dichotomous noise of amphtude 6=0.05. Thin
solid lines show the bifurcation for b, =0. For 0.69&r &1.45
the orbits escaped in our numerical simulations to —ee. (x)
and [(x2) ]i~i are identical within a pencil's width for r & 1.45.

rameter [(x (b, ))]'~ as a function of r for dichotomous
noise of amplitude b, =0.05. For r values within the gap
of the solid curves the orbits escaped to —eo. Except for
this gap which increases with growing 5 the order param-
eter shows the typical characteristics of a rounded, imper-
fect bifurcation of a system that without the perturbation
displays a perfect one (thin solid lines in Fig. 4}. That the
fixed point at —eo becomes so strongly attracting near
r= 1 is in a sense only an annoying complication of an
otherwise simple bifurcation behavior. The agreement of
the solid curves with the small-b, result (3.29) for white
noise, y = te, is perfect.

r —l
~additive~ ~multiplicstive ~

r
(3.30)

We checked the validity of (3.30) for r & 3 as well as for
r &3. We found that numerically determined stationary
distributions W(x ) resulting from additive and multipli-
cative forces [g] with the same statistics agreed much
better with the scaling (3.30) than with the one derived by
Crutchfield et a1. ' with rather ad hoc approximations.

As an interesting aside we mention that (3.30) can also
be derived from the requirement that the moment generat-
ing functions ( exp(ikx„+i)) and ( exp(ikx „+i))are the
same, i.e.,

( exp[ikr(1+bed„)x„(1—x„}])
=( exp[ik[rx „(1—x „)+bg,j] ) . (3.31)

Here the tilde refers to additive forcing. For small ampli-

3. Equivalence ofadditive and ntultiplicative noise

So far we have seen that the response of the map to-
wards additive and multiplicative noise is totally different
for small values of r, say, up to the stability threshold
re(h) (3.3) of x' =0 under parametric forcing. If, howev-
er, r &r (be, ) is sufficiently far above 1 so that the fixed
point at —ao does not attract the additively perturbed or-
bits, then, for small b„multiplicative and additive noise
causes similar response behavior: A comparison of (3.9b)
with (3.28a) shows that the orbits x„(lent)=x'+du&„' '

up
to first order in b, are the same if one uses the same noise
sequence [g] and scales the noise intensity b. for the two
forcing types according to

IV. THE EFFECT OF NOISE ON THE FIRST
PERIOD-DOUBLING BIFURCATION

In this section we discuss the effect of small-amplitude
noise on the first period-doubling pitchfork bifurcation of
the unperturbed map at r=3. %e shall concentrate on
the additively forced map (2.4). The multiplicatively
forced system (2.3) shows for small b, in the vicinity of
r =3 similar behavior that can be related quantitatively to
the statistical dynamics of the response under additive
forcing by scaling the noise according to (3.30).

A. Noisy pitchfork bifurcation

In the absence of forcing, 5=0, the fixed point
x'=1 —1/r of the system (2.1) loses its stability at r =3
by generating a period-2 limit cycle and thereby breaks
time translational invariance. From the bifurcating limit
cycle (n~oo) of

d„=x„+i —x„~(—1)"d' (4.1)

one identifies the value of the order parameter above the
threshold r =3 as

d'=+ —v'(r —3)(r+1) .
r

(4.2)

Its magnitude is the separation of the pitchfork branches,
which grows initially with the square root of the control
parameter's distance above threshold. The phase of the
order parameter depends on the initial condition xo.. at
fixed time n (~ oo ) either d„=+

~

d'
~

or d„=—
~

d'
~

.
In the presence of small noise the branches of the pitch-

fork bifurcation are broadened. ' In Fig. 5(a) we show as
a function of r all positions x„between time n = 1000 and
1150 for uncorrelated noise (b, =0.01) with the box-
shaped stationary distribution (3.5b) of amplitudes.

Note that the pitchfork topology is still visible in Fig.
5(a). In fact, small noise perturbs the dynamics of d„
only slightly if r is suNciently above threshold so that the
overlap between the broadened pitchfork branches is
small —)d„~ is still roughly of size ~d*

~

—and, more
importantly, the sequence of signs d„/

~
d„~ is still (most-

ly) alternating as for b.=0. This is the situation where the

leads then to (3.30).
Since most results presented in Sec. IIIC are strongly

dominated by x„'",one merely has to use (3.30) to find ap-
proximately the corresponding small-5 statistical proper-
ties of x„in the presence of additive noise. For example,
the discussion on the different shapes of the stationary
distribution W(x) for r &r, (b, ) in Sec. IIIC5 applies
equally well to additive noise. Thus also for additive
noise coupled to the system at r =2 the stationary distri-
bution W(x ) has the same form as P(g).

Figure: Additive noise destroys the transcritical bifurcation

at r= 1 in the logistic map.
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Central Research Questions

1 How can we best include noise in a nonsmooth dynamical system?

2 What are the potential outcomes of including noise in nonsmooth
dynamical systems and in particular how are DIBs affected by the
addition of noise?

3 Can we classify how noise enters and affects different types of
nonsmooth dynamical systems?

4 What numerical methods are suitable for simulating nonsmooth, noisy
dynamical systems?
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Why nonsmooth?

Nonsmooth systems ∼ systems whose solutions are not everywhere
differentiable, and may even possess discontinuities.

Well-developed approaches to dynamical systems - typically rely on
the system evolution being defined by a smooth function of its
arguments.

This excludes many systems that arise in practice.

Can be argued all physical systems are smooth in reality.

Timescales over which transitions such as impacts occur are so small
compared to the overall dynamics that the appropriate global model is
nonsmooth on a macroscopic timescale.
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Example: DC/DC Buck Converter
A representative example: 

the DC/DC buck converter

Figure: Schematic of DC/DC Buck Converter.

Several coexisting attractors can be detected.

Abrupt transition from periodic orbit to chaos.

Initial attempts to account for the experimental observations using
the existing theory of bifurcations in smooth dynamical systems failed

Transitions observed are due to the discontinuous nature of the
circuit.
Eoghan Staunton Modelling Research Group 2015 8 / 10



Example: DC/DC Buck Converter

Buck Converter

Smooth SystemFigure: Comparison of bifurcation diagrams for a Buck Converter (on the left) and a smooth dynamical system (on the

right).
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