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Introduction
Historically mathematicians have made widespread use of smooth,
deterministic mathematical models to describe real-world phenomena.
These models present a simplified view of the world where

1 The future of any system is completely determined by its present
state.

2 The evolution of systems is always smooth and exhibits no
interruptions such as impacts, switches, slides or jumps.
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Figure: Bifurcation diagram for a smooth dynamical system on a network with
two nodes
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The Importance of Noise

All real-world systems evolve in the presence of noisy driving forces.

Often thought that noise has only a blurring effect on the evolution of
dynamical systems.

I This can be the case, especially in the case of
1 “measurement” noise
2 linear systems.

In nonlinear systems with dynamical noise the deterministic dynamics
can be drastically modified.

Figure: Models for option valuation.
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Noise and Bifurcations

Noise has its greatest influence in the vicinity of bifurcation points,
the hallmark of nonlinear behaviour. Noise

1 can make the determination of bifurcation points very difficult, even for
the simplest bifurcations.

2 can shift bifurcation points.
3 can induce behaviors that have no deterministic counterpart, through

what are known as noise-induced transitions.
4 can produce time series that are easily mistakable for deterministic

chaos near bifurcation points.
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Noise and the Logistic Map

Investigating the statistical dynamics of the response of the logistic map to
the inclusion of noise in a range of the control parameter r where the first
bifurcation of the unperturbed system is located yields some interesting
results.
We couple the stochastic forces ξn with the variable x additively

xn+1 = rxn(1− xn) + ∆ξn (1)

where the stochastic forces have vanishing mean and unit covariance and
∆ measures the intensity of the noise.
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Noise and the Logistic Map

Expanding about (x,∆) = (x∗, 0) where x∗ is the stable fixed point and
writing

xn = x(0)n + ∆x(1)n + ∆2x(2)n + . . . , (2)

we can decompose the equation of motion (1) up to second order in ∆
into the system

x
(0)
n+1 = x∗, (3)

x
(1)
n+1 = qx(1)n + ξn, (4)

x
(2)
n+1 = qx(2)n − rx(1)n , (5)

with
q = r(1− 2x∗). (6)
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Noise and the Logistic Map

Now for noise with a Brownian two-point correlation spectrum we find the
stationary mean

〈x(∆)〉 = x∗ −∆2 r

(1− q)2(1 + q)

(
1 + 2

qe−γ

1− qe−γ

)
+O(∆4) (7)

This is negative for 0 < r < 1 with its absolute size increasing as r
approaches 1, there our small ∆ expansions lose their validity.
However (7) agrees well with numerical simulations provided xn does not
diverge which is the case whenever the distance |r − 1| is large enough to
prevent the presence of noise moving the trajectory into the basin of
attraction of the deterministic fixed point x = −∞.
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Noise and the Logistic Map

Agreement of the solid curves in the numerical simulation with the
small-∆, result for white noise, γ =∞, is perfect.

Figure: Bifurcation diagram and basins of attraction.
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FIG. 4. Order parameter and mean orbit (thick solid lines) vs

r for additive dichotomous noise of amphtude 6=0.05. Thin
solid lines show the bifurcation for b, =0. For 0.69&r &1.45
the orbits escaped in our numerical simulations to —ee. (x)
and [(x2) ]i~i are identical within a pencil's width for r & 1.45.

rameter [(x (b, ))]'~ as a function of r for dichotomous
noise of amplitude b, =0.05. For r values within the gap
of the solid curves the orbits escaped to —eo. Except for
this gap which increases with growing 5 the order param-
eter shows the typical characteristics of a rounded, imper-
fect bifurcation of a system that without the perturbation
displays a perfect one (thin solid lines in Fig. 4}. That the
fixed point at —eo becomes so strongly attracting near
r= 1 is in a sense only an annoying complication of an
otherwise simple bifurcation behavior. The agreement of
the solid curves with the small-b, result (3.29) for white
noise, y = te, is perfect.

r —l
~additive~ ~multiplicstive ~

r
(3.30)

We checked the validity of (3.30) for r & 3 as well as for
r &3. We found that numerically determined stationary
distributions W(x ) resulting from additive and multipli-
cative forces [g] with the same statistics agreed much
better with the scaling (3.30) than with the one derived by
Crutchfield et a1. ' with rather ad hoc approximations.

As an interesting aside we mention that (3.30) can also
be derived from the requirement that the moment generat-
ing functions ( exp(ikx„+i)) and ( exp(ikx „+i))are the
same, i.e.,

( exp[ikr(1+bed„)x„(1—x„}])
=( exp[ik[rx „(1—x „)+bg,j] ) . (3.31)

Here the tilde refers to additive forcing. For small ampli-

3. Equivalence ofadditive and ntultiplicative noise

So far we have seen that the response of the map to-
wards additive and multiplicative noise is totally different
for small values of r, say, up to the stability threshold
re(h) (3.3) of x' =0 under parametric forcing. If, howev-
er, r &r (be, ) is sufficiently far above 1 so that the fixed
point at —ao does not attract the additively perturbed or-
bits, then, for small b„multiplicative and additive noise
causes similar response behavior: A comparison of (3.9b)
with (3.28a) shows that the orbits x„(lent)=x'+du&„' '

up
to first order in b, are the same if one uses the same noise
sequence [g] and scales the noise intensity b. for the two
forcing types according to

IV. THE EFFECT OF NOISE ON THE FIRST
PERIOD-DOUBLING BIFURCATION

In this section we discuss the effect of small-amplitude
noise on the first period-doubling pitchfork bifurcation of
the unperturbed map at r=3. %e shall concentrate on
the additively forced map (2.4). The multiplicatively
forced system (2.3) shows for small b, in the vicinity of
r =3 similar behavior that can be related quantitatively to
the statistical dynamics of the response under additive
forcing by scaling the noise according to (3.30).

A. Noisy pitchfork bifurcation

In the absence of forcing, 5=0, the fixed point
x'=1 —1/r of the system (2.1) loses its stability at r =3
by generating a period-2 limit cycle and thereby breaks
time translational invariance. From the bifurcating limit
cycle (n~oo) of

d„=x„+i —x„~(—1)"d' (4.1)

one identifies the value of the order parameter above the
threshold r =3 as

d'=+ —v'(r —3)(r+1) .
r

(4.2)

Its magnitude is the separation of the pitchfork branches,
which grows initially with the square root of the control
parameter's distance above threshold. The phase of the
order parameter depends on the initial condition xo.. at
fixed time n (~ oo ) either d„=+

~

d'
~

or d„=—
~

d'
~

.
In the presence of small noise the branches of the pitch-

fork bifurcation are broadened. ' In Fig. 5(a) we show as
a function of r all positions x„between time n = 1000 and
1150 for uncorrelated noise (b, =0.01) with the box-
shaped stationary distribution (3.5b) of amplitudes.

Note that the pitchfork topology is still visible in Fig.
5(a). In fact, small noise perturbs the dynamics of d„
only slightly if r is suNciently above threshold so that the
overlap between the broadened pitchfork branches is
small —)d„~ is still roughly of size ~d*

~

—and, more
importantly, the sequence of signs d„/

~
d„~ is still (most-

ly) alternating as for b.=0. This is the situation where the

leads then to (3.30).
Since most results presented in Sec. IIIC are strongly

dominated by x„'",one merely has to use (3.30) to find ap-
proximately the corresponding small-5 statistical proper-
ties of x„in the presence of additive noise. For example,
the discussion on the different shapes of the stationary
distribution W(x) for r &r, (b, ) in Sec. IIIC5 applies
equally well to additive noise. Thus also for additive
noise coupled to the system at r =2 the stationary distri-
bution W(x ) has the same form as P(g).

Figure: Additive noise (∆ = 0.05) destroys the

transcritical bifurcation at r= 1 in the logistic map.
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A Physiological Example - The Pupil Light Reflex

The pupil light reflex is modelled deterministically by

dA

dt
= −αA+

c

1 +
[
A(t−τ)

θ

]n + k (8)

where A(t) is the pupil area, and the second term on the right is a
sigmoidal negative feedback function of the area at a time τ msec in the
past.
The deterministic system predicts a single stable fixed point which
becomes unstable, giving rise to a stable limit cycle if τ is increased
beyond some critical delay (or n beyond some critical n0) (super-critical
Hopf bifurcation). This behaviour is not observed in experiments instead
oscillations are observed even for the lowest values of n and τ .
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A Physiological Example - The Pupil Light Reflex

This is due to inherent noise present in the reflex. the pupil has a well
documented source of fluctuations known as pupillary hippus.
Including noise we see a model that matches observations extremely well.
We also find that the inclusion of noise postpones the Hopf bifurcation,
inducing stability in the statistical fixed point.

Figure: Pupil Light Reflex. Figure: Super-critical Hopf Bifurcation.
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Important Considerations when Including Noise

How we include noise
1 additive
2 multiplicative
3 other choices for nonsmooth systems

The type of noise we include
1 white noise
2 real, coloured noise

The intensity of the noise
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