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Nordmark’s Square Root Map

Many impacting systems are described by a
one-dimensional map known as the
Nordmark square root map. The map is
derived as an approximation for solutions of
piecewise smooth differential equations near
certain types of grazing bifurcation.

A grazing bifurcation is an effect of the fact that an impact with low
velocity is sensitive to small changes in the initial conditions, with
sensitivity inversely proportional to impact velocity.

xn+1 = S(xn) =

{
µ+ bxn if xn < 0
µ− a√xn if xn ≥ 0

(1)
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Multistability In the Square Root Map

If 0 < b < 1
4 there are values of µ > 0 for which a stable periodic orbit

with code (RLn)∞ exists for each n = 1, 2, . . . , and also such that there
are two stable periodic orbits, one with code (RLn)∞ and the other with
code (RLn+1)∞.

For b in this range these are the only possible attractors except at
bifurcation points. 2
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FIG. 1: Basins of attraction in the (µ, x) plane for µ values
between µ−

2 and µ+
1 showing for each value of µ the initial val-

ues of x attracted to the period two orbit (RL)∞ (black)and
the period three orbit (RL2)∞ (white). The second picture is
a blow-up of a small region in the first showing the persistence
of structure indicating that the basins are riddled.

By brute force calculation the return map on I0 is

xk+1 = Rn(xk) = Sn+1(xk)

where

Rn(x) = µ
1 − bn+1

1 − b
− abn

√
x. (5)

We now want to compare Rn with rn+1 and use scaling
to show that they converge to the same map as n → ∞.
This scaline then implies the scaling described above but
will also show how the effect of noise is amplified along
the period-adding sequence cf. [5]. Direct calculation
shows that

λn = b2µ(1 + O(
√

µ)

and so we will use the approximation λn ≈ b2µ below.
At µn+1,

xk+1 = Rn+1(xk) = µ
1 − bn+2

1 − b
− abn+1√xk (6)

for xk ∈ [b2µ, µ]. We will now define new variables in
terms of (as yet unknown) scaling factors α and β

y = α2x, ν = βµ (7)

so (6) becomes

yk+1 =
α2

β
ν

1 − bn+2

1 − b
−abn+1α

√
yk, yk ∈ [b2 α2

β
ν,

α2

β
ν].

(8)

Choosing α = b−1 and β = α2 = b−2 then (9) becomes

yk+1 = ν
1 − bn+2

1 − b
− abn√

yk, yk ∈ [b2ν, ν]. (9)

Thus, except for the bn+1 and bn+2 terms in the constant,
this rescaled map at µn+1 is precisely the map Rn at µn

and as n → ∞ the diffrence between these maps tends to
zero.

This implies that the structure of the map at (x, µ, b, a)
is effectively the same as that for (b2x, b2µ, b, a). In par-
ticular, the parameter µ scales as b2 (leading to the coin-
vergence rate above) and spatial structures in x > 0 are
scaled by a factor b2, but the parameters a and b do nor
change.

This reveals sensitivity to the addition of noise: un-
certainty in either the parameter of the variable x is
multiplied by b−2 as we move down the period-adding
sequence, whilst parametric noise in a or b is not am-
plified at lowest order. Hence we expect much greater
sensitivity to noise in µ and x than in b and a.

We thus have two predictions. First that within a mul-
tistability region there will be sensitivity in phase space
when noise is added. due to the intermingled basins of
attraction, and that this will vary within each of the re-
gions of bistability, and second that noise in different
forms will have different degrees of effect as the period-
adding cascade is considered.

Simpson and Kuske [14] make a careful analysis of how
noise in impacting systems manifests in the map. They
conclude that there are three different models:

• if the noise is in the impact itself then the constant
a is replaced (in the limit of small noise) by a(1 +
1
2ξk), i.e. the effect of this is parametric noise;

• if there is noise in the position of the impacting
surface then the switch at x = 0 is replaced by a
sum xk + Aξk = 0 and this variable is used in the
square root for the impact too.

• additive noise was considered in [13] I think, so we
should do that too!

Suggest trying phase space sensitivity for period two
and three coexistence showing shift of proportion of
points going to one the other or a proportion one way
or the other as we discussed but referring to [16] for de-
tails 9as I think wwe could get scalings for the basins
and hence have a better idea of the fine structure of this
sensitivity, and this would be woirth doing but not here).

Then look at the bifurcation cascade and see whether
we can get a sense of how many levels can be seen as a
function of noise in each case (probably VERY sensitive
and you’ll need to use very low levels of noice, but cf
period-doubling in the 1980s where it was again very fast
convergence.

Again there is more we could do (looking for univer-
sality as in [5]) but I think we should keep things as

2

0.026 0.0280.025 0.0270.0255 0.0265 0.0275

0

−0.1

−0.14

−0.12

−0.08

−0.06

−0.04

−0.02

0.02

0.04

0.0252 0.02540.02530.02525 0.02535 0.02545
−0.04

−0.02

−0.03

−0.038

−0.036

−0.034

−0.032

−0.028

−0.026

−0.024

−0.022

FIG. 1: Basins of attraction in the (µ, x) plane for µ values
between µ−

2 and µ+
1 showing for each value of µ the initial val-

ues of x attracted to the period two orbit (RL)∞ (black)and
the period three orbit (RL2)∞ (white). The second picture is
a blow-up of a small region in the first showing the persistence
of structure indicating that the basins are riddled.

By brute force calculation the return map on I0 is

xk+1 = Rn(xk) = Sn+1(xk)

where

Rn(x) = µ
1 − bn+1

1 − b
− abn

√
x. (5)

We now want to compare Rn with rn+1 and use scaling
to show that they converge to the same map as n → ∞.
This scaline then implies the scaling described above but
will also show how the effect of noise is amplified along
the period-adding sequence cf. [5]. Direct calculation
shows that

λn = b2µ(1 + O(
√

µ)

and so we will use the approximation λn ≈ b2µ below.
At µn+1,

xk+1 = Rn+1(xk) = µ
1 − bn+2

1 − b
− abn+1√xk (6)

for xk ∈ [b2µ, µ]. We will now define new variables in
terms of (as yet unknown) scaling factors α and β

y = α2x, ν = βµ (7)

so (6) becomes

yk+1 =
α2

β
ν

1 − bn+2

1 − b
−abn+1α

√
yk, yk ∈ [b2 α2

β
ν,

α2

β
ν].

(8)

Choosing α = b−1 and β = α2 = b−2 then (9) becomes

yk+1 = ν
1 − bn+2

1 − b
− abn√

yk, yk ∈ [b2ν, ν]. (9)

Thus, except for the bn+1 and bn+2 terms in the constant,
this rescaled map at µn+1 is precisely the map Rn at µn

and as n → ∞ the diffrence between these maps tends to
zero.

This implies that the structure of the map at (x, µ, b, a)
is effectively the same as that for (b2x, b2µ, b, a). In par-
ticular, the parameter µ scales as b2 (leading to the coin-
vergence rate above) and spatial structures in x > 0 are
scaled by a factor b2, but the parameters a and b do nor
change.

This reveals sensitivity to the addition of noise: un-
certainty in either the parameter of the variable x is
multiplied by b−2 as we move down the period-adding
sequence, whilst parametric noise in a or b is not am-
plified at lowest order. Hence we expect much greater
sensitivity to noise in µ and x than in b and a.

We thus have two predictions. First that within a mul-
tistability region there will be sensitivity in phase space
when noise is added. due to the intermingled basins of
attraction, and that this will vary within each of the re-
gions of bistability, and second that noise in different
forms will have different degrees of effect as the period-
adding cascade is considered.

Simpson and Kuske [14] make a careful analysis of how
noise in impacting systems manifests in the map. They
conclude that there are three different models:

• if the noise is in the impact itself then the constant
a is replaced (in the limit of small noise) by a(1 +
1
2ξk), i.e. the effect of this is parametric noise;

• if there is noise in the position of the impacting
surface then the switch at x = 0 is replaced by a
sum xk + Aξk = 0 and this variable is used in the
square root for the impact too.

• additive noise was considered in [13] I think, so we
should do that too!

Suggest trying phase space sensitivity for period two
and three coexistence showing shift of proportion of
points going to one the other or a proportion one way
or the other as we discussed but referring to [16] for de-
tails 9as I think wwe could get scalings for the basins
and hence have a better idea of the fine structure of this
sensitivity, and this would be woirth doing but not here).

Then look at the bifurcation cascade and see whether
we can get a sense of how many levels can be seen as a
function of noise in each case (probably VERY sensitive
and you’ll need to use very low levels of noice, but cf
period-doubling in the 1980s where it was again very fast
convergence.

Again there is more we could do (looking for univer-
sality as in [5]) but I think we should keep things as
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Types of Noise

Simpson and Kuske make a careful analysis of how noise in impacting
systems manifests in the map. They conclude that there are three different
models:

1 if the noise is in the impact itself then the constant a is replaced (in
the limit of small noise) by a(1 + 1

2ξk), i.e. the effect of this is
parametric noise;

2 if there is noise in the position of the impacting surface then the
switch at x = 0 is replaced by a sum xk +Aξk = 0 and this variable
is used in the square root for the impact too.

3 In both of the above they consider coloured noise, the third case they
consider is the small correlation time limit i.e. white noise on the
impacting dynamics.

In an earlier paper Simpson, Hogan and Kuske consider additive Gaussian
noise of amplitude, ∆, and show that this particular noise formulation
arises in a general setting.
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The Effect of Noise

My work thus far has focused on phase space sensitivity for period two and
three coexistence, investigating a shift of the proportion of points going to
one behaviour or the other, for both parametric and additive noise.

The results have not been entirely as we had expected. The relationship
between the proportion of points going to each of the coexisting attractors
is not monotonic.
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The Effect of Noise

This is understandable as we can think of any noise as an error in the
bifurcation parameter µ, independent of the rest of the dynamics in the
case of additive white noise and depending on a

2

√
x in the case of

parametric white noise.

xn+1 = Sa(xn) =

{
(µ+ ξn) + bxn if xn < 0
(µ+ ξn)− a√xn if xn ≥ 0

(2)

xn+1 = Sp(xn) =

{
µ+ bxn if xn < 0
(µ− a

2

√
xnξn)− a√xn if xn ≥ 0

(3)
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Proportions

The bifurcation diagrams we have seen lead us to believe that - for fixed µ
close to µs2 - with increasing noise amplitude we first see a decrease in the
probability of being in RL behaviour to some minimum followed by an
increase in this probability as µ increases further.

Looking at both the proportion of points in RL behaviour at a certain
point in time, and the proportion of time spent in RL behaviour over a
long period, we have confirmed this for both additive and parametric noise.
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Mechanics

Perhaps the most interesting phenomenon that we have observed is the
potential for repeated intervals of persistent RL dynamics in a noisy
system with µ < µs2.
In the case of both additive and parametric noise, we have observed that
the noise-induced transition between RLL and RL behaviour takes the
following symbolic form

RLLRLL . . . RLLRLLRLRRLRL . . . RL. (4)

The most significant feature of the transition is the repeated R,
corresponding to repeated low velocity impacts.
These repeated low velocity impacts allow the dynamics to be pushed in to
the region of phase space with slow dynamics, in the vicinity of the
unstable (RL)∞ orbit of the deterministic system.
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Mechanics

Let us label the iterates represented by the underlined portion of the
symbolic sequence (4) x1, x2, . . . x8 respectively. For the transition to take
place in this manner the following conditions must be satisfied.

(µ+ ξ5) + bx5 > 0 (5)

(µ+ ξ6)− a
√
x6 > 0 (6)

(µ+ ξ7)− a
√
x7 < 0. (7)
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Observations

In the case of additive noise, we have observed some
reoccurring characteristics of the noisy signal
associated with the transition from RLL to RL
behaviour. In general we find that

ξ4 < ξ5 < ξ6 > ξ7 (8)

ξ4 < 0 (9)

ξ6 > 0. (10)
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3The case of parametric noise is more complicated due to its nonlinearity.

Although the transition occurs through the same symbolic sequence we
have not yet been able to pinpoint any particular features of the noise that
leads to such dynamics.
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Future Work

We plan to look at mapping these regions to understand the space we
are in when these transition dynamics occur.

By using this method we may also get a handle on why the sequence
RLL . . . RLLRLRL . . . RLRL does not appear to occur (is this a
small region?).

We would like to investigate what conditions are required on the noise
to maintain RL behaviour for a significant number of iterates after
the transition.

How does this problem scale in relation to noise amplitude as we look
at regions of RLn and RLn+1 coexistence for increasing n.
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