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The Square Root Map
Many physical real-world systems can be
described as impacting and are modelled
using impact oscillators.
Near low-velocity impacts, impact
oscillators can be described by a
one-dimensional map known as the
square root map.
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The Square Root Map

x

S(x)

xn+1 = S(xn) =

{
µ+ bxn if xn < 0
µ− a√xn if xn ≥ 0

(1)
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The Square Root Map

Deriving the map from the full system
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Multistability In the Square Root Map
For 0 < b < 1

4 the square root map displays a bifurcation structure known
as a period-adding cascade.

a) b)

a)
c)
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The Square Root Map With Additive Noise

In [SHK13] Simpson, Hogan and Kuske show that white noise in the
piecewise smooth flow translates to additive white noise in the square root
map. This noise formulation may be sensible to model systems where the
forcing term or external fluctuations represent a significant source of
uncertainty.
The square root map with additive Gaussian white noise is given by

xn+1 = Sa(xn) =

{
µ+ bxn + ξn if xn < 0
µ− a√xn + ξn if xn ≥ 0,

(2)

where ξn are identically distributed independent normal random variables
with mean 0 and standard deviation ∆, ξn ∼ N(0,∆2).
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Proportions
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Approximating Trajectory Deviations

We consider two trajectories {xk} and {zk} with identical initial conditions
x0 and z0 equal to the right iterate of the deterministic period-(m+ 1)
orbit of the system. We then iterate forward using the deterministic square
root map in the case of z0, (1), (2), and the square root map with additive
noise in the case of x0. The deviation due to noise in the trajectory {xk}
is then given by the difference {εk} = {xk − zk}.
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Deviations as Predictors

a) b) c)

a) b) c)
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