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The Square Root Map

Many impacting systems, including impact
oscillators, are described by a 1-D map
known as the square root map.

xn+1 = S(xn) =

{
µ+ bxn if xn < 0
µ− a√xn if xn ≥ 0
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The Square Root Map
This continuous, nonsmooth map can be derived as an approximation for
solutions of piecewise smooth differential equations near certain types of
grazing bifurcation.
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Multistability In the Square Root Map

If 0 < b < 1
4 there are values of µ > 0 for which

a single stable periodic orbit of period m, with code (RLm−1)∞,
exists for each m = 2, 3, . . .

two stable periodic orbits, one of period m, with code (RLm−1)∞,
and the other of period m+ 1, with code (RLm)∞, exist for each
m = 2, 3, . . .

These are the only possible attractors of the system except at bifurcation
points.
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Types of Noise

In two separate papers Simpson, Hogan and Kuske and Simpson and Kuske
make a careful analysis of how noise in impacting systems manifests in the
map. They conclude that there are several different models. We focus on
the simplest model of Gaussian white noise with noise amplitude ∆.

xn+1 = Sa(xn) =

{
µ+ bxn + ξn if xn < 0
µ− a√xn + ξn if xn ≥ 0

(1)

where ξn ∼ N(0,∆2).
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The Transition Mechanism
Perhaps the most interesting phenomenon that we have observed in noisy
systems of this form is the potential for repeated intervals of persistent
RLm−1 dynamics in a noisy system with µ < µsm.
In particular we observe transitions of the following form for µ in a
neighbourhood of µsm such that µ < µsm.

RLmRLm . . . RLmRLm−1RLk−2RLm−1RLm−1 . . . RLm−1 (2)

for k ∈ {2, 3, . . . ,m}.
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The Error Distributions

Let

z0 = x0 = Rm+1, zn+1 = S(zn), xn+1 = Sα(xn) and εn = xn − zn. (3)

In order for such a transition to occur we require xn(m+1)−1 > 0 for some
n ∈ N. Since zn(m+1)−1 = Lmm+1 for all n, this means that we require
εn(m+1)−1 > −Lmm+1 for some n ∈ N such that εn0(m+1)−1 < −Lmm+1 for
all n0 < n. Iteratively we can find the following expressions for such errors:

εm =

m−1∑
i=0

bm−1−iξi, and

ε(n+1)(m+1)−1 = abm−1
(√

Rm+1 −
√
Rm+1 + bεn(m+1)−1 + ξn(m+1)−1

)
+

(n+1)(m+1)−2∑
i=n(m+1)

b(n+1)(m+1)−2−iξi, for n ≥ 1. (4)
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The Error Distributions

The probability of such a transition being induced by an appropriate error
within N(m+ 1)− 1 iterates is given by the sum

P∑
N

=

N−1∑
n=1

P
(
ε(n+1)(m+1)−1 > −Lmm+1| ∩nk=1 (εk(m+1)−1 < −Lmm+1)

)
.

(5)
We are currently considering the individual probabilities

Pn+1 = P
(
ε(n+1)(m+1)−1 > −Lmm+1| ∩nk=1 (εk(m+1)−1 < −Lmm+1)

)
(6)

and trying to construct their distributions.
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The Error Distributions
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