Alternating Signed Bipartite Graphs

Cian O'Brien
Supervisors: Rachel Quinlan and Kevin Jennings

National University of Ireland, Galway
c.obrien40@nuigalway.ie

March 31, 2017

Reminder: What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

Reminder: What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1

Reminder: What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1

Reminder: What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

Reminder: What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.

Reminder: What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.
The number of $n \times n$ ASMs is $\frac{1!4!7!\ldots(3 n-2)!}{n!(n+1)!(n+2)!\ldots(2 n-1)!}$.

ASBGs

Associated to each ASM is an alternating signed bipartite graph. This graph has a vertex for each row and column of the matrix. Vertex r_{i} is connected to vertex c_{j} by a positive edge (represented in blue) if there is a 1 in position (i, j) of the matrix, and by a negative edge (represented in red) if there is a -1 in position (i, j).

ASBGs

Associated to each ASM is an alternating signed bipartite graph. This graph has a vertex for each row and column of the matrix. Vertex r_{i} is connected to vertex c_{j} by a positive edge (represented in blue) if there is a 1 in position (i, j) of the matrix, and by a negative edge (represented in red) if there is a -1 in position (i, j).
$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$
-

Counting ASBGs

Many ASMs can have the same corresponding ASBG (up to isomorphism).

Counting ASBGs

Many ASMs can have the same corresponding ASBG (up to isomorphism).

Counting ASBGs

Many ASMs can have the same corresponding ASBG (up to isomorphism).

(2)

Identifying ASBGs

What criteria must a graph meet in order to be an ASBG?

Identifying ASBGs

What criteria must a graph meet in order to be an ASBG?

- The graph must be bipartite

Identifying ASBGs

What criteria must a graph meet in order to be an ASBG?

- The graph must be bipartite
- The graph must be balanced

Identifying ASBGs

What criteria must a graph meet in order to be an ASBG?

- The graph must be bipartite
- The graph must be balanced
- $\operatorname{deg}_{b}\left(v_{i}\right)=\operatorname{deg}_{r}\left(v_{i}\right)+1, \forall i=1,2, \ldots, 2 n$

Submatrices and Subgraphs

> Due to an algorithm from Brualdi, it can be shown that any matrix can be the submatrix of an ASM.

Submatrices and Subgraphs

Due to an algorithm from Brualdi, it can be shown that any matrix can be the submatrix of an ASM.

$$
\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{rrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & -1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Submatrices and Subgraphs

Due to an algorithm from Brualdi, it can be shown that any matrix can be the submatrix of an ASM.

$$
\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right) \Rightarrow\left(\begin{array}{rrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & -1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

This is called the elementary ASM expansion of a matrix.

Submatrices and Subgraphs

It follows that any bipartite graph can be the subgraph of an ASBG.

Submatrices and Subgraphs

It follows that any bipartite graph can be the subgraph of an ASBG. To extend (most) bipartite graphs to ASBGs, add either leaves or twigs to each vertex until the blue degree of that vertex is one more than the red degree.

Submatrices and Subgraphs

It follows that any bipartite graph can be the subgraph of an ASBG. To extend (most) bipartite graphs to ASBGs, add either leaves or twigs to each vertex until the blue degree of that vertex is one more than the red degree.

There are exceptions to this. For example, the following graph needs no further extension but is not an ASBG:

Submatrices and Subgraphs

When trying to determine if a graph is an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

Submatrices and Subgraphs

When trying to determine if a graph is an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

- The red core need only be bipartite.

Submatrices and Subgraphs

When trying to determine if a graph is an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

- The red core need only be bipartite.
- The blue core must be bipartite, and it must be possible to represent it in bipartite form so that no vertex is connected to two neighbouring vertices.

Submatrices and Subgraphs

When trying to determine if a graph is an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

- The red core need only be bipartite.
- The blue core must be bipartite, and it must be possible to represent it in bipartite form so that no vertex is connected to two neighbouring vertices.

Rachel Quinlan, Alternating Sign Matrices and Related Things, Irish Mathematical Society Presentation, Trinity College Dublin, 2016

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder, Patterns of Alternating Sign Matrices, Department of Mathematics University of Wisconsin, 2011
(James Propp, The Many Faces of Alternating-Sign Matrices, Discrete Mathematics and Theoretical Computer Science Proceedings, 2001

