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Introduction

What is an ASM?

An Alternating Sign Matrix, or ASM, is an n × n matrix that contains
only the numbers 0, 1, and -1, subject to the following constraints:

I The sum of each row and column must be 1
I The non-zero entries in each row must alternate between 1 and -1
I The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.

The number of n × n ASMs is 1!4!7!...(3n−2)!
n!(n+1)!(n+2)!...(2n−1)! .
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A Derivation of ASMs

The λ-determinant

The λ-determinant of a 2 × 2 matrix A is the expression

a11a22 + λa21a12

Note that if λ = −1, this is just the determinant.

The terms a11a22 and a21a12 correspond to the matrices(
1 0
0 1

)
and

(
0 1
1 0

)
These are the only two 2 × 2 ASMs.
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A Derivation of ASMs

The λ-determinant

For a 3 × 3 matrix A, the λ-determinant of A is

a11a22a33 + λ(a11a23a32 + a12a21a33) + λ2(a13a21a32 + a12a23a31)

+λ3a13a22a31 + (λ+ λ2)a−1
22 a12a21a23a32

These terms correspond to the seven 3 × 3 ASMs: 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 0 1
1 0 0
0 1 0

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
0 1 0
1 0 0

 ,

 0 1 1
1 −1 1
0 1 0
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A Derivation of ASMs

Bruhat Order
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Connections

Totally Symmetric Self-Complementary Plane Partitions

A TSSCPP is a partition of the number 4n3 which can be thought of as
follows:

A stack of 1 × 1 × 1 cubes in a 2n × 2n × 2n box, pushed into a
corner (the origin), so that

I The stack is symmetric under all permutations of the three coordinates
I The complement is a copy of the stack itself

Figure: Some TSSCPPs
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Connections

Tilings

There is also a link between ASMs and tilings of gaskets and baskets.

Figure: A gasket and a basket

Figure: The seven possible 3 × 3 tilings correspond to the seven 3 × 3 ASMs
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Facts About ASMs

Pattern of an ASM

An ASM A has a unique decomposition of the form

A = A1 − A2

where A1 and A2 are both (0,1)-matrices.

The pattern of an ASM A is Ã = A1 + A2

We define R to be the vector of length n where the ith entry is equal
to the sum of the ith row of Ã. Similarly, we define S to be the
vector of length n where the ith entry is equal to the sum of the ith
column of Ã.

There’s a restriction on R and S as follows:

(1, 1, ..., 1) ≤ R,S ≤ (1, 3, 5, ..., 5, 3, 1)

Both bounds are achievable, with the permutation matrices achieving
the lower bound, and the diamond ASMs achieving the upper bound.
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There’s a restriction on R and S as follows:

(1, 1, ..., 1) ≤ R, S ≤ (1, 3, 5, ..., 5, 3, 1)

Both bounds are achievable, with the permutation matrices achieving
the lower bound, and the diamond ASMs achieving the upper bound.

(National University of Ireland, Galway) Introduction to Alternating Sign Matrices February 3rd, 2017 8 / 9



Facts About ASMs

Diamond ASMs

For an n × n ASM, there is exactly one diamond ASM Dn if n is odd,
and two if n is even.

D4: 
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

 ,


0 0 1 0
0 1 −1 1
1 −1 1 0
0 1 0 0


D5: 

0 0 1 0 0
0 1 −1 1 0
1 −1 1 −1 1
0 1 −1 1 0
0 0 1 0 0
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