Introduction to Alternating Sign Matrices

Cian O'Brien Supervisors: Rachel Quinlan and Kevin Jennings

February 3rd, 2017

(National University of Ireland, Galway) Introduction to Alternating Sign Matrices

An Alternating Sign Matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0, 1, and -1, subject to the following constraints:

An Alternating Sign Matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0, 1, and -1, subject to the following constraints:

The sum of each row and column must be 1

An Alternating Sign Matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0, 1, and -1, subject to the following constraints:

- The sum of each row and column must be 1
- ▶ The non-zero entries in each row must alternate between 1 and -1

An Alternating Sign Matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0, 1, and -1, subject to the following constraints:

- The sum of each row and column must be 1
- ▶ The non-zero entries in each row must alternate between 1 and -1
- ▶ The non-zero entries in each column must alternate between 1 and -1

An Alternating Sign Matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0, 1, and -1, subject to the following constraints:

- The sum of each row and column must be 1
- ▶ The non-zero entries in each row must alternate between 1 and -1
- \blacktriangleright The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.

An Alternating Sign Matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0, 1, and -1, subject to the following constraints:

- The sum of each row and column must be 1
- ▶ The non-zero entries in each row must alternate between 1 and -1
- \blacktriangleright The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.

The number of $n \times n$ *ASMs* is $\frac{1!4!7!...(3n-2)!}{n!(n+1)!(n+2)!...(2n-1)!}$.

The λ -determinant of a 2 \times 2 matrix A is the expression

$a_{11}a_{22} + \lambda a_{21}a_{12}$

The λ -determinant of a 2 \times 2 matrix A is the expression

$a_{11}a_{22} + \lambda a_{21}a_{12}$

Note that if $\lambda = -1$, this is just the determinant.

The λ -determinant of a 2 \times 2 matrix A is the expression

$a_{11}a_{22} + \lambda a_{21}a_{12}$

Note that if $\lambda = -1$, this is just the determinant.

The terms $a_{11}a_{22}$ and $a_{21}a_{12}$ correspond to the matrices

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \text{ and } \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

The λ -determinant of a 2 \times 2 matrix A is the expression

$a_{11}a_{22} + \lambda a_{21}a_{12}$

Note that if $\lambda = -1$, this is just the determinant.

The terms $a_{11}a_{22}$ and $a_{21}a_{12}$ correspond to the matrices

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \text{ and } \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

These are the only two 2×2 *ASMs*.

For a 3×3 matrix *A*, the λ -determinant of *A* is

$$\begin{aligned} a_{11}a_{22}a_{33} + \lambda(a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33}) + \lambda^2(a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31}) \\ + \lambda^3a_{13}a_{22}a_{31} + (\lambda + \lambda^2)a_{22}^{-1}a_{12}a_{21}a_{23}a_{32} \end{aligned}$$

For a 3 imes 3 matrix A, the λ -determinant of A is

$$\begin{aligned} a_{11}a_{22}a_{33} + \lambda(a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33}) + \lambda^2(a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31}) \\ + \lambda^3a_{13}a_{22}a_{31} + (\lambda + \lambda^2)a_{22}^{-1}a_{12}a_{21}a_{23}a_{32} \end{aligned}$$

These terms correspond to the seven 3×3 *ASMs*:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Bruhat Order

Totally Symmetric Self-Complementary Plane Partitions

A *TSSCPP* is a partition of the number $4n^3$ which can be thought of as follows:

A stack of $1 \times 1 \times 1$ cubes in a $2n \times 2n \times 2n$ box, pushed into a corner (the origin), so that

- The stack is symmetric under all permutations of the three coordinates
- The complement is a copy of the stack itself

Tilings

There is also a link between ASMs and tilings of gaskets and baskets.

Figure: A gasket and a basket

NM

Figure: The seven possible 3×3 tilings correspond to the seven 3×3 ASMs

• An ASM A has a unique decomposition of the form

$$A = A_1 - A_2$$

where A_1 and A_2 are both (0,1)-matrices.

• An ASM A has a unique decomposition of the form

$$A = A_1 - A_2$$

where A_1 and A_2 are both (0,1)-matrices.

• The *pattern* of an ASM A is $\tilde{A} = A_1 + A_2$

• An ASM A has a unique decomposition of the form

$$A = A_1 - A_2$$

where A_1 and A_2 are both (0,1)-matrices.

- The *pattern* of an ASM A is $\tilde{A} = A_1 + A_2$
- We define *R* to be the vector of length *n* where the *i*th entry is equal to the sum of the *i*th row of \tilde{A} . Similarly, we define *S* to be the vector of length *n* where the *i*th entry is equal to the sum of the *i*th column of \tilde{A} .

• An ASM A has a unique decomposition of the form

$$A=A_1-A_2$$

where A_1 and A_2 are both (0,1)-matrices.

- The *pattern* of an *ASM A* is $\tilde{A} = A_1 + A_2$
- We define *R* to be the vector of length *n* where the *i*th entry is equal to the sum of the *i*th row of \tilde{A} . Similarly, we define *S* to be the vector of length *n* where the *i*th entry is equal to the sum of the *i*th column of \tilde{A} .
- There's a restriction on R and S as follows:

$$(1, 1, ..., 1) \leq R, S \leq (1, 3, 5, ..., 5, 3, 1)$$

• An ASM A has a unique decomposition of the form

$$A=A_1-A_2$$

where A_1 and A_2 are both (0,1)-matrices.

- The *pattern* of an ASM A is $\tilde{A} = A_1 + A_2$
- We define *R* to be the vector of length *n* where the *i*th entry is equal to the sum of the *i*th row of \tilde{A} . Similarly, we define *S* to be the vector of length *n* where the *i*th entry is equal to the sum of the *i*th column of \tilde{A} .
- There's a restriction on R and S as follows:

$$(1, 1, ..., 1) \leq R, S \leq (1, 3, 5, ..., 5, 3, 1)$$

• Both bounds are achievable, with the permutation matrices achieving the lower bound, and the *diamond ASMs* achieving the upper bound.

Diamond ASMs

For an $n \times n$ ASM, there is exactly one diamond ASM D_n if n is odd, and two if n is even.

Diamond ASMs

For an $n \times n$ ASM, there is exactly one diamond ASM D_n if n is odd, and two if n is even.

*D*₄:

Diamond ASMs

For an $n \times n$ ASM, there is exactly one diamond ASM D_n if n is odd, and two if n is even.

*D*₄:

 D_5 :

$$\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{ccccc} 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$
$$\left(\begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

- Rachel Quinlan, Alternating Sign Matrices and Related Things, Irish Mathematical Society Presentation, Trinity College Dublin, 2016
- Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder, Patterns of Alternating Sign Matrices, Department of Mathematics University of Wisconsin, 2011
- James Propp, *The Many Faces of Alternating-Sign Matrices*, Discrete Mathematics and Theoretical Computer Science Proceedings, 2001