Introduction to Alternating Sign Matrices

Cian O'Brien

Supervisors: Rachel Quinlan and Kevin Jennings

February 3rd, 2017

What is an ASM?

An Alternating Sign Matrix, or $A S M$, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

What is an ASM?

An Alternating Sign Matrix, or $A S M$, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1

What is an ASM?

An Alternating Sign Matrix, or $A S M$, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1

What is an ASM?

An Alternating Sign Matrix, or $A S M$, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

What is an ASM?

An Alternating Sign Matrix, or $A S M$, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1 ASMs are an extension of the permutation matrices.

What is an ASM?

An Alternating Sign Matrix, or $A S M$, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.
The number of $n \times n$ ASMs is $\frac{1!4!7!\ldots(3 n-2)!}{n!(n+1)!(n+2)!\ldots(2 n-1)!}$.

The λ-determinant

The λ-determinant of a 2×2 matrix A is the expression

$$
a_{11} a_{22}+\lambda a_{21} a_{12}
$$

The λ-determinant

The λ-determinant of a 2×2 matrix A is the expression

$$
a_{11} a_{22}+\lambda a_{21} a_{12}
$$

Note that if $\lambda=-1$, this is just the determinant.

The λ-determinant

The λ-determinant of a 2×2 matrix A is the expression

$$
a_{11} a_{22}+\lambda a_{21} a_{12}
$$

Note that if $\lambda=-1$, this is just the determinant.
The terms $a_{11} a_{22}$ and $a_{21} a_{12}$ correspond to the matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The λ-determinant

The λ-determinant of a 2×2 matrix A is the expression

$$
a_{11} a_{22}+\lambda a_{21} a_{12}
$$

Note that if $\lambda=-1$, this is just the determinant.
The terms $a_{11} a_{22}$ and $a_{21} a_{12}$ correspond to the matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

These are the only two 2×2 ASMs.

The λ-determinant

For a 3×3 matrix A, the λ-determinant of A is

$$
\begin{gathered}
a_{11} a_{22} a_{33}+\lambda\left(a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}\right)+\lambda^{2}\left(a_{13} a_{21} a_{32}+a_{12} a_{23} a_{31}\right) \\
+\lambda^{3} a_{13} a_{22} a_{31}+\left(\lambda+\lambda^{2}\right) a_{22}^{-1} a_{12} a_{21} a_{23} a_{32}
\end{gathered}
$$

The λ-determinant

For a 3×3 matrix A, the λ-determinant of A is

$$
\begin{gathered}
a_{11} a_{22} a_{33}+\lambda\left(a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}\right)+\lambda^{2}\left(a_{13} a_{21} a_{32}+a_{12} a_{23} a_{31}\right) \\
+\lambda^{3} a_{13} a_{22} a_{31}+\left(\lambda+\lambda^{2}\right) a_{22}^{-1} a_{12} a_{21} a_{23} a_{32}
\end{gathered}
$$

These terms correspond to the seven 3×3 ASMs:

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \\
\\
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Bruhat Order

$$
\left.\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Totally Symmetric Self-Complementary Plane Partitions

A TSSCPP is a partition of the number $4 n^{3}$ which can be thought of as follows:

A stack of $1 \times 1 \times 1$ cubes in a $2 n \times 2 n \times 2 n$ box, pushed into a corner (the origin), so that

- The stack is symmetric under all permutations of the three coordinates
- The complement is a copy of the stack itself

Tilings

There is also a link between ASMs and tilings of gaskets and baskets.

Figure: A gasket and a basket

Figure: The seven possible 3×3 tilings correspond to the seven 3×3 ASMs

Pattern of an ASM

- An $A S M$ A has a unique decomposition of the form

$$
A=A_{1}-A_{2}
$$

where A_{1} and A_{2} are both (0,1)-matrices.

Pattern of an ASM

- An $A S M$ A has a unique decomposition of the form

$$
A=A_{1}-A_{2}
$$

where A_{1} and A_{2} are both (0,1)-matrices.

- The pattern of an $A S M A$ is $\tilde{A}=A_{1}+A_{2}$

Pattern of an ASM

- An $A S M$ A has a unique decomposition of the form

$$
A=A_{1}-A_{2}
$$

where A_{1} and A_{2} are both (0,1)-matrices.

- The pattern of an $A S M A$ is $\tilde{A}=A_{1}+A_{2}$
- We define R to be the vector of length n where the i th entry is equal to the sum of the i th row of \tilde{A}. Similarly, we define S to be the vector of length n where the i th entry is equal to the sum of the i th column of \tilde{A}.

Pattern of an ASM

- An $A S M$ A has a unique decomposition of the form

$$
A=A_{1}-A_{2}
$$

where A_{1} and A_{2} are both (0,1)-matrices.

- The pattern of an $A S M A$ is $\tilde{A}=A_{1}+A_{2}$
- We define R to be the vector of length n where the i th entry is equal to the sum of the i th row of \tilde{A}. Similarly, we define S to be the vector of length n where the i th entry is equal to the sum of the i th column of \tilde{A}.
- There's a restriction on R and S as follows:

$$
(1,1, \ldots, 1) \leq R, S \leq(1,3,5, \ldots, 5,3,1)
$$

Pattern of an ASM

- An $A S M$ A has a unique decomposition of the form

$$
A=A_{1}-A_{2}
$$

where A_{1} and A_{2} are both (0,1)-matrices.

- The pattern of an $A S M A$ is $\tilde{A}=A_{1}+A_{2}$
- We define R to be the vector of length n where the i th entry is equal to the sum of the i th row of \tilde{A}. Similarly, we define S to be the vector of length n where the i th entry is equal to the sum of the i th column of \tilde{A}.
- There's a restriction on R and S as follows:

$$
(1,1, \ldots, 1) \leq R, S \leq(1,3,5, \ldots, 5,3,1)
$$

- Both bounds are achievable, with the permutation matrices achieving the lower bound, and the diamond ASMs achieving the upper bound.

Diamond ASMs

For an $n \times n A S M$, there is exactly one diamond $A S M D_{n}$ if n is odd, and two if n is even.

Diamond ASMs

For an $n \times n A S M$, there is exactly one diamond $A S M D_{n}$ if n is odd, and two if n is even.
D_{4} :

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 \\
1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Diamond ASMs

For an $n \times n A S M$, there is exactly one diamond $A S M D_{n}$ if n is odd, and two if n is even.
D_{4} :

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 \\
1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

D_{5} :

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
1 & -1 & 1 & -1 & 1 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Rachel Quinlan, Alternating Sign Matrices and Related Things, Irish Mathematical Society Presentation, Trinity College Dublin, 2016
Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder, Patterns of Alternating Sign Matrices, Department of Mathematics University of Wisconsin, 2011
R. James Propp, The Many Faces of Alternating-Sign Matrices, Discrete Mathematics and Theoretical Computer Science Proceedings, 2001

