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Flocking models

The modelling of flocks has been an active area of applied
mathematics for the past thirty years.

Reynolds: boids model

Vicsek: self-propelled particle models

Kennedy and Eberhart: optimisation models
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Simple rules

track your neighbours

don’t crash

seek a target

prioritize neighbours
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Dynamic networks

si sj

sksl

sm

sn

σj,i

σi,j σk,j

σl,k

σi,k
σn,k

σn,m
σm,n

dsi
dt︸︷︷︸

state evolution

= ξ(σi ,j , si , sj)︸ ︷︷ ︸
influence of gains and other nodes

. (1)

dσi ,j
dt︸ ︷︷ ︸

gain evolution

= ψ(si , sj)︸ ︷︷ ︸
state dependence

. (2)
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Metrics

We can apply graph theoretic metrics to investigate the spacial
structure of the ensemble at various resolutions.

larger flock (graph diameter)

meso level (modules/quasi-lattices)

micro level (clusters)

Important parameters:

number of agents

number of neighbours

ICs (spacial and communicative)
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Plan

Finish thesis
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