

Simulating Filippov Systems

Petri Piiroinen

National University of Ireland, Galway petri.piiroinen@nuigalway.ie

Filippov systems with one switching surface

In [PP. and Kuznetsov 2008] we developed a simple simulation routine for Filippov systems of the type

g replacements

$$\dot{x} = \begin{cases} F_1(x), & x \in S_1, \\ F_2(x), & x \in S_2, \\ F_{1,2}(x), & x \in \Sigma_{1,2}. \end{cases}$$

with $\Sigma_{1,2}:=\{x\in S\mid H(x)=0\}$. Depending of F_1 and F_2 the discontinuity / Filippov / sliding / switching surface $\Sigma_{1,2}$ can be attractive, repelling or switching.

$$F_1 \underbrace{\hspace{1cm} \text{(a)} \hspace{1cm} \text{(b)} \hspace{1cm} \text{(c)} \hspace{1cm} S_1}_{F_2 / / / / / /} \underbrace{\hspace{1cm} \text{(b)} \hspace{1cm} \text{(c)} \hspace{1cm} S_2}_{S_2}$$

To find $F_{1,2}(x)$ Utkin's eqvivalent method states that

$$F_{1,2}(x) = \frac{1+\lambda}{2}F_1(x) + \frac{1+\lambda}{2}F_2(x), \quad \lambda \in [-1,1].$$

Filippov systems with one switching surface

However, I would also like to be able to consider non-convex methods such that

$$\dot{x} = \frac{1+\lambda}{2}F_1(x) + \frac{1-\lambda}{2}F_2(x) + (\lambda^2 - 1)G(x),$$

for some function G and where the λ concept has been extended to

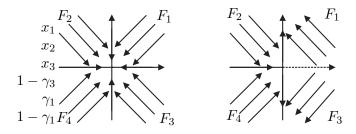
$$\lambda = \text{sign}(H(x))$$
 for $H(x) \neq 0$,
 $\lambda \in (-1, 1)$ for $H(x) = 0$

and where the term $(\lambda^2 - 1)G(x)$ is called **hidden** since it vanishes when $x \notin \Sigma$.

Why?

Filippov systems with **two** switching surfaces rag replacements

Consider a system with two switching surfaces and four vector fields.



If we use Utkin's equivalent method, in the general case, we will have **four unknowns** and only **three equations** to resolve the dynamics on the manifold given by the crossing of the two surfaces.

Switching layer and λ dynamics

Simple example. Consider

$$(\dot{x}_1, \dot{x}_2) = (2 + \lambda, 1) + 2(\lambda^2 - 1, 0)$$

with $H(x_1,x_2)=x_1$ and let us consider what happens on $\dot{H}=H=0.$ We get

$$\dot{x}_1 = 0 \rightarrow 2 + \lambda + 2\lambda^2 - 2 = 0 \rightarrow \lambda = -1/2, 0,$$

i.e. **two solutions**. Which one is the correct one? The trick is to introduce a **switching layer** (of width ε) with λ dynamics

$$\varepsilon \dot{\lambda} = \nabla H \bullet F, \quad \dot{\lambda} \sim 1/\varepsilon.$$

Thus, on $H=x_1=0$ we have $\varepsilon\dot{\lambda}=2+\lambda+2(\lambda^2-1)$ and since

$$\frac{d\dot{\lambda}}{d\lambda} = 1 + 4\lambda = -1 \text{ (for } \lambda = -1/2), 1 \text{ (for } \lambda = 0)$$

the solution $\lambda=-1/2$ is the stable solution the flow follows with $\dot{x}_1=0,\ \dot{x}_2=1.$

Plans

Supervision: Setting up projects, Paper writing, Thesis reading

Book: Starting a book project with Raghav.

Papers: A number of papers in the pipeline with Raghav, John D, David C & Arne N, Joanna J etc.

Programming: Filippov solver for systems with nonlinear terms.

Travel: India 16 Dec 18 - 8 Mar 19, USA around 20-30 Mar 19, Napoli Apr 19, ...

2-0?