Biodegradable Polymers: An Introduction

Aoife Hill

William Ronan and Michel Destrade

Postgraduate Modelling Research Group National University of Ireland, Galway

03 November 2017

Develop a modelling framework for biodegradable polymers; For use in the medical device industry.

"In-silico" testing

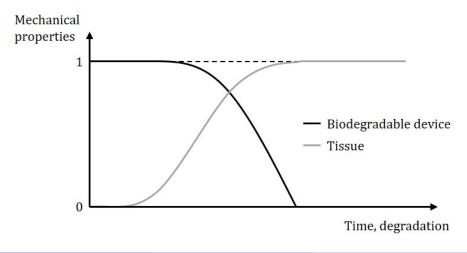
- reduces costs
- speeds up development of new devices
- reduces reliance on animal trials

Motivation

Biodegradable Polymers:

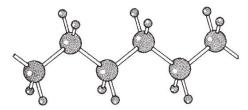
Uses:

- Drug delivery
- Tissue engineering
- Cardiovascular stents

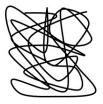

Click!

Advantages:

Overcome issues associated with current stents.


Why accurate modelling is vital

Insufficiently stiff \implies healing not supported Too stiff \implies stress-shielding effect **Optimal stiffness:**

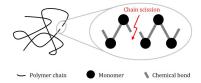


Polymers

- Long macromolecular chains
- Monomers + chemical bonds

Structure types:

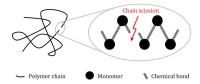
Amorphous


Crystalline

Semi-crystalline

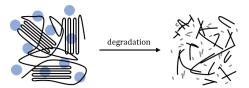
Degradation

Material is placed in aqueous medium \Longrightarrow chain scissions occur



Terminology:

- end scissions
- random scissions


Degradation

Material is placed in aqueous medium \Longrightarrow chain scissions occur

Terminology:

- end scissions
- random scissions
- autocatalysis
- bulk degradation

Degradation Model (Molecular Weight Model)

Developed by Wang et al. (2008).

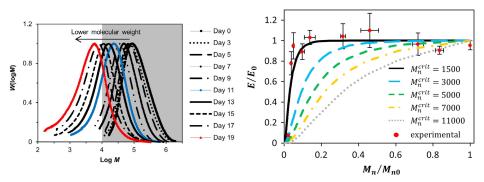
$$\frac{\partial C_m}{\partial t} = k_1 C_e + k_2 C_e C_m^\beta + \nabla \cdot (D \nabla C_m)$$
$$\frac{\partial C_e}{\partial t} = -(k_1 C_e + k_2 C_e C_m^\beta)$$

- *C_m* = monomer concentration
- C_e = ester concentration
- k_1 = rate of non-catalytic degration
- k₂ = rate of autocatalytic degration
- β accounts for dissociation of acid end groups
- *D* = diffusion coeffiecient

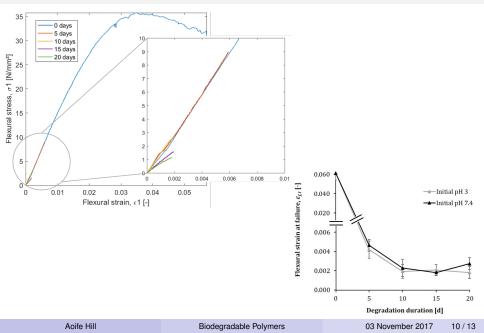
Entropy Spring Model

Freely jointed chain:

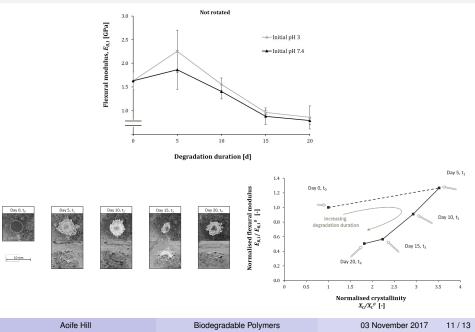
- Behaves as entropic spring
- Good model for rubber-like elasticity


$$F = \frac{3kT}{nb^2}X$$

 $\implies E = 3NkT$


- k = Boltzmann's constant
- T = absolute temperature
- n = number of segments
- *b* = length of each segment
- N = number of chains per unit volume

From the literature


Degradation model coupled with entropy spring model (Shirazi *et al.*, 2016):

Existing data

Existing data

- Develop a more robust model of degradation: *E* ≠ 3*NkT*
- Investigate experimentally observed significant decrease in ductility
- Establish criteria describing failure under loading

 $\varepsilon_f = f(X_c, M_w)?$

References

Y. Wang, J. Pan, X. Han, et al..

A phenomenological model for the degradation of biodegradable polymers.

Biomaterials, **29**(23):3393-3401, 2008.

R. N. Shirazi, W. Ronan, Y. Rochev, P. E. McHugh. Modelling the degradation and elastic properties of poly(lactic-co-glycolic acid) films and regular open-cell tissue engineering scaffolds. Journal of the Mechanical Behavior of Biomedical Materials.

54:48-59, 2016.

K. S. Bezela.

Examination of biodegradable materials for medical devices. Unplublished ME thesis. RWTH Aachen University; National University of Ireland, Galway, 2017.