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The Square Root Map

Many impacting systems are described by a 1-D map known as the square
root map near grazing impacts.

xn+1 = S(xn) =

{
µ+ bxn if xn < 0,
µ− a√xn if xn ≥ 0,

where a > 0 and b > 0.
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Symbolically, if xn < 0 it is
represented by an L and if
xn > 0 it is represented by an R.
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The Period Adding Cascade
Here we will assume that the parameter b (the slope of the linear part) is
such that 0 < b < 1/4. For values of b in this range the deterministic
square root map undergoes a period-adding cascade with intervals of
multistability as the bifurcation parameter µ is decreased.

These periodic orbits take the form (RLm)∞ for m = 1, 2, 3, . . .. This
means they consist of one iterate on the right (> 0) followed by m iterates
on the left (< 0).
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Riddled Basins of Attraction

On regions of multistability the basins of attraction of the two periodic
attractors have a complex riddled structure.
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The Square Root Map With Additive Noise

In [SHK13] Simpson, Hogan and Kuske show that additive white noise in
the square root map may be sensible to model systems where the forcing
term or external fluctuations represent a significant source of uncertainty.

The square root map with additive Gaussian white noise is given by

xn+1 = Sa(xn) =

{
µ+ bxn + ξn if xn < 0
µ− a√xn + ξn if xn ≥ 0,

(1)

where ξn are identically distributed independent normal random variables
with mean 0 and standard deviation ∆, ξn ∼ N(0,∆2).
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Noisy Bifurcation Diagrams
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Noise Amplitude and Proportions of Periodic Behaviour
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Threshold Noise Amplitudes
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Basins and Steady State Distributions

Primary basins: Steady-State σs:

D

We consider threshold values of ρ = D/σ. ρ gives us some measure of how
likely it is for noise to push the dynamics out of the basin of attraction.
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Threshold ρ Values
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Scaling

By investigating the scaling of % on intervals of multistability of increasing
period we can determine how the effect of noise scales.

We find that choosing the noise amplitude to be ∆′ = b2∆ on the interval
of multistability (µsm+1, µ

e
m+2) will result in a similar effect of noise on the

dynamics of the map as choosing the noise amplitude to be ∆ on the
interval (µsm, µ

e
m+1) for large m.

Eoghan Staunton Advances in Nonsmooth Dynamics June 2018 11 / 18



Scaling

By investigating the scaling of % on intervals of multistability of increasing
period we can determine how the effect of noise scales.

We find that choosing the noise amplitude to be ∆′ = b2∆ on the interval
of multistability (µsm+1, µ

e
m+2) will result in a similar effect of noise on the

dynamics of the map as choosing the noise amplitude to be ∆ on the
interval (µsm, µ

e
m+1) for large m.

Eoghan Staunton Advances in Nonsmooth Dynamics June 2018 11 / 18



Inducing Multistability

We have previously seen that noise of an appropriate
amplitude also has the potential to induce multistability
in regions close to, but outside, intervals of
multistability.

We have found that noise-induced transitions from period-3 to period-2
behaviour in regions where period-2 behaviour is unstable display certain
similarities. In particular, we have observed that the transitions tend to
take the following symbolic form

RLLRLL . . . RLLRLRRLRL . . . RLRL. (2)

The significant feature of the symbolic representation of the transition
above is the repeated R, corresponding to repeated iteration on the
right-hand side of the square root map.
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Noise and Deterministic Structures

We note that the set of initial values that are on the right which remain
on the right after iteration by the deterministic square root map are given
by the interval

ARR =
(
0, (µ/a)2

)
. (3)

We also note that the last left iterate of the period-3 orbit is very close to
0 for values of µ close to the interval of multistability.

Therefore, it is not hard to see that noise has the potential to push the
last left iterate of a period-3 orbit into ARR, inducing repeated R’s or
repeated low-velocity impacts.
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Generalising to Higher Periodicities
The features of this transition are repeated as we look at transitions from
RLm behaviour to RLm−1 behaviour for increasing m. In particular we
observe transitions of the form

RLmRLm . . . RLmRLm−1RLk−2RLm−1RLm−1 . . . . . . RLm−1 (4)

for µ in a neighbourhood of µsm such that µ < µsm and k ∈ {2, 3, . . . ,m}.

The most significant feature of this transition is the sequence RLk−2R for
k ∈ {2, 3, . . . ,m}, corresponding to iterations on the right-hand side of
the map being repeated more quickly than is usual for a settled system
with µ < µsm.
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Conclusions

Additive noise has a complex nonmonotonic effect on the proportion
of iterates spent in coexisting periodic behaviours on intervals of
multistability.

The relationship observed is highly dependent on the value of the
bifurcation parameter µ.

We can explain these relationships by examining how the steady-state
distributions associated with periodic orbits interact with their basins
of attraction.

The effect of the addition of noise on intervals of multistability of
increasing minimal periodic orbit obeys a scaling law.

Additive noise has the potential to induce multistability outside such
intervals.
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