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Linearisation

Suppose the system

ẋ = f(x), x = x0, has the unique solution x(t) = φ(x0, t). (1)

Then for x0 in a small neighbourhood of xref
0

φ(x0, t)− φ(xref
0 , t) = φx(xref

0 , t)(x0 − xref
0 ) +O(‖x0 − xref

0 ‖), (2)

where the Jacobian φx(xref
0 , t) is the solution to the IVP

Φ̇ = fx(φ(xref
0 , t))Φ, Φ(0) = I. (3)
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Linearisation

Figure: Linearisation of smooth dynamical systems

Figure: A nonsmooth dynamical system
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Constructing the Zero-Time Discontinuity Mapping

Figure: Constructing the ZDM
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Constructing the Zero-Time Discontinuity Mapping

Figure: Constructing the ZDM
We can now write

φ(x0, T ) = φ2(D(φ1(x0, tref)), T − tref), (4)

where the ZDM

D(x) = φ2(j(φ1(x, t(x))),−t(x)) (5)

takes a point in a neighbourhood of xin and maps it to a point in a
neighbourhood of xout.
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The Saltation Matrix

The Jacobian of D evaluated at xin is given by

Dx(xin) = jx(xin) + (jx(xin)− fout)tx(xin)

= jx(xin) +
(fout − jx(xin)fin)hx(xin)

hx(xin)fin
, (6)

where fin = f1(xin) and fout = f2(xout). In the case where h is explicitly
time-dependent this becomes

Dx(xin) = jx(xin) +
(fout − jx(xin)fin)hx(xin, tref)

ht(xin, tref) + hx(xin, tref)fin
. (7)

In both cases we have that

φx(xref
0 , T ) = φ2,x(xout, T − tref)Dx(xin)φ1,x(xin, tref). (8)
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Introducing Noise

As in the deterministic case, we define the discountinuity boundary D as
the zeros of a function h. For a stochastically oscillating boundary we let
h take the form

h(x, t) = ĥ(x, t)− P (t), (9)

where the function ĥ is deterministic and P (t) is a stochastic process.

We further require that P is a mean reverting stochastic process that has
mean 0, is at least once differentiable and does not depend on x.

Let t̂ref be the time of flight from xref
0 to the boundary in the absence of

noise, i.e.
ĥ(φ1(x

ref
0 , t̂ref)) = 0. (10)

We define ∆tref to be the random variable given by the difference between
t̂ref and the actual time of flight

∆tref = tref − t̂ref. (11)
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Stochastic Saltation Matrix
In order to deal with stochastically oscillating boundaries we extend the
state space, such that the state vector and vector field are given by

x̃ = (x, t,∆tref)
T and f̃ = (f , 1, 0)T , (12)

respectively.

We calculate the saltation matrix in this extended state space before
projecting back. As a result, in the original state space we find that

φ(x0, t)−φ(x̂ref
0 , t) ≈ φx(x̂ref

0 , t)(x0−x̂ref
0 )+φ2,x(x̂out, t−t̂ref)(f̂in−f̂out)∆tref,

(13)
where

φx(x̂ref
0 , t) = φ2,x(x̂out, t− t̂ref)D∗

x(x̂in)φ1,x(x̂in, t̂ref) (14)

and

D∗
x(x̂in) = I +

(f̂out − f̂in)ĥx(x̂in, t̂ref)

ĥx(x̂in, t̂ref)f̂in + ĥt(x̂in, t̂ref)− V (t̂ref|P (t̂ref) = 0)
. (15)

In all the aboveˆ indicates the values associated with the deterministic
reference trajectory.
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Summary

Figure: Linearising Discontinuous Systems

Figure: Linearising Noisy Discontinuous Systems

Eoghan Staunton DS19 22 May 2019 6 / 18



Summary

Figure: Linearising Discontinuous Systems

Figure: Linearising Noisy Discontinuous Systems
Eoghan Staunton DS19 22 May 2019 6 / 18



The Chua Circuit

Figure: The Chua Circuit

Figure: The V − I
characteristic of the Chua
Diode.

• Created with the aim of being the simplest
autonomous circuit capable of generating
chaos [Mat84, Chu92].

• First physical system for which the presence
of chaos was shown experimentally,
numerically and mathematically [CKM86].

• Contains four linear elements and one
nonlinear resistor known as a Chua diode.

• Easily and cheaply constructed using
stadard electronic components [Ken92].
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System equations

The dynamics of the Chua circuit can be described by the following
nondimensionalised state equations

dx

dt
= α(y − x− g(x)),

dy

dt
= x− y + z,

dz

dt
= −(βy + γz), (16)

where g(x) is the piecewise linear function representing the V -I
characteristic of Chua’s diode

g(x) =


m1x+m1 −m0 if x < −1,
(m0 − ε)x if |x| ≤ 1,
m1x+m0 −m1 if x > 1.

(17)

Eoghan Staunton DS19 22 May 2019 8 / 18



Complicated Dynamics

Figure: A Zoo of Attractors Produced by the Chua Circuit [BP08]
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Hidden and Self-Excited Attractors

Hidden attractors: have basins of attraction that do not intersect
with small neighborhoods of equilibria.

Self-excited attractors: Can be found by following trajectories from
the neighbourhoods of unstable equilibria until the end of a transient
process [LK13].
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For a range of parameter values the Chua circuit has a 5-stable regime
including 3 hidden periodic attractors [SKLC17].
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A Discontinuous Model
Provided the magnitude of ε is not too large the hidden attractors in the
5-stable regime continue to exist and can be easily found by numerical
continuation.
They are destroyed in saddle-bifurcations if the magnitude of ε grows too
large.

Figure: Bifurcation diagram showing the saddle bifurcations of C− as the
magnitude of ε grows. Here α = 8.4, β = 12, γ = −0.005, m0 = −1.2 and
m1 = 0.145.
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Steady-State Distributions

-0.18 -0.17 -0.16 -0.15 -0.14

y

0.24

0.25

0.26

0.27

0.28

z

Figure: Steady state distribution of orbit
errors on the discontinuity boundary D−

for trajectories with initial condition on
the periodic orbit C−.
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Figure: Convergence of σz to its steady
state value for the distribution shown on
the left.
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Destroying Periodic Attractors

Increasing Noise
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A 3-Stable Regime
For a range of parameter values the Chua circuit has a 3-stable regime
including 2 symmetric periodic attractors.
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The two periodic attractors merge in a
supercritical pitchfork bifurcation if the
magnitude ε grows too large.
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Merging Periodic Attractors

Towards Bifurcation

Eoghan Staunton DS19 22 May 2019 15 / 18



Merging Periodic Attractors

Towards Bifurcation

Eoghan Staunton DS19 22 May 2019 15 / 18



Conclusions

• The concept of a saltation matrix can be generalised to stochastic
systems.

• This can be used to estimate the dynamics of discontinuous systems
with noisy boundaries.

• destruction of attractors
• multi/monostability
• merging of attractors
• flickering/switching

• It remains to generalise our method

• Higher order terms for continuous systems
• Non-identity boundary mappings
• Dealing with non-transversal intersections
• Rugged, stochastic discontinuity surfaces

Eoghan Staunton DS19 22 May 2019 16 / 18



Conclusions

• The concept of a saltation matrix can be generalised to stochastic
systems.

• This can be used to estimate the dynamics of discontinuous systems
with noisy boundaries.

• destruction of attractors
• multi/monostability
• merging of attractors
• flickering/switching

• It remains to generalise our method

• Higher order terms for continuous systems
• Non-identity boundary mappings
• Dealing with non-transversal intersections
• Rugged, stochastic discontinuity surfaces

Eoghan Staunton DS19 22 May 2019 16 / 18



Conclusions

• The concept of a saltation matrix can be generalised to stochastic
systems.

• This can be used to estimate the dynamics of discontinuous systems
with noisy boundaries.

• destruction of attractors
• multi/monostability
• merging of attractors
• flickering/switching

• It remains to generalise our method

• Higher order terms for continuous systems
• Non-identity boundary mappings
• Dealing with non-transversal intersections
• Rugged, stochastic discontinuity surfaces

Eoghan Staunton DS19 22 May 2019 16 / 18



Eleonora Bilotta and Pietro Pantano, A gallery of chua attractors,
vol. 61, World Scientific, 2008.

Leon O Chua, The genesis of chua’s circuit, International Journal of
Electronis Communication 46 (1992), no. 4, 250–257.

Leon O Chua, Motomasa Komuro, and Takashi Matsumoto, The
double scroll family, IEEE transactions on circuits and systems 33
(1986), no. 11, 1072–1118.

Mario Di Bernardo, Chris J Budd, Alan R Champneys, Piotr
Kowalczyk, Arne B Nordmark, Gerard Olivar Tost, and Petri T
Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM review
50 (2008), no. 4, 629–701.

Michael Peter Kennedy, Robust op amp realization of chua’s circuit,
Frequenz 46 (1992), no. 3-4, 66–80.

Eoghan Staunton DS19 22 May 2019 17 / 18



Gennady A Leonov and Nikolay V Kuznetsov, Hidden attractors in
dynamical systems. from hidden oscillations in hilbert–kolmogorov,
aizerman, and kalman problems to hidden chaotic attractor in chua
circuits, International Journal of Bifurcation and Chaos 23 (2013),
no. 01, 1330002.

Takashi Matsumoto, A chaotic attractor from chua’s circuit, IEEE
Transactions on Circuits and Systems 31 (1984), no. 12, 1055–1058.

Nataliya V Stankevich, Nikolay V Kuznetsov, Gennady A Leonov, and
Leon O Chua, Scenario of the birth of hidden attractors in the chua
circuit, International Journal of Bifurcation and Chaos 27 (2017),
no. 12, 1730038.

Eoghan J Staunton and Petri T Piiroinen, Discontinuity mappings for
stochastic nonsmooth systems, In Preparation (2019).

, Estimating the dynamics of systems with noisy boundaries,
Submitted (2019).

Eoghan Staunton DS19 22 May 2019 18 / 18


	References

