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Lecture 1

I Introduction to sparse matrices

I Introduction to graphs and matrices

I Introduction to solution of sparse equations

I Introduction to direct methods
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Wish to solve

Ax = b

where A is

LARGE
and

S P A R S E
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By LARGE we mean matrices of large order n. This is a function
of time.

t n(t)
1970 200
1975 1,000
1980 10,000
1985 100,000
1990 250,000
1995 500,000
2000 2,000,000
2005 10,000,000
2010 1,000,000,000

The meaning of sparse is not so simple

SPARSE ... NUMBER ENTRIES
kn k ∼ 2 – logn
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NUMERICAL APPLICATIONS

Stiff ODEs ... BDF ... Sparse Jacobian

Linear Programming
..... simplex
..... interior point

Optimization/Nonlinear Equations

Elliptic Partial Differential equations

Eigensystem Solution

Two Point Boundary Value Problems

Least Squares Calculations
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APPLICATION AREAS

Physics CFD
Lattice gauge
Atomic spectra

Chemistry Quantum chemistry
Chemical engineering

Civil engineering Structural analysis
Electrical engineering Power systems

Circuit simulation
Device simulation

Geography Geodesy
Demography Migration
Economics Economic modelling
Behavioural sciences Industrial relations
Politics Trading
Psychology Social dominance
Business administration Bureaucracy
Operations research Linear Programming
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Sparse matrices

THERE FOLLOWS PICTURES OF SPARSE MATRICES FROM
VARIOUS APPLICATIONS

This is done to illustrate different structures for sparse matrices
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Sparse matrices
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Sparse matrices
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Sparse matrices
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Sparse matrices
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Sparse matrices
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Sparse matrices
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Sparse matrices
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STANDARD SETS OF SPARSE MATRICES

Original set

Harwell-Boeing Sparse Matrix Collection

Extended set of test matrices available from:

http://www.cise.ufl.edu/research/sparse/matrices

and

Matrix market
http://math.nist.gov/MatrixMarket

Large and increasing collection maintained by the
GRID-TLSE Project

http://gridtlse.org/
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Matrix storage schemes

For efficient solution of sparse equations we must

I Only store nonzeros (or exceptionally a few zeros also)

I Only perform arithmetic with nonzeros

I Preserve sparsity during computation
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DATA STRUCTURES FOR SPARSE MATRICES
Here are a few data structures used for storing sparse matrices.
The best scheme is very dependent on the structure of the matrix
and the way in which sparsity is to be exploited.

COORDINATE SCHEME The matrix is held as a collection of
triplets (i , j , aij) where the entry (i , j) of the matrix
has value aij . This is used by the Matrix Market and
MATLAB.

CSR (CSC) In the compressed sparse row (or equivalently
column) scheme, the matrix is held as a collection of
sparse vectors, one for each row (or column). Entries
in a vector are held as the pair (i , ai ) where the ith
component of the vector has value ai .

LINKED LIST With each entry we hold one or more links to
other entries. Typically the row (and/or column) of
the matrix can be recovered by running through the
links.
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Sparse data structures

STRUCTURED STORAGE The matrix may be held by
diagonals or, for each row, all entries from the first
nonzero to the diagonal are stored. These schemes
will normally store explicit zeros but can be efficient
for particular structures.

ELEMENTAL Matrix is represented as an expanded sum
A =

∑
k A

[k], where each A[k] is held as a dense
matrix.

HASH CODING A map is generated from I n × I n to [1, nz ]
with procedures for handling collisions (since
nz � n2).

BIT MAPS A Boolean map indicates the positions of nonzero
entries in the matrix.
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Sparse data structures

SPARSE VECTOR STORAGE

X = (x1 x2 . . . xn)T

For each i such that xi 6= 0, store i and xi

GATHER/SCATTER PACK/UNPACK
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CSR (Compressed Sparse Row)

Usually with separate copy for access to nonzero pattern by
columns:
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Sparse data structures

Linked lists
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Sparse data structures

A =


1. 0 0 -1. 0
2. 0 -2. 0 3.
0 -3. 0 0 0
0 4. 0 -4. 0
5. 0 -5. 0 6.


A 5× 5 sparse matrix.

Subscripts 1 2 3 4 5 6 7 8 9 10 11

IRN 1 2 2 1 5 3 4 5 2 4 5
JCN 4 5 1 1 5 2 4 3 3 2 1
VAL -1. 3. 2. 1. 6. -3. -4. -5. -2. 4. 5.

Table: The matrix stored in the coordinate scheme.
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Sparse data structures

Subscripts 1 2 3 4 5 6 7 8 9 10 11

LENROW 2 3 1 2 3
IROWST 1 3 6 7 9
JCN 4 1 5 1 3 2 4 2 3 1 5
VAL -1. 1. 3. 2. -2. -3. -4. 4. -5. 5. 6.

Table: Matrix stored as a collection of sparse row vectors.

Subscripts 1 2 3 4 5 6 7 8 9 10 11

IROWST 4 3 6 10 11
JCN 4 5 1 1 5 2 4 3 3 2 1
VAL -1. 3. 2. 1. 6. -3. -4. -5. -2. 4. 5.
LINK 0 0 9 1 0 0 0 5 2 7 8

Table: The matrix held as a linked list.
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Graphs and matrices

A graph G (V ,E ) is a set of vertices (or nodes), V , and a set of
edges, E where an edge (vi , vj) of E is a pair of vertices vi and vj
of V .
Although in sparse matrix research we use many different graphs,
we will mainly associate three types of graphs with sparse matrices
viz.

I An (undirected) graph on on n vertices can be associated with
a symmetric matrix of order n. Edge (i, j) exists in the graph
if and only if entry aij (and, by symmetry aji ) in the matrix is
nonzero.

I A directed graph on n vertices can be associated with a
matrix of order n. Edge (i, j) exists in the graph if and only if
entry aij in the matrix is nonzero.
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Graphs and matrices

I A bipartite graph GB = (Vr ,Vc ,E ) consists of two disjoint
vertex sets Vr and Vc and an edge set E . The sets Vr and Vc

correspond to rows and columns of the sparse matrix
respectively so that an edge from veretex vi of Vr to vertex vj
of Vc exists if and only if entry (vi , vj) of the matrix is
nonzero. Note that the cardinality of sets Vr and Vc need not
be the same so that this representation can be used for
rectangular matrices.
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Graphs and sparse matrices

Main benefits of using graphs to represent sparse matrices

I Structure of graph is invariant under symmetric permutations
of the matrix (corresponds to relabelling of vertices).

I For mesh problems, there is usually an equivalence between
the mesh and the graph associated with the resulting matrix.
We thus work directly with the underlying structure.

I We can represent cliques in graphs by listing vertices in a
clique without storing all the interconnecting edges.
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Graphs and matrices



X X X
X X X

X
X X

X X X
X X


A symmetric matrix.
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Graphs and matrices



X X X
X X X

X
X X

X X X
X X


A symmetric matrix.

has graph
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Graphs and sparse matrices

Hence with ordering
[3 4 5 1 2 6]
the resulting symmetrically permuted matrix has the pattern:
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Graphs and sparse matrices

Hence with ordering
[3 4 5 1 2 6]
the resulting symmetrically permuted matrix has the pattern:

X
X X
X X X

X X X
X X X

X X


Reordered symmetric matrix.

28 / 63
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Graphs and sparse matrices



X X X
X X

X X
X X

X X
X X


An unsymmetric matrix
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Graphs and sparse matrices



X X X
X X

X X
X X

X X
X X


An unsymmetric matrix

Has graph
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The 6th de Brùn Workshop. 5 December 2012 Iain Duff. RAL, CERFACS

Graphs and sparse matrices

Reorder symmetrically ......
4 5 1 2 3 6

× ×
× ×

× × ×
× ×
× ×

× ×
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HSL

I Formerly Harwell Subroutine Library

I Started at Harwell in 1963

I Most routines from research work of group

I Particular strengths in:

I Sparse Matrices
I Optimization (also GALAHAD)
I Large-scale system solution

I Last main release was 2011

HSL:
http://www.hsl.rl.ac.uk

GALAHAD:
http://www.galahad.rl.ac.uk
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MATLAB
help sparfun

Commands:
nnz(), issparse()

Best command:
spy()

Some matrices

I gallery(‘wathen’,20,15)
I bucky
I load west0479
I delsq(numgrid(‘S’,30))
I speye()

See demos

MATLAB is continually improving its coverage of sparse matrices
and sparse matrix operations including solvers

Many HSL codes accessible through MATLAB
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Solution of linear systems

We wish to solve the linear system

Ax = b

where the sparse matrix A has dimension 106 or
greater.

I Direct methods (based on matrix factorization)

I Iterative methods (with some form of
preconditioning)
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Solving sparse systems

Ax = b

has solution
x = A−1b
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Solving sparse systems

Ax = b

has solution
x = A−1b

BUT

This is notational only.

Do not use or even think of using inverse of A.

For sparse A,

A−1 is usually dense.

Examples are:

Tridiagonal and arrowhead
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DIRECT METHODS

Gaussian Elimination

PAQ→ LU

Permutations P and Q chosen to preserve sparsity and maintain
stability

L : Lower triangular (sparse)
U : Upper triangular (sparse)

We then solve:

Ax = b

by

Ly = Pb

then

UQTx = y
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Complexity of LU factorization on matrices of order n

Full (dense) matrix 2
3n

3 +O (n2) flops
n2 storage

For band matrix (order n, bandwidth k)

2k2n work, nk storage

Five-diagonal matrix (on k × k grid)

O (k3) work
and

O (k2logk) storage

Tridiagonal + Arrowhead matrix

O (n) work and storage

Target O (n) +O (τ) for sparse matrix of order n with τ entries.
36 / 63
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Complexity of sparse direct method in 2 and 3 dimensions

Grid dimensions Matrix order Work to factorize Factor storage

k × k k2 k3 k2 log k

k × k × k k3 k6 k4

O complexity of direct method on 2D and 3D grids.
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An O(n) method!!

For problems where there is a natural decay of entries in the
inverse, then the use of low rank approximations coupled with
suitable orderings can provably result in a method that scales
linearly with problem size.
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Direct methods

To indicate how powerful parallel direct methods are, we note that
the PARASOL test problem

AUDIKW 1

of order

943,695

with

39.3 million

entries
is now a standard test/training problem.
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DIRECT METHODS

I Easy to package

I High accuracy

I Method of choice in many applications

I Not dramatically affected by conditioning

I Reasonably independent of structure

However

I High time and storage requirement

I Typically limited to n ∼ 1000000
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DIRECT METHODS

I Easy to package

I High accuracy

I Method of choice in many applications

I Not dramatically affected by conditioning

I Reasonably independent of structure

However

I High time and storage requirement

I Typically limited to n ∼ 1000000

So

I Use on subproblem

I Use as preconditioner
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Phases of sparse direct solution

Although the exact subdivision of tasks for sparse direct solution
will depend on the algorithm and software being used, a common
subdivision is given by:

ANALYSE An analysis phase where the matrix structure is
analysed to produce a suitable ordering and data
structures for efficient factorization.

FACTORIZE A factorization phase where the numerical
factorization is performed.

SOLVE A solve phase where the factors are used to solve
the system using forward and backward substitution.

41 / 63
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Phases of sparse direct solution

We note the following:

I ANALYSE is sometimes preceded by a preordering phase to
exploit structure.

I For general unsymmetric systems, the ANALYSE and
FACTORIZE phases are sometimes combined to ensure the
ordering does not compromise stability.

I Note that the concept of separate ANALYSE and
FACTORIZE phases is not present for dense systems.

42 / 63
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Steps Match Solution Requirements
1. One-off solution

Ax = b A/F/S

2. Sequence of solutions [Matrix changes but structure is invariant]

A1x1 = b1

A2x2 = b2 A/F/S/F/S/F/S
A3x3 = b3

3. Sequence of solutions [Same matrix]

Ax1 = b1

Ax2 = b2 A/F/S/S/S
Ax3 = b3

For example ....

2. Solution of nonlinear system [A is Jacobian]

3. Inverse iteration
43 / 63
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TYPICAL RATIO OF TIMES

ANALYSE/FACTORIZE 100

FACTORIZE 10

SOLVE 1

The actual ratio in any instance will depend on the matrix, the
computer, and the code used but the above ratio is very typical
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The ordering problem
In using Gaussian elimination to solve

Ax = b,

we perform the decomposition

PAQ = LU

where

P and Q (P> if A is symmetric) are permutation matrices chosen
to:

1. preserve sparsity and reduce work in decomposition and
solution

2. enable use of efficient data structures

3. ensure stability

4. take advantage of structure
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The 6th de Brùn Workshop. 5 December 2012 Iain Duff. RAL, CERFACS

Ordering

Benefits of Sparsity Ordering
Matrix of Order 2021 with 7353 entries

Total storage Flops
Procedure (Kwords)

Treating system as dense 4084 5503
Storing and operating 71 1073
only on nonzero entries
Using sparsity pivoting 14 42
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Ordering

Two categories ...

LOCAL Ordering

and

GLOBAL Ordering
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Ordering for symmetric matrices

× × × × ×
× ×
× ×
× ×
× ×

L/U
−→

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× ×
× ×
× ×
× ×

× × × × ×

L/U
−→

× ×
× ×
× ×
× ×

× × × × ×
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Minimum degree (Tinney S2 ... 1967)

I At each stage choose diagonal entry with least number of
entries in row of reduced matrix.

I Using this to minimize the fill-in is NP-complete

I Usually it is a good heuristic and gives a good ordering.

I However, being a local algorithm, it does not take full account
of the global underlying structure of the problem.

I Its performance can be unpredictable and it is sensitive to how
“ties” are broken.

I The code for efficient implementation can be remarkably
complicated.

I Often the most time consuming part of the algorithm is the
degree update −→ Approximate Minimum Degree (AMD).
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Local ordering for unsymmetric matrices

∗ × ×
× v v
× v v
× v v

ri = 3, cj = 4

Minimize (ri − 1) ∗ (cj − 1)

MARKOWITZ ORDERING (Markowitz 1957)

Choose nonzero satisfying a numerical criterion with best
Markowitz count.
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Threshold pivoting for stability

aij is admissible as a pivot if

|aij | ≥ u maxk |akj | 0 < u ≤ 1

So choose as pivot at each stage the entry with lowest Markowitz
cost satisfying the above inequality.

Called threshold pivoting
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Threshold pivoting for stability
Growth at one step is bounded by

max
i
|a(k+1)

ij | ≤ (1 + 1/u) max
i
|a(k)

ij |

and overall growth by

max
i
|a(k)

ij | ≤ (1 + 1/u)pj max
i
|aij |

where pj is the number of off-diagonal entries in the jth column of
U.

If
H = L̂Û− A

then
|hij | ≤ 5.01εnmax

k
|a(k)

ij |

This means that through u, the threshold parameter, we can
directly influence backward error in factorization.
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Threshold pivoting for stability

Threshold Entries in factors Error in solution

1.0 16767 3× 10−9

0.25 14249 6× 10−10

0.10 13660 4× 10−9

0.01 15045 1× 10−5

10−4 16198 1× 102

10−10 16553 3× 1023

Effect of changing threshold parameter. Matrix is order 541 with
4285 entries.
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The 6th de Brùn Workshop. 5 December 2012 Iain Duff. RAL, CERFACS

Efficient implementation of Markowitz

If you search all of A(k) each time, the complexity is
O(nτ) ∼ O(n2).

Want O(1) search every time ....

Search rows/columns in order of increasing sparsity

Can limit search to small number of rows/columns
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Global ordering for symmetric matrices

PARTITIONING

Divide and conquer paradigm

(Nested) dissection

Domain decomposition

Substructuring
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Global ordering for symmetric matrices

Computational Graph
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Global ordering for symmetric matrices

Dissection

Chooses last pivots first

Dissect problem into two parts

Resulting matrix has form:

Hence to nested dissection
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Nested dissection

I Nested dissection was originally proposed by Alan George in
his thesis in 1971.

I Although good on regular grids and for complexity was not
used for general symmetric matrices until 1990s

I Key to achieving good ordering on general problems is
Bisection Algorithm
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Comparison of AMD and Nested Dissection
A nested dissection ordering can be generated by the graph
partitioning software called MeTiS (Karypis and Kumar) or
SCOTCH (Pellegrini)

For large problems this often beats a local ordering. For example,
AMD (Amestoy, Davis, and Duff)

Matrices are from PARASOL test set and runs are from a very
early version of MUMPS (more about this code later).

Entries in factors Operations in factorization
(106) (109)

MIXTANK
AMD 38.5 64.4
ND 18.9 13.2

INVEXTR1
AMD 30.3 35.8
ND 15.7 8.1

BBMAT
AMD 46.0 41.6
ND 35.7 25.7
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The 6th de Brùn Workshop. 5 December 2012 Iain Duff. RAL, CERFACS

MA48

An example of a code that uses Markowitz and Threshold Pivoting
is

the HSL Code

MA48
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The 6th de Brùn Workshop. 5 December 2012 Iain Duff. RAL, CERFACS

Features of MA48

I Uses Markowitz with threshold pivoting

I Factorizes rectangular and singular systems
I Block Triangularization

I Done at “higher” level
I Internal routines work only on single block

I Switch to full code at all phases of solution
I Three factorize entries

I Only pivot order is input
I Fast factorize .. uses structures generated in first factorize
I Only factorizes later columns of matrix

I Iterative refinement and error estimator in Solve phase

I Can employ drop tolerance

I “Low” storage in analyse phase
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The 6th de Brùn Workshop. 5 December 2012 Iain Duff. RAL, CERFACS

Direct codes

TYPICAL INNERMOST LOOP

DO 590 JJ = J1, J2

J = ICN (JJ)

IF (IQ(J). GT.0) GO TO 590

IOP = IOP + 1

PIVROW = IJPOS - IQ (J)

A(JJ) = A(JJ) + AU * A (PIVROW)

IF (LBIG) BIG = DMAXI (DABS(A(JJ)), BIG)

IF (DABS(A(JJ)). LT. TOL) IDROP = IDROP + 1

ICN (PIVROW) = ICN (PIVROW)

590 CONTINUE
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MA48 .. why look at other codes

Why look at other codes??

I MA48 does not naturally vectorize or parallelize
I short vector lengths

I There is heavy use of indirect addressing in MA48 (viz.
references of form W(IND(I))

I Even with h/ware indirect addressing is 2-4 times slower
I more memory traffic
I non-localization of data

I MA48 can perform poorly when there is significant fill-in

I We would like to take more advantage of the Level 3 BLAS
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