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The Group Isomorphism Problem

ISO: Given groups G and H, decide whether or not G ∼= H.

How might G and H be given?

1. As finitely presented groups (à la Dehn).
2. As finite groups.

2.1 Listing elements of G and H and their multiplication tables.
2.2 Specifying generating sets of permutations or matrices.

We will find it convenient to discuss the related problem:

AUTO: Given a group G, find generators for Aut(G).
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A Brute Force Approach

When G and H, each of order n, are specified by multiplication tables,
the following elementary approach (attributed to Tarjan) provides an
upper bound on the complexity.

1. Pick a generating sequence A of size k for G.

2. For each k-sequence B of elements of H, use the multiplication
tables of G and H to decide whether or not the bijection A→ B
extends to an isomorphism.

3. There are
(n

k

)
k! < nk such k-tuples B.

4. For each k-tuple, deciding whether the bijection extends requires
nc checks (for some constant c).

5. Every group G has a generating set of size at most log |G|.
6. Thus the algorithm runs in time nlog n+O(1).
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Better Than Brute Force?

• Recent attempts have improved only very slightly on brute force,
although significant improvements have been achieved for
certain classes of group (such as abelian groups, and groups
without abelian normal subgroups).

• There have been no measurable improvements even for nilpotent
groups of class 2. In fact, it seems likely that these are among the
hardest groups to handle. We study such groups in this lecture.

• There is perhaps more interest in practical isomorphism tests
than in techniques to improve complexity bounds. For instance
efforts to classify families of p-groups require such practical
tests. It is not practical here to start by listing a multiplication
table of the group.
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The Bimap of a Nilpotent Group

If G is a nilpotent group of class 2, with centre Z = Z(G), then

V := G/Z and W := [G,G] 6 Z

are abelian groups. Associate to G a function ◦ : V × V → W

xZ ◦ yZ := [x, y] for all x, y ∈ G.

Writing operations in V and W additively, observe

u ◦ (v + w) = u ◦ v + u ◦w
(u + v) ◦w = u ◦w + v ◦w

so ◦ is a bi-additive map (or simply a bimap). Notice ◦ is also
alternating in that u ◦ u = 0 for all u ∈ V .
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Isometries, Pseudo-Isometries, and Automorphisms
Let G be a finite p-group of exponent p and class 2. Then V = G/Z
and W = [G,G] 6 Z are finite-dimensional vector spaces over Z/p.

Let ◦ : V × V → W be the bimap associated to G, and let α be an
automorphism of G. Let β (resp. γ) be the automorphism of V (resp.
W) induced by α. Then

uβ ◦ vβ = (u ◦ v)γ for all u, v ∈ V.

Thus α induces the pseudo-isometry (β, γ) of ◦.

Define the group

ΨIsom(◦) = {(g, h) ∈ Aut(V)× Aut(W) : ug ◦ vg = (u ◦ v)h},

of pseudo-isometries of ◦, and its normal subgroup of isometries,

Isom(◦) = {g ∈ Aut(V) : ug ◦ vg = u ◦ v}
= {g : (g, 1) ∈ ΨIsom(◦)}.
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Computing Aut(G) by Brute Force

Let G be a p-group of class 2, and ◦ : V × V → W its associated
bimap. Then ◦ factors through the alternating tensor bimap:

V × V ◦ +3

∧ !)

W

V ∧ V

◦̂
;;

Note, Aut(V) acts on V ∧ V via (u∧v)g = ug∧ vg, and ΨIsom(◦) is
precisely the stabilizer under this action of Aut(V) of ker ◦̂.

Thus the problem of computing Aut(G) reduces to that of computing
the stabilizer of a subspace under the action of a group of matrices.

we have exchanged one difficult problem for another!
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Bimaps & Classical Groups

Let Φ1, . . . ,Φt be reflexive forms on a k-vector space V . Then

u ◦ v = (u Φ1 v, . . . , u Φt v).

is a bimap ◦ : V × V → kt, and

Isom(◦) = Isom(Φ1) ∩ . . . ∩ Isom(Φt).

Conversely, given an Hermitian bimap ◦ : V × V → W, one obtains a
corresponding list of forms by projection onto any spanning set of
1-dimensional subspaces of W.

isometry groups of bimaps are intersections of classical groups
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The Adjoint Algebra of a Bimap

• Let ◦ : V × V → W be any bimap.
• Let E = End(V), and denote its opposite ring Eop.
• View V as a right E-module, and as a left Eop-module.
• For R subring of E × Eop, form the tensor product V ⊗R V .
• Define the adjoint ring, Adj(◦), to be the largest subring of

E × Eop for which ◦ factors through the tensor bimap:

V × V ◦ +3

⊗ "*

W

V ⊗Adj(◦) V

◦̂
99

Here is an explicit description:

Adj(◦) = {(x, y) ∈ E × Eop : ux ◦ v = u ◦ yv ∀u, v ∈ V}.
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Adj(◦) as a ∗-algebra

1. Assume that ◦ : V × V → W is Hermitian: ∃θ ∈ Aut(W) such
that u ◦ v = (v ◦ u)θ for all u, v ∈ V .

2. If ◦ is nondeg. and (x, y) ∈ Adj(◦), then y is uniquely determined
by x and Adj(◦) is faithfully represented by projection onto E.

3. Hermitian =⇒ (x, y) ∈ Adj(◦) if and only if (y, x) ∈ Adj(◦).

4. From 1 and 2, the map x∗ := y defines an involution on Adj(◦).

5. Consider the unitary group (or norm group) of Adj(◦):

Adj(◦)] = {x ∈ Adj(◦) : xx∗ = 1 = x∗x}
= {x ∈ Adj(◦) : x∗ = x−1}
= {x ∈ Aut(V) : ux ◦ v = u ◦ vx−1 ∀u, v ∈ V}
= {x ∈ Aut(V) : ux ◦ vx = u ◦ v ∀u, v ∈ V}
= Isom(◦)
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The Structure of Matrix Algebras

Let A be a subalgebra of Md(Fq), where Fq is the field of q elements.

1. The Jacobson radical, J(A), is the unique largest nilpotent ideal
of A, and A = J(A)⊕ B, where B is a semisimple subring of A.

2. B decomposes as a sum of minimal ideals I1 ⊕ . . .⊕ It.

3. Each Ij is a simple ring, and hence is isomorphic to Mej(Kj),
where Kj is a finite extension of Fq.
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Algorithms for Matrix Algebras

• The algorithmic study of associative algebras was initiated by
Rónyai in 1990.

• Methods were later refined for matrix algebras by Ivanyos and
by Eberly & Giesbrecht in 2000.

Theorem
There is a Las Vegas, polynomial time algorithm which, given a
subalgebra A of Md(Fq), finds the following:

the Jacobson radical, J(A), of A;

a ring decomposition A = J(A)⊕ B, where B is semisimple;

a decomposition B = I1 ⊕ . . .⊕ It into minimal ideals; and

isomorphisms ϕj : Ij →Mej(Kj) for field extensions Kj.
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The Structure of Matrix ∗-Algebras

Let A be a ∗-subalgebra of Md(Fq), where q is odd.

1. J(A) is a ∗-ideal (it is invariant under ∗), and A = J(A)⊕ B,
where B is a ∗-invariant semisimple subring of A. (Taft)

2. B decomposes as a sum of minimal ∗-ideals I1 ⊕ . . .⊕ It.
3. Each Ij is a simple ∗-ring, and is isomorphic to one of the

following:
• Mej(Kj) with symplectic involution; Ij

] ∼= Sp(ej,Kj).
• Mej(Kj) with unitary involution; Ij

] ∼= GU(ej,Kj).
• Mej(Kj) with orthogonal involution; Ij

] ∼= GOε(ej,Kj).
• Mej(Kj)⊕Mej(Kj) with exchange involution interchanging the

two factors; Ij
] ∼= GL(ej,Kj).
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Algorithms for Matrix ∗-Algebras

Theorem (B & Wilson, 2012)
There is a Las Vegas, polynomial time algorithm which, given a
∗-subalgebra A of Md(Fq), where |Fq| is odd, finds the following:

1. a ring decomposition A = J(A)⊕ B, where B is semisimple and
∗-invariant (based on original proof of Taft);

2. a decomposition B = I1 ⊕ . . .⊕ It into minimal ∗-ideals; and

3. isomorphisms ϕj : Ij → Sj, where Sj is the standard copy of the
appropriate simple ∗-ring.

Implementations of the algorithms for algebras and ∗-algebras are
distributed with MAGMA as part of the StarAlgebras package.
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Constructing Isom(◦)

• Our next goal is to construct Isom(◦) for any Hermitian bimap ◦.
• The strategy is to use the known structure of Adj(◦) as a
∗-algebra to extract its norm group Adj(◦)] = Isom(◦).

• We have A = J(A)⊕ (I1 ⊕ . . .⊕ It) with each Ij simple.
• Finding each Ij

] is easy: one simply writes down generators for
the appropriate classical group.

• Building norm 1 elements from the radical is trickier...
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Building Unipotent Generators

• A standard trick to build elements in a group from nilpotent
elements of an algebra is to exponentiate: if zn+1 = 0, put

u = ez = 1 + z +
z2

2!
+

z3

3!
+ . . .+

zn

n!
,

but this puts undesirable constraints on the characteristic of Fq.

• Instead, we use a different power series, namely for z +
√

1 + z2.
• Put J− = {z ∈ J(A) : z∗ = −z}. Then,

J(A)] = {z +
√

1 + z2 : z ∈ J−}.
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Results

Theorem (B & Wilson, 2012)
There is a Las Vegas, polynomial time algorithm which, given an
Hermitian bimap ◦ : V × V → W, with |V| and |W| odd, constructs
generators for, and explicitly determines the structure of Isom(◦).

Corollary
There is a Las Vegas, polynomial time algorithm which, given a set of
classical groups H1, . . . ,Hn defined on a common vector space of odd
order, constructs a generating set for the intersection H1 ∩ . . . ∩ Hn.

Corollary
There is a Las Vegas algorithm which, given a p-group G of class 2
and exponent p (p > 2), constructs the characteristic subgroup of
Aut(G) consisting of automorphisms which centralize [G,G].
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Better Than Brute Force!
Recall that our principal objective is to construct ΨIsom(◦) for an
alternating bimap ◦. A description of this group which is anything
like as nice as Isom(◦) has so far eluded us. Recall the situation:

V × V ◦ +3

∧ !)

W

V ∧ V

◦̂
;;

The orbit of ker ◦̂ is usually to large to list.

If A = Adj(◦), then

V × V ◦ +3

⊗A !)

W

V ⊗A V

◦̂
;;

In many situations V ⊗A V is of significantly smaller dimension than
V ∧ V , the group that acts, namely ΨIsom(⊗A), is much smaller than
Aut(V), and we can construct this group [B-Wilson, 2012+].
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Work in Progress

The strategy just outlined works really well in certain situations.

Theorem (B & Wilson, 2012+)
There is an efficient algorithm which, given an alternating bimap
◦ : V × V → F2

q , q odd, constructs generators for ΨIsom(◦).

Thus, if a p-group G of exponent p and class 2 has co-rank 2 then we
can determine Aut(G) efficiently.

There is a comprehensive strategy to attack ΨIsom(◦) for arbitrary
alternating ◦ using a mélange of linear and combinatorial methods.
[B-O’Brien-Wilson, 201?]
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