
Permutation Groups Matrix Groups Constructive Recognition Future Directions

Computing with matrix groups

Peter Brooksbank

Bucknell University

Linear Algebra and Matrix Theory:
connections, applications and computations

NUI Galway (December 4, 2012)

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Sims’ Legacy

• The fundamental techniques for computing with permutation
groups were developed by Charles Sims in the early 1970’s.

• Construction of sporadic simple groups Ly and B.
• Basic data structure: stabilizer chain.

Let G = 〈X〉 6 Sn be given. For i = 1, . . . , n, let G(i) be the
subgroup of G fixing 1, . . . , i− 1. Then

G = G(1) > G(2) > . . . > G(n) = 1,

and [G(i) : G(i+1)] 6 n.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Basic Polynomial Time Theory

• That Sims’ techniques were polynomial time was established by
Furst, Hopcroft & Luks (1981).

• Given G = 〈X〉 6 Sn, one can:
• Compute orbits of G (and decide if it acts transitively);
• Compute a block system for G (and decide if it’s primitive);
• Determine |G|;
• Given x ∈ Sn, decide whether x ∈ G;
• Find the derived series G > G′ > (G′)′ > . . . (test solubility);
• Find the lower central series (test nilpotence).

• "Permutation groups and polynomial-time computation",
E.M. Luks, DIMACS series, 1993.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Basic Polynomial Time Theory

• That Sims’ techniques were polynomial time was established by
Furst, Hopcroft & Luks (1981).

• Given G = 〈X〉 6 Sn, one can:
• Compute orbits of G (and decide if it acts transitively);
• Compute a block system for G (and decide if it’s primitive);
• Determine |G|;
• Given x ∈ Sn, decide whether x ∈ G;
• Find the derived series G > G′ > (G′)′ > . . . (test solubility);
• Find the lower central series (test nilpotence).

• "Permutation groups and polynomial-time computation",
E.M. Luks, DIMACS series, 1993.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Deeper Results

Other permutation group problems are shown to be in polynomial
time using deeper results about finite groups.

1. As demonstrated by Luks (1987), a composition series

1 = N1 E N2 E . . .E Nt = G

can be constructed using the classification of primitive
permutation groups of O’Nan & Scott.

2. Kantor (1985) showed how to construct Sylow subgroups.
Relies on the Classification of Finite Simple Groups (CFSG).

"Simple groups in computational group theory",
W.M. Kantor, Proc. ICM (Berlin, 1998).

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Deeper Results

Other permutation group problems are shown to be in polynomial
time using deeper results about finite groups.

1. As demonstrated by Luks (1987), a composition series

1 = N1 E N2 E . . .E Nt = G

can be constructed using the classification of primitive
permutation groups of O’Nan & Scott.

2. Kantor (1985) showed how to construct Sylow subgroups.
Relies on the Classification of Finite Simple Groups (CFSG).

"Simple groups in computational group theory",
W.M. Kantor, Proc. ICM (Berlin, 1998).

Permutation Groups Matrix Groups Constructive Recognition Future Directions

P 6=NP?

Motivation for the algorithmic study of permutation groups came
from two sources:

1. The desire to put Sims’ methods on a solid theoretical basis;

2. The connection to the Graph Isomorphism Problem:
Given two finite graphs Γ1 and Γ2, decide whether Γ1 ∼= Γ2.

Despite the many different combinatorial attacks on this problem, by
far the best result fundamentally uses permutation group algorithms:

"Isomorphism of graphs of bounded valence can be tested in
polynomial time", E.M. Luks, J. Comp. Sys. Sci (1982).

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Practical Range

• The machinery for computing with permutation groups in GAP
and MAGMA is incredibly efficient.

• One can compute effectively with G 6 Sn for n ≈ 1010.
• Even problems for which no polynomial-time algorithm is

known can still be solved extremely quickly using these systems.
• The algorithmic theory of permutation groups is on solid ground

both from a practical and a theoretical viewpoint.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

What’s The Problem?

Let G = 〈X〉 6 GL(d,Fq). Then clearly G is a group of permutations
of the qd − 1 nonzero vectors in Fd

q . So why not view G as a subgroup
of Sqd−1 and use permutation group methods to study G?

• Until fairly recently this is precisely what GAP and MAGMA did.
• Exponential blow up in input length: d2 log q versus qd.
• G may not have a subgroup of polynomially bounded index.
• This limits the practical range to something like GL(8,F5).

Matrix representations are very concise!

Permutation Groups Matrix Groups Constructive Recognition Future Directions

What’s The Problem?

Let G = 〈X〉 6 GL(d,Fq). Then clearly G is a group of permutations
of the qd − 1 nonzero vectors in Fd

q . So why not view G as a subgroup
of Sqd−1 and use permutation group methods to study G?

• Until fairly recently this is precisely what GAP and MAGMA did.
• Exponential blow up in input length: d2 log q versus qd.
• G may not have a subgroup of polynomially bounded index.
• This limits the practical range to something like GL(8,F5).

Matrix representations are very concise!

Permutation Groups Matrix Groups Constructive Recognition Future Directions

What’s The Problem?

Let G = 〈X〉 6 GL(d,Fq). Then clearly G is a group of permutations
of the qd − 1 nonzero vectors in Fd

q . So why not view G as a subgroup
of Sqd−1 and use permutation group methods to study G?

• Until fairly recently this is precisely what GAP and MAGMA did.
• Exponential blow up in input length: d2 log q versus qd.
• G may not have a subgroup of polynomially bounded index.
• This limits the practical range to something like GL(8,F5).

Matrix representations are very concise!

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Neubüser’s Question

At the Oberwolfach meeting on Computational Group Theory in
1988, Neubüser asked for

...an efficient algorithm to decide whether a given group
G = 〈X〉 6 GL(d,Fq) contains SL(d,Fq).

In 1991 Neumann & Praeger supplied such an algorithm:
• Identify certain elements which abound in SL(d,Fq), but which

were unlikely to be found in groups not containing SL(d,Fq).
• Results in a 1-sided Monte Carlo algorithm.
• They showed that progress can be made with matrix groups.
• Their result demonstrated the power of randomization.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Neubüser’s Question

At the Oberwolfach meeting on Computational Group Theory in
1988, Neubüser asked for

...an efficient algorithm to decide whether a given group
G = 〈X〉 6 GL(d,Fq) contains SL(d,Fq).

In 1991 Neumann & Praeger supplied such an algorithm:
• Identify certain elements which abound in SL(d,Fq), but which

were unlikely to be found in groups not containing SL(d,Fq).
• Results in a 1-sided Monte Carlo algorithm.
• They showed that progress can be made with matrix groups.
• Their result demonstrated the power of randomization.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

The Matrix Group Project

The goal is to devise algorithms which, given any matrix group
G = 〈X〉 6 GL(d,Fq), do the following:
• Find |G|;
• Determine the structure of G via a composition series;
• Set up data structures to compute effectively with G.

Two different strategies emerged:
• geometric approach which aims to find a composition tree; and
• black box approach which aims to construct the series

1 6 O∞(G) 6 Soc∗(G) 6 PKer(G) 6 G.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Aschbacher’s Theorem

"On the maximal subgroups of the finite classical groups",
M. Aschbacher, Invent. Math. (1984).

For our purpose, we summarize Aschbacher’s theorem as follows:

Theorem
For a maximal subgroup G of GL(d,Fq), one of the following holds:

1. G preserves one of seven types of geometric structure on Fd
q ;

2. G normalizes a classical group in its natural representation; or

3. G is almost simple modulo scalars.

In part 1, for example, G might stabilize a subspace of Fd
q ... which

one could test using the Meataxe algorithm described yesterday.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Composition Tree

A divide-and-conquer strategy based on Aschbacher.

G
ϕ

��
kerϕ

==

H

• ϕ : G→ H is an "Aschbacher reduction", where H is the group
induced by G on a suitable geometric structure.

• Recursively find comp. trees for subtrees rooted at H and kerϕ.
• Glue together to obtain comp. tree for G.
• Recursion bottoms out with almost simples and classicals.

"A new model for computation with matrix groups",
Bäanhielm, Holt, Leedham-Green, O’Brien, preprint (2011).

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Generating Kernels & Verification

Suppose we have constructed a composition tree for H.

G = 〈x1, . . . , xt〉
ϕ

))
kerϕ

77

H = 〈y1, . . . , yt〉

This allows us to write any given element h ∈ H as a word in the
yi = xiϕ. We now wish to find generators for kerϕ.

1. Generate a random element g ∈ G.

2. Compute h = gϕ ∈ H and write h = w(y1, . . . , yt).

3. Evaluate x = w(x1, . . . , xt) ∈ G.

4. Add gx−1 to a generating set for kerϕ.

Similarly, one constructs a presentation for G from presentations for
H and kerϕ. Hence one can verify the correctness of the entire tree.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Generating Kernels & Verification

Suppose we have constructed a composition tree for H.

G = 〈x1, . . . , xt〉
ϕ

))
kerϕ

77

H = 〈y1, . . . , yt〉

This allows us to write any given element h ∈ H as a word in the
yi = xiϕ. We now wish to find generators for kerϕ.

1. Generate a random element g ∈ G.

2. Compute h = gϕ ∈ H and write h = w(y1, . . . , yt).

3. Evaluate x = w(x1, . . . , xt) ∈ G.

4. Add gx−1 to a generating set for kerϕ.

Similarly, one constructs a presentation for G from presentations for
H and kerϕ. Hence one can verify the correctness of the entire tree.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Generating Kernels & Verification

Suppose we have constructed a composition tree for H.

G = 〈x1, . . . , xt〉
ϕ

))
kerϕ

77

H = 〈y1, . . . , yt〉

This allows us to write any given element h ∈ H as a word in the
yi = xiϕ. We now wish to find generators for kerϕ.

1. Generate a random element g ∈ G.

2. Compute h = gϕ ∈ H and write h = w(y1, . . . , yt).

3. Evaluate x = w(x1, . . . , xt) ∈ G.

4. Add gx−1 to a generating set for kerϕ.

Similarly, one constructs a presentation for G from presentations for
H and kerϕ. Hence one can verify the correctness of the entire tree.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Generating Kernels & Verification

Suppose we have constructed a composition tree for H.

G = 〈x1, . . . , xt〉
ϕ

))
kerϕ

77

H = 〈y1, . . . , yt〉

This allows us to write any given element h ∈ H as a word in the
yi = xiϕ. We now wish to find generators for kerϕ.

1. Generate a random element g ∈ G.

2. Compute h = gϕ ∈ H and write h = w(y1, . . . , yt).

3. Evaluate x = w(x1, . . . , xt) ∈ G.

4. Add gx−1 to a generating set for kerϕ.

Similarly, one constructs a presentation for G from presentations for
H and kerϕ. Hence one can verify the correctness of the entire tree.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Generating Kernels & Verification

Suppose we have constructed a composition tree for H.

G = 〈x1, . . . , xt〉
ϕ

))
kerϕ

77

H = 〈y1, . . . , yt〉

This allows us to write any given element h ∈ H as a word in the
yi = xiϕ. We now wish to find generators for kerϕ.

1. Generate a random element g ∈ G.

2. Compute h = gϕ ∈ H and write h = w(y1, . . . , yt).

3. Evaluate x = w(x1, . . . , xt) ∈ G.

4. Add gx−1 to a generating set for kerϕ.

Similarly, one constructs a presentation for G from presentations for
H and kerϕ. Hence one can verify the correctness of the entire tree.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Generating Kernels & Verification

Suppose we have constructed a composition tree for H.

G = 〈x1, . . . , xt〉
ϕ

))
kerϕ

77

H = 〈y1, . . . , yt〉

This allows us to write any given element h ∈ H as a word in the
yi = xiϕ. We now wish to find generators for kerϕ.

1. Generate a random element g ∈ G.

2. Compute h = gϕ ∈ H and write h = w(y1, . . . , yt).

3. Evaluate x = w(x1, . . . , xt) ∈ G.

4. Add gx−1 to a generating set for kerϕ.

Similarly, one constructs a presentation for G from presentations for
H and kerϕ. Hence one can verify the correctness of the entire tree.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Non-constructive Recognition

The success of the entire procedure depends crucially on our ability to
compute effectively with the groups at the "leaves" of the tree, namely
the almost simple groups, and the classical groups.

The first task is to determine which simple group we have:

Theorem
There is a polynomial-time Monte Carlo algorithm which, given any
simple group G = 〈X〉, returns the "name" of G.

e.g. "PSL(3, 11)" or "PΩ+(8, 3)".

There are many contributors to this result (there are others):
• Neumann & Praeger (1992)
• Niemeyer & Praeger (1998)
• Babai, Kantor, Pálfy, Seress (2002)
• Altseimer & Borovik (2001)

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Non-constructive Recognition

The success of the entire procedure depends crucially on our ability to
compute effectively with the groups at the "leaves" of the tree, namely
the almost simple groups, and the classical groups.

The first task is to determine which simple group we have:

Theorem
There is a polynomial-time Monte Carlo algorithm which, given any
simple group G = 〈X〉, returns the "name" of G.

e.g. "PSL(3, 11)" or "PΩ+(8, 3)".

There are many contributors to this result (there are others):
• Neumann & Praeger (1992)
• Niemeyer & Praeger (1998)
• Babai, Kantor, Pálfy, Seress (2002)
• Altseimer & Borovik (2001)

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Non-constructive Recognition

The success of the entire procedure depends crucially on our ability to
compute effectively with the groups at the "leaves" of the tree, namely
the almost simple groups, and the classical groups.

The first task is to determine which simple group we have:

Theorem
There is a polynomial-time Monte Carlo algorithm which, given any
simple group G = 〈X〉, returns the "name" of G.

e.g. "PSL(3, 11)" or "PΩ+(8, 3)".

There are many contributors to this result (there are others):
• Neumann & Praeger (1992)
• Niemeyer & Praeger (1998)
• Babai, Kantor, Pálfy, Seress (2002)
• Altseimer & Borovik (2001)

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Explicit Isomorphism

Suppose that G = 〈X〉 is simple of some known type, and let T be the
"standard copy" of this simple group. We require:

1. An explicit isomorphism ϕ : G→ T . This means we need
algorithms which:

• given g ∈ G compute the image gϕ ∈ T; and
• given t ∈ T compute the pre image tϕ−1 ∈ G.

2. A rewriting algorithm: given g ∈ G, write g as a word in X.

In practice, 1 and 2 are achieved via the same process:

(a) Find a new set Y of generators for G (as words in X) whose
image under ϕ is a "nice" generating set for T .

(b) Given g ∈ G write g as a word in Y:
• compose with words expressing elements of Y in terms of X to

get g as a word in X; or
• evaluate on Yϕ to compute gϕ.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Explicit Isomorphism

Suppose that G = 〈X〉 is simple of some known type, and let T be the
"standard copy" of this simple group. We require:

1. An explicit isomorphism ϕ : G→ T . This means we need
algorithms which:

• given g ∈ G compute the image gϕ ∈ T; and
• given t ∈ T compute the pre image tϕ−1 ∈ G.

2. A rewriting algorithm: given g ∈ G, write g as a word in X.

In practice, 1 and 2 are achieved via the same process:

(a) Find a new set Y of generators for G (as words in X) whose
image under ϕ is a "nice" generating set for T .

(b) Given g ∈ G write g as a word in Y:
• compose with words expressing elements of Y in terms of X to

get g as a word in X; or
• evaluate on Yϕ to compute gϕ.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Explicit Isomorphism

Suppose that G = 〈X〉 is simple of some known type, and let T be the
"standard copy" of this simple group. We require:

1. An explicit isomorphism ϕ : G→ T . This means we need
algorithms which:

• given g ∈ G compute the image gϕ ∈ T; and
• given t ∈ T compute the pre image tϕ−1 ∈ G.

2. A rewriting algorithm: given g ∈ G, write g as a word in X.

In practice, 1 and 2 are achieved via the same process:

(a) Find a new set Y of generators for G (as words in X) whose
image under ϕ is a "nice" generating set for T .

(b) Given g ∈ G write g as a word in Y:
• compose with words expressing elements of Y in terms of X to

get g as a word in X; or
• evaluate on Yϕ to compute gϕ.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Rewriting Algorithms

Linear algebra is used heavily here.
• Let T = SL(d,Fq).
• Elements of Yϕ are elementary transvections, e.g.

X23(λ) = I4 + E23(λ) =


1 · · ·
· 1 λ ·
· · 1 ·
· · · 1


• Writing t ∈ T as a word in the Xij(λ) is effected by Gaussian

elimination.
• Performing the analogous procedure in G is harder, but tractable.
• Constructing the elements of Y is by far the hardest part!

Permutation Groups Matrix Groups Constructive Recognition Future Directions

SL(2, q)

Let G = SL(2,Fq). The goal is to construct an element conjugate to[
1 ∗
· 1

]

• The proportion of such elements is roughly 1
q ; if q is fairly large

(say q = 231), a random search will fail to locate one.

• Roughly half of the elements SL(2,Fq) have order dividing q− 1
(most of the remaining elements having order dividing q + 1), so
a random search will produce elements of order q− 1.

Can we use them to construct a transvection?

Permutation Groups Matrix Groups Constructive Recognition Future Directions

SL(2, q)

Let G = SL(2,Fq). The goal is to construct an element conjugate to[
1 ∗
· 1

]

• The proportion of such elements is roughly 1
q ; if q is fairly large

(say q = 231), a random search will fail to locate one.
• Roughly half of the elements SL(2,Fq) have order dividing q− 1

(most of the remaining elements having order dividing q + 1), so
a random search will produce elements of order q− 1.

Can we use them to construct a transvection?

Permutation Groups Matrix Groups Constructive Recognition Future Directions

SL(2, q)

Let G = SL(2,Fq). The goal is to construct an element conjugate to[
1 ∗
· 1

]

• The proportion of such elements is roughly 1
q ; if q is fairly large

(say q = 231), a random search will fail to locate one.
• Roughly half of the elements SL(2,Fq) have order dividing q− 1

(most of the remaining elements having order dividing q + 1), so
a random search will produce elements of order q− 1.

Can we use them to construct a transvection?

Permutation Groups Matrix Groups Constructive Recognition Future Directions

The Discrete Log Trick

Given G = 〈X〉 = SL(2,Fq).

1. Find A ∈ G of order q− 1, having eigenvectors u and v.

2. Let B be a random G-conjugate of A.
[We may assume A and B share no eigenspace]

3. Take another random element C of G, and find i such that BiC
fixes 〈u〉 as follows:

• choose a basis for F2
q such that B =

[
a ·
· a−1

]
;

relative to this basis, u = 〈1, d〉 and C =

[
c11 c12
c21 c22

]
.

• using discrete logarithms, find i such that

a2i =
d2c21 − dc22

c12 − dc11
.

4. [A,BiC] is the desired transvection.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

The Discrete Log Trick

Given G = 〈X〉 = SL(2,Fq).

1. Find A ∈ G of order q− 1, having eigenvectors u and v.

2. Let B be a random G-conjugate of A.
[We may assume A and B share no eigenspace]

3. Take another random element C of G, and find i such that BiC
fixes 〈u〉 as follows:

• choose a basis for F2
q such that B =

[
a ·
· a−1

]
;

relative to this basis, u = 〈1, d〉 and C =

[
c11 c12
c21 c22

]
.

• using discrete logarithms, find i such that

a2i =
d2c21 − dc22

c12 − dc11
.

4. [A,BiC] is the desired transvection.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

The Discrete Log Trick

Given G = 〈X〉 = SL(2,Fq).

1. Find A ∈ G of order q− 1, having eigenvectors u and v.

2. Let B be a random G-conjugate of A.
[We may assume A and B share no eigenspace]

3. Take another random element C of G, and find i such that BiC
fixes 〈u〉 as follows:

• choose a basis for F2
q such that B =

[
a ·
· a−1

]
;

relative to this basis, u = 〈1, d〉 and C =

[
c11 c12
c21 c22

]
.

• using discrete logarithms, find i such that

a2i =
d2c21 − dc22

c12 − dc11
.

4. [A,BiC] is the desired transvection.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

The Discrete Log Trick

Given G = 〈X〉 = SL(2,Fq).

1. Find A ∈ G of order q− 1, having eigenvectors u and v.

2. Let B be a random G-conjugate of A.
[We may assume A and B share no eigenspace]

3. Take another random element C of G, and find i such that BiC
fixes 〈u〉 as follows:

• choose a basis for F2
q such that B =

[
a ·
· a−1

]
;

relative to this basis, u = 〈1, d〉 and C =

[
c11 c12
c21 c22

]
.

• using discrete logarithms, find i such that

a2i =
d2c21 − dc22

c12 − dc11
.

4. [A,BiC] is the desired transvection.

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Results and Remarks

Theorem
Assuming the availability of an algorithm ("oracle") to handle
SL(2,Fq), there are polynomial-time Las Vegas constructive
recognition algorithms for all finite classical groups.

Natural characteristic

• Odd characteristic: Leedham-Green & O’Brien (2009)
• Even characteristic: ...+ Dietrich & Lübeck (2012+)

Black box

• PSL(d,Fq): B & Kantor (2001)
• PSU(d,Fq): B (2003)
• PΩε(d,Fq): B & Kantor (2006)
• PSp(d,Fq): B (2008)

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Results and Remarks

Theorem
Assuming the availability of an algorithm ("oracle") to handle
SL(2,Fq), there are polynomial-time Las Vegas constructive
recognition algorithms for all finite classical groups.

Natural characteristic

• Odd characteristic: Leedham-Green & O’Brien (2009)
• Even characteristic: ...+ Dietrich & Lübeck (2012+)

Black box

• PSL(d,Fq): B & Kantor (2001)
• PSU(d,Fq): B (2003)
• PΩε(d,Fq): B & Kantor (2006)
• PSp(d,Fq): B (2008)

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Results and Remarks

Theorem
Assuming the availability of an algorithm ("oracle") to handle
SL(2,Fq), there are polynomial-time Las Vegas constructive
recognition algorithms for all finite classical groups.

Natural characteristic

• Odd characteristic: Leedham-Green & O’Brien (2009)
• Even characteristic: ...+ Dietrich & Lübeck (2012+)

Black box

• PSL(d,Fq): B & Kantor (2001)
• PSU(d,Fq): B (2003)
• PΩε(d,Fq): B & Kantor (2006)
• PSp(d,Fq): B (2008)

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Fruits Of The Tree?

• A complete implementation of the composition tree algorithm is
now distributed with MAGMA.

• It can be adapted to return the characteristic series

1 6 O∞(G) 6 Soc∗(G) 6 PKer(G) 6 G.

• Which computational problems can we hope to solve with it?

• Conjugacy classes of G.
• Maximal subgroups of G.
• Aut(G).

Permutation Groups Matrix Groups Constructive Recognition Future Directions

Infinite Fields

One of the most exciting new directions in computational group
theory is the algorithmic study of matrix groups over infinite fields.

The most impressive contributions to date are from a collaboration of
Detinko, Flannery & O’Brien. They have devised algorithms to:
• decide finiteness; and
• resolve the Tits alternative.

	Permutation Groups
	Matrix Groups
	Constructive Recognition
	Future Directions

