
Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

A biased overview of computational algebra

Peter Brooksbank

Bucknell University

Linear Algebra and Matrix Theory:
connections, applications and computations

NUI Galway (December 3, 2012)

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Lecture Outline

• Lecture 1: Introduction to Computational Algebra.
• objectives
• terminology
• history
• tools

• Lecture 2: Computing with matrix groups.
• composition tree
• recognizing simple groups
• power of randomization
• exploiting linear algebra

• Lecture 3: Testing isomorphism of finite groups.
• automorphisms of p-groups
• bi-additive maps (bimaps)
• isometries and pseudo-isometries

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

What is Computational Algebra?

Computational Algebra seeks efficient algorithms to answer
fundamental problems concerning basic algebraic objects (groups,
rings, fields etc). Here are some generic examples:
• Given two objects A and B, decide whether A ∼= B.
• Given A and B, sub-objects of X, compute A ∩ B.
• Given A sub-object of X, and x ∈ X, decide whether x ∈ A.
• Given A known to be in a classified set of objects, decide which

known member A is, and construct an explicit isomorphism.

Efficiency may be assessed in a theoretical, or in a practical sense.

In these lectures I will mostly specialize to groups (sometimes rings).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

What is Computational Algebra?

Computational Algebra seeks efficient algorithms to answer
fundamental problems concerning basic algebraic objects (groups,
rings, fields etc). Here are some generic examples:
• Given two objects A and B, decide whether A ∼= B.
• Given A and B, sub-objects of X, compute A ∩ B.
• Given A sub-object of X, and x ∈ X, decide whether x ∈ A.
• Given A known to be in a classified set of objects, decide which

known member A is, and construct an explicit isomorphism.

Efficiency may be assessed in a theoretical, or in a practical sense.

In these lectures I will mostly specialize to groups (sometimes rings).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

How are groups described?

• Finitely presented groups: given by generators and relations

D8 = 〈x, y | x2 = 1, y4 = 1, xy = y3x〉

Dehn (1911) Given a word w in a finitely presented group,
decide whether it represents the identity.

• Permutation groups: given by sets of permutations

S7 = 〈(1 2), (1 2 3 4 5 6 7)〉

Rubik’s cube Given an arbitrary configuration of the cube
puzzle, find a sequence of moves that solves it.

• Matrix groups: given by sets of invertible matrices over fields

SL(2,Z/7) =
〈[

1 1
0 1

]
,

[
0 1
6 0

]〉

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

How are groups described?

• Finitely presented groups: given by generators and relations

D8 = 〈x, y | x2 = 1, y4 = 1, xy = y3x〉

Dehn (1911) Given a word w in a finitely presented group,
decide whether it represents the identity.

• Permutation groups: given by sets of permutations

S7 = 〈(1 2), (1 2 3 4 5 6 7)〉

Rubik’s cube Given an arbitrary configuration of the cube
puzzle, find a sequence of moves that solves it.

• Matrix groups: given by sets of invertible matrices over fields

SL(2,Z/7) =
〈[

1 1
0 1

]
,

[
0 1
6 0

]〉

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

How are groups described?

• Finitely presented groups: given by generators and relations

D8 = 〈x, y | x2 = 1, y4 = 1, xy = y3x〉

Dehn (1911) Given a word w in a finitely presented group,
decide whether it represents the identity.

• Permutation groups: given by sets of permutations

S7 = 〈(1 2), (1 2 3 4 5 6 7)〉

Rubik’s cube Given an arbitrary configuration of the cube
puzzle, find a sequence of moves that solves it.

• Matrix groups: given by sets of invertible matrices over fields

SL(2,Z/7) =
〈[

1 1
0 1

]
,

[
0 1
6 0

]〉

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Deterministic & Randomized Algorithms

• An algorithm is deterministic if, for any instance of the problem,
it terminates with a correct answer in a finite number of steps.

• A randomized algorithm is allowed to make a finite number of
random choices (or coin flips) before outputting an answer.
• An algorithm is Monte Carlo if an upper bound on the chance that

it produces an incorrect answer may be prescribed by the user.
• A Las Vegas algorithm only outputs correct answers, but there is

a possibility that it reports fail. Again, an upper bound on the
likelihood of failure may be prescribed by the user.

• The steps performed by an algorithm depend on the context.
• Binary operations.
• Image calculations (permutation groups).
• Field operations (matrix groups and algebras).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Deterministic & Randomized Algorithms

• An algorithm is deterministic if, for any instance of the problem,
it terminates with a correct answer in a finite number of steps.

• A randomized algorithm is allowed to make a finite number of
random choices (or coin flips) before outputting an answer.
• An algorithm is Monte Carlo if an upper bound on the chance that

it produces an incorrect answer may be prescribed by the user.
• A Las Vegas algorithm only outputs correct answers, but there is

a possibility that it reports fail. Again, an upper bound on the
likelihood of failure may be prescribed by the user.

• The steps performed by an algorithm depend on the context.
• Binary operations.
• Image calculations (permutation groups).
• Field operations (matrix groups and algebras).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Complexity

The complexity of an algorithm is a measure of the number of steps it
takes as a function of input length.

1. If G = 〈X〉 is a subgroup of the symmetric group Sn, then the
input length is |X|n.

2. If G = 〈X〉 is a subgroup of the general linear group GL(d,K),
the length is roughly |X|d2. When K = Fq, this is |X|d2 log q.

If there is a function f and constant C such that the number of steps
carried out by an algorithm for any input of length N at most Cf (N)
then we say that it has complexity O(f (N)).

In Computational Algebra, we care both about
• theoretical complexity (e.g. polynomial time), and
• practical implementations (e.g. in GAP and MAGMA).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Complexity

The complexity of an algorithm is a measure of the number of steps it
takes as a function of input length.

1. If G = 〈X〉 is a subgroup of the symmetric group Sn, then the
input length is |X|n.

2. If G = 〈X〉 is a subgroup of the general linear group GL(d,K),
the length is roughly |X|d2. When K = Fq, this is |X|d2 log q.

If there is a function f and constant C such that the number of steps
carried out by an algorithm for any input of length N at most Cf (N)
then we say that it has complexity O(f (N)).

In Computational Algebra, we care both about
• theoretical complexity (e.g. polynomial time), and
• practical implementations (e.g. in GAP and MAGMA).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Linear Algebra

There are certain linear algebraic problems for which we require
efficient solutions.

1. Determine the nullspace of a matrix.

2. Find all solutions of a system of linear equations.

3. Find the product of two matrices.

4. Find and factor the characteristic polynomial of a matrix.

5. Find and factor the minimal polynomial of a matrix.

There are efficient algorithms for all of these problems (e.g. using
roughly d3 log2 q basic field operations) and highly optimized
computer implementations.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Prehistory

1830 Solubility of polynomials by radicals. (Galois)

1860 Discovery of first sporadic simple groups. (Mathieu)

1911 Formulation of the "Word Problem" for finitely presented
groups. (Dehn)

1936 First systematic approach to deciding finiteness of a finitely
presented group using "coset enumeration". (Todd & Coxeter)

1951 Suggested use of computational and probabilistic methods to
investigate groups of order 256. (Newman)

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Early History

1953
• Partial implementation of the Todd-Coxeter algorithm on

EDSAC II in Cambridge. (Haselgrove)
• Calculation of characters of symmetric groups on BARK in

Stockholm. (Comet)

1959 Subgroup lattices of permutation groups. (Neubüser)

1967 "Computational Problems in Abstract Algebra". (Oxford)

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Decade of Discovery

• Methods
1. Management of large permutation groups. (Sims, 1970)
2. Rewrite systems for f.p. groups. (Knuth-Bendix, 1970)
3. p-Nilpotent-Quotient method. (Macdonald, 1974)
4. Reidermeister-Schreier method. (Havas, 1974)

• Applications
1. Existence proof of Lyons’ sporadic simple group. (Sims, 1973)
2. Determination of the Burnside group B(4, 4) of order 2422.

(Newman & Havas, 1974)

• Systems
1. Aachen-Sydney Group System operational. (1974)
2. Description of group theory language "Cayley". (Cannon, 1976)

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Modern Times

• Existence of the "Baby Monster" of order

4, 154, 781, 481, 226, 426, 191, 177, 580, 544, 000, 000

as a permutation group of degree 13,571,955,000. (Sims)
• Computational techniques used to make and verify the "Atlas of

Finite Simple Groups".
• Classification of the 58,760 isomorphism classes of groups of

order 2n, n ≤ 8. (O’Brien)
• Development of the systems GAP and MAGMA.
• Development of polynomial-time theory for permutation groups.
• Improved methods in computational representation theory.
• Progress in matrix group algorithms.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Specifying Modules

One computes effectively with groups or algebras of d × d matrices
over a field K via their natural underlying module Kd.

• Let A be any K-algebra, which we specify as the enveloping
algebra of a set {x1, . . . , xr} of generators.

• A K-vector space M is an A-module if there is a K-algebra
homomorphism ϕ : A→ EndK(M).

Thus, M is specified algorithmically by giving d × d matrices
a1, . . . , ar representing the images ϕ(x1), . . . , ϕ(xr).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Specifying Modules

One computes effectively with groups or algebras of d × d matrices
over a field K via their natural underlying module Kd.

• Let A be any K-algebra, which we specify as the enveloping
algebra of a set {x1, . . . , xr} of generators.

• A K-vector space M is an A-module if there is a K-algebra
homomorphism ϕ : A→ EndK(M).

Thus, M is specified algorithmically by giving d × d matrices
a1, . . . , ar representing the images ϕ(x1), . . . , ϕ(xr).

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Fundamental Problems

• Homomorphisms. Given A-modules M,N, specified by
a1, . . . , ar and b1, . . . , br respectively, compute (a basis for)

HomA(M,N) = {A-module homomorphisms M → N}
= {y : ai y = y bi ∀i = 1, . . . , r}

• Testing Isomorphism. Given A-modules M,N, decide whether or
not M and N are isomorphic, and if so find an isomorphism.
(i.e. find g ∈ GL(d,Fq) such that g−1ai g = bi ∀i = 1, . . . , r).

• Testing Irreducibility. Given an A-module M, find a proper
A-submodule N of M, or else conclude that M is irreducible.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Fundamental Problems

• Homomorphisms. Given A-modules M,N, specified by
a1, . . . , ar and b1, . . . , br respectively, compute (a basis for)

HomA(M,N) = {A-module homomorphisms M → N}
= {y : ai y = y bi ∀i = 1, . . . , r}

• Testing Isomorphism. Given A-modules M,N, decide whether or
not M and N are isomorphic, and if so find an isomorphism.
(i.e. find g ∈ GL(d,Fq) such that g−1ai g = bi ∀i = 1, . . . , r).

• Testing Irreducibility. Given an A-module M, find a proper
A-submodule N of M, or else conclude that M is irreducible.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Fundamental Problems

• Homomorphisms. Given A-modules M,N, specified by
a1, . . . , ar and b1, . . . , br respectively, compute (a basis for)

HomA(M,N) = {A-module homomorphisms M → N}
= {y : ai y = y bi ∀i = 1, . . . , r}

• Testing Isomorphism. Given A-modules M,N, decide whether or
not M and N are isomorphic, and if so find an isomorphism.
(i.e. find g ∈ GL(d,Fq) such that g−1ai g = bi ∀i = 1, . . . , r).

• Testing Irreducibility. Given an A-module M, find a proper
A-submodule N of M, or else conclude that M is irreducible.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Testing Isomorphism

Theorem (B-Luks (2008))
There is a deterministic, polynomial time algorithm which, given
A-modules M and N, decides whether M and N are isomorphic.

Main Idea:

1. If M ∼= N, then HomA(M,N) · HomA(N,M) ⊂ EndA(M) is not
nilpotent. Let d = dim M = dim N.

2. Find x ∈ HomA(M,N) and y ∈ HomA(N,M) such that b = x · y
is not nilpotent, and put c = y · x.

3. Write M = M bd ⊕ ker bd and N = N cd ⊕ ker cd. Then x induces
an isomorphism M bd → N cd.

4. Recursively test isomorphism of ker bd and ker cd.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Generating Random Elements

To make randomized algorithms useful, one first needs an effective
method of generating random elements in groups and algebras.

• Algebras. Compute a K-basis for the algebra, and then take a
random linear combination of basis elements.

• Groups. Two results on random generation in finite groups:

• Babai (1991) The first polynomial time algorithm to construct
independent, (nearly) uniformly distributed random elements.

• CLMNO (1995) Described the "product replacement" algorithm
as a practical alternative. With easy modifications, can also be
used to generate "random" elements of algebras.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Generating Random Elements

To make randomized algorithms useful, one first needs an effective
method of generating random elements in groups and algebras.

• Algebras. Compute a K-basis for the algebra, and then take a
random linear combination of basis elements.

• Groups. Two results on random generation in finite groups:

• Babai (1991) The first polynomial time algorithm to construct
independent, (nearly) uniformly distributed random elements.

• CLMNO (1995) Described the "product replacement" algorithm
as a practical alternative. With easy modifications, can also be
used to generate "random" elements of algebras.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Testing Irreducibility (The Meataxe)

Given: An A-module M by generators a1, . . . , ar.
Find: A proper A-submodule of M (or decide that no such exists).

1. Choose a random θ in Env(a1, . . . , ar).

2. Compute and factor the minimal polynomial of θ.

3. For an irreducible factor π, compute nullspace N of ξ = π(θ).

4. If 0 6= v ∈ N generates a proper A-submodule, return it.
5. Else, if deg(π) = dim(N), compute N∗, the nullspace of ξtr.

• If 0 6= w ∈ N∗ generates a proper submodule W of M∗:
• Choose any 0 6= u of W⊥.
• Return the A-submodule generated by u.

• Else report that M is irreducible.

6. Repeat steps 3-5 for a new irreducible factor, or return to step 1.

Introduction Computational Algebra Algorithms & Complexity A Brief History Modules

Correctness of The Meataxe
The only output that is in question is the report "M is irreducible"
which occurs only when deg(π) = dim(N) in step 5.

Suppose, in that case, that M has a proper submodule L. Observe:

1. θ|N is irreducible with minimal polynomial π.
2. L ∩ N is either 0 or N.

2.1 If L ∩ N = N, any v ∈ N lies in L: a proper submodule is found.
2.2 If L ∩ N = 0, let e1, . . . , ec, ec+1, . . . , ed exhibit L. Then

ξ =

[
A ·
B C

]
and ξtr =

[
Atr Btr

· Ctr

]
.

• Now, A has maximal rank, so that nullity ξtr = nullity Ctr.
• Hence any vector in the nullspace of ξtr also lies in a proper

submodule of the dual module M∗ (defined by a1
tr, . . . , ar

tr).
• But then any vector in the orthogonal complement of such a

submodule must lie in a proper submodule of M.

	Introduction
	Computational Algebra
	Algorithms & Complexity
	A Brief History
	Modules

